
GRZEGORZ NOWAKOWSKI*

CONVERSION OF FUZZY QUERIES INTO STANDARD SQL
QUERIES USING ORACLE 11G XE

TRANSFORMACJA ZAPYTAŃ NIEPRECYZYJNYCH
NA ZAPYTANIA W STANDARDZIE SQL

PRZY WYKORZYSTANIU ORACLE 11G XE

A b s t r a c t

This article presents various forms of fuzzy queries with a particular emphasis of two
different approaches to the representation of fuzziness, a detailed analysis of these
queries and their conversion into standard SQL queries using Oracle 11g XE. The actions
discussed above point out to the methods of obtaining fuzzy information from the database
that have been easy to implement. A qualitative and quantitative study about the use of
fuzzy queries on relational databases has been included in this article, as well. This research
takes into account the fact that obtaining this type of information is not supported by any
commercial database management system.

Keywords: fuzzy logic, fuzzy queries, SQL, Oracle 11g XE

S t r e s z c z e n i e

W artykule przedstawiono różne formy zapytań nieprecyzyjnych do bazy danych ze szczegól-
nym uwzględnieniem dwóch konkretnych podejść do reprezentacji nieprecyzyjności, dokona-
no szczegółowej analizy tych zapytań oraz ich transformacji na zapytania w standardzie SQL
z zastosowaniem Oracle 11g XE. W artykule ujęto również jakościowe i ilościowe badanie
dotyczące wykorzystania nieprecyzyjnych zapytań w relacyjnych bazach danych. Omawia-
ne działania wskazują na łatwe w implementacji sposoby pozyskiwania nieprecyzyjnych in-
formacji z bazy danych oraz uwzględniają fakt, że pozyskiwanie tego typu informacji nie jest
wspierane przez żaden komercyjny system zarządzania bazami danych.

Słowa kluczowe: logika rozmyta, zapytania nieprecyzyjne, SQL, ORACLE 11g XE

* M.Sc. Eng. Grzegorz Nowakowski, Department of Automatic Control and Information Technology,
Faculty of Electrical and Computer Engineering, Cracow University of Technology.

TECHNICAL TRANSACTIONS
ELECTRICAL ENGINEERING

3-E/2016

CZASOPISMO TECHNICZNE
ELEKTROTECHNIKA

DOI: 10.4467/2353737XCT.16.277.6076

198

1. Introduction

Classic query languages (with SQL being the most widely applied) define the scope of
data as well as conditions to be met by data throughout the entire process of searching for
information in databases. These conditions should be precisely defined, as precision is the
basic requirement when defining conditions in query languages. At the same time, these
conditions impose limitations. For example, a customer of a car dealership looking for
a cheap car has to precisely define the price range he is willing to pay. Regardless of how
the limits of the range are defined, a car priced slightly above the set limit will not meet the
conditions of the query. This shows that the limits in question result from the necessity of
precisely defining the conditions, which were initially expressed in a natural language with
imprecise terms.

The problem can be solved by the use of linguistic terms modelled and processed with
fuzzy logic in queries addressed to a database. These are the so-called fuzzy queries.
Linguistic terms are presented as fuzzy sets in an appropriate, usually numerical, space.
Therefore, matching data to the query is no longer perceived as dichotomy: matched
– unmatched. For this reason, the notion of a degree of matching the data to the query
is introduced and one assumes that the value of this degree of matching corresponds
(in a somewhat simplified view) to the degree to which the data belongs to the fuzzy set
representing the condition of the query [1, 2].

This article discusses various forms of fuzzy queries with a particular emphasis of two
different approaches to the representation of fuzziness; it also includes a detailed analysis
of fuzzy queries as well as documents their conversion into SQL standard queries using
Oracle 11g XE. Described actions point to easy to implement methods of obtaining fuzzy
information from databases and take into account the fact that obtaining such information is
not supported by any commercial database management system.

2. Fuzzy queries

A fuzzy query addressed to a relational database [1, 2] is a query including overtly used
expressions of the natural language, referred to as linguistic terms (modelled with fuzzy
logic), defining the following: imprecise values, imprecise comparisons and non-standard
methods of aggregation of degrees of meeting partial conditions of the query.

Particular rows meet the conditions of such a query to a certain degree expressed with
a number from <0,1> range, where 1 means that the query requirement is fully met, and 0
means that the query requirement is fully unmet. Therefore, the result of the query is a set
of rows arranged according to the degree of meeting the conditions of the query. This way,
it is easier to reflect the attempts undertaken by a given individual to match the data to the
query. In the case of complex queries, which include both fuzzy linguistic terms as well
as non-standard aggregation schemes, meeting conditions of the query is gradual. In such
a situation, a human being naturally evaluates the data and perceives it as data, which meets
his/her requirements to a greater or a lesser degree instead of distinguishing only between the
data, which meets or does not meet the set requirements. The notion of the degree of meeting

199

conditions of the query allows us to formally present these complex queries and by the same
token naturally arrange the results in such a manner, as to make sure the data, which meets
the conditions of the query to the greatest degree is at the onset of the list of results.

When analysing the problem of calculating the degree to which conditions of a fuzzy
query are met, one should accept a significantly simplified view of the execution of such
a query by a database system. It is assumed that when a query is executed, the whole table
is examined sequentially and that the degree to which the query is met is calculated for each
row. Database system carries out the steps presented in Table 1.

T a b l e 1

Calculation of the degree to which conditions of a fuzzy query are met (prepared based on [1, 2])

Step Database system:

1 downloads a row from the table;

2
calculates partial degrees of meeting all (or only selected, depending on the structure of
the query and the applied optimization) simple conditions of the query by substituting the
attributes with their values form a given row;

3 aggregates partial degrees to which conditions of the query are met as calculated in the
previous step up to the total degree of meeting conditions the query;

4
if the total degree of meeting conditions of the query is sufficiently high (exceeds the user-
defined or default threshold value), the row is added to the reply to the query along with
the degree of meeting its conditions;

5 moves to step 1;

6 if there are no more rows, STOP.

An overview of the process of calculating the degree to which conditions of a simple,
fuzzy query are met can be presented on the following example. Let us assume that I am
looking for a cheap car in the offer of a car dealership. Let us assume that u denotes the
numerical range specifying prices of the vehicles (in kPLN) and that the term cheap is
modelled with the fuzzy set A characterized by the following membership function:

 µA u

u
u u

u

() =

≤
−

< ≤

>

1 200
400
200

200 400

0 400

 (1)

Then, for a car represented by tuple t and characterized by the price t.price, the degree
of meeting conditions of the above query md is calculated as follows: md = µA(t.price). The
provided example illustrates the general rule of interpretation of fuzzy queries: the degree
to which conditions of the query are met is equated with the value of the membership
function of the relevant fuzzy set. In the case of complex queries, partial degrees of meeting

200

conditions of the query calculated in the above-mentioned manner, corresponding to
particular conditions contained in the query, are aggregated with selected operators.

As it was mentioned above, the possibility of non-standard aggregation of conditions
contained in the query is a significant feature of fuzzy queries. This feature significantly
extends the classic scheme based predominantly on the use of conjunction and alternative
as well as allows expressing often complex interrelations among partial conditions of the
query. Among aggregation operators, linguistic quantifiers are particularly important as
they are widely applied in the natural language and well represented in fuzzy logic.

3. Conversion of fuzzy queries into SQL standard queries using Oracle 11g XE

Construction of fuzzy queries as well as their execution and the applied grammar of
fuzzy queries are usually strongly connected with the query language of a given database.
This item discusses the problem of conversion of fuzzy queries into SQL standard queries
using Oracle 11g XE database, in the case of which, similarly to most contemporary
relational databases [6], SQL query language is used.

There are numerous fuzzy elements in queries addressed to databases:
 – atomic predicates based on linguistic terms: young, tall,
 – atomic predicates based on similarity of linguistic terms: information technology ≈

artificial intelligence,
 – complex predicates: fuzzy sum and product operators,
 – modified predicates: very, around, rather, antonyms,
 – fuzzy operators: approximately, a little more, etc.,
 – linguistic quantifiers,
 – fuzzy combination of relations,
 – fuzzy aggregate functions,
 – grouping by fuzzy values.

In order to discuss the problem of approach towards the representation of imprecision,
examples of imprecise elements in queries addressed to database contained in the first three
items of the above list were taken into account.

Two approaches towards the representation of imprecision can be distinguished [11]:
• based on distribution of possibilities

The approach based on the distribution of possibilities changes the method of
representation of values of attributes from numerical to linguistic. Linguistic variables (also
referred to as possibility type variables) can be presumed for attributes with a continuous
domain. Values of such a variable are linguistic terms with corresponding fuzzy sets
represented in the form of distribution of possibilities.

Example 1: on the prod_year attribute, whose domain is originally numerical, one can
introduce the following linguistic terms: New, Average, Old, which are defined by relevant
distributions of possibilities.

Example 2: the condition: ‘new car’ will be formulated conventionally as: prod_year is
NEW, where NEW is a fuzzy set corresponding to the linguistic term NEW for the attribute
prod_year.

201

• based on similarity
Here, values of linguistic variables are also linguistic terms, yet they are interpreted as

distributions of similarity (the so-called similarity matrix is defined which stores the degree
of similarity for each pair of linguistic terms). Such variables can be defined exclusively for
attributes with a finite domain.

From the above reasoning, it stems that the whole interpretation of fuzzy queries comes
down to the following general rule: the degree of meeting conditions of the query equates
with the value of the membership function of the relevant fuzzy set. Whereas in the case
of complex queries, partial degrees of meeting conditions of the query calculated in the
above-mentioned manner, corresponding to particular conditions contained in the query, are
aggregated with selected operators discussed in item 3.3.

3.1. Exemplary data

Assuming there are already exemplary tables with data in Oracle 10g XE database.
Another column, i.e. fuzzy_degree, with the initially set value of 1.0 for each row, which
belongs to it, was added to the table labelled tbl_cars presented in Fig. 1. This denotes the
initial state – total degree of membership of a given row to the table labelled tbl_cars.

Fig. 1. Exemplary data from tbl_cars table

Tables tbl_ possibility and tbl_similarity contain data, which will be used at the stage of
conversion of fuzzy queries into typical SQL queries. The tbl_ possibility table, as presented
in Fig. 2, stores linguistic variables described by the membership function.

Fig. 2. Exemplary data from tbl_possibility table

The linguistic_variable column stores the name of the linguistic variable. The type
column contains information on the type of the membership function describing the
linguistic variable (in the table in question all variables are described by the trapezoidal
membership function presented in Fig. 3). Columns a, b, c and d contain parameters of the
function. Columns table_name and column_name store the following information: on which

202

column and from which table the linguistic variable was presumed. The column labelled
username contains information on the name of the user to which a given definition applies;
this way various users can describe linguistic variables with identical names, presumed for
the same columns of the same tables, in a different way.

µA x a b c d

x a
x a
b a

a x b

b x c
d x
d c

c x d

x d

(; , , ,) =

≤
−
−

< ≤

< ≤
−
−

< ≤

>

0

1

0

Fig. 3. Trapezoidal membership function

The table labelled tbl_similarity presented in Fig. 4 stores pairs of linguistic values along
with the degree of their similarity. The data pertains to the column describing the type of
bodywork of the car (Table 2).

Fig. 4. Exemplary data from tbl_similarity table

Columns value_1, value_2 contain the original value and the similar value, whereas column
degree stores the degree of similarity between the two elements. Interpretation of the remaining
columns is similar as in the case of their counterparts in the table labelled tbl_possibility.

It needs pointing out that similarity can be presumed for columns with a discrete domain.
Additionally, when defining the similarity relation one should remember that the relation
must be reflexive, symmetric and transitive.

203

T a b l e 2

Similarity relation for tbl_cars table on type attribute

cabrio combi coupe sedan

cabrio 1.0 0.2 0.2 0.2

combi 0.2 1.0 0.6 0.6

coupe 0.2 0.6 1.0 0.8

sedan 0.2 0.6 0.8 1.0

3.2. Fuzzy queries – fuzzy condition for possibility type variable

In a classic SQL query, the query condition can be either met or unmet. Each result row
meets the conditions of the query to the same degree. In fuzzy relations, a row can appear
partially, which can be interpreted as certainty or a degree of meeting conditions of the
query.

A fuzzy query converted to an equivalent SQL standard query using Oracle 11g XE, as
presented in Table 3, will display the offer of new cars. A fuzzy condition was applied in the
query and a defined fuzzy set was used, which corresponds to the term new for the prod_
year attribute.

T a b l e 3

Example: display new cars for sale

Fuzzy query (conventional form) An equivalent query in SQL-Oracle 11g XE

SELECT *
FROM tbl_cars
WHERE prod_year IS ‘NEW’;

SELECT c.*, FP_TRAPEZOID(prod_
year,a,b,c,d) FUZZY_DEGREE

FROM tbl_cars c, tbl_possibility

WHERE FP_TRAPEZOID(prod_
year,a,b,c,d)>0 and (linguistic_variable=’NEW’
and column_name=’prod_year’);

In the discussed example, all variables are defined by the trapezoidal membership
function, the definition of which (presented in Fig. 5) was formulated in PL/SQL in Oracle
10g XE database.

In Fig. 6, the column labelled fuzzy_degree contains the information on the degree to
which a given row meets conditions of the query. In this case, it tells us to what degree the car is
new. It is calculated as µprod _ yearNEW(prod _ year), and its definition is presented in Tab. 2.

204

Fig. 5. Trapezoidal membership function defined in PL/SQL in Oracle 10g XE database

Fig. 6. Result of the fuzzy query from Table 2 – fuzzy condition for possibility type variable

The parameters and the type of the membership function of the defined linguistic term can
be easily read from tbl_possibility table presented in Fig. 2. This has been presented in Fig. 7.

Fig. 7. Result of the query – parameters and type of the membership function
of the defined linguistic term

As indicated by the result of the query shown in Fig. 7, the fuzzy set PROD_
YEARNEW=(2010, 2015, 2050, 2050) corresponds to the term new for the attribute prod_year.

3.3. Fuzzy query – combining fuzzy conditions

Fuzzy queries, similarly to classic SQL queries, can contain complex conditions resulting
from combining single conditions with logical operators. In SQL, the keyword AND
corresponds to the conjunction operator, the keyword OR corresponds to the alternative
operator and the keyword NOT to the negation operator.

Identical keywords are applied in the case of fuzzy queries, yet they correspond,
respectively, to: fuzzy conjunction, fuzzy alternative and fuzzy negation.

Nevertheless, it needs pointing out that in the theory of fuzzy sets [7], there is a number
of operators carrying out intersection operation (product operation which corresponds to
the logical operation AND). These are applied interchangeably depending on the problem at
hand. Most of these operators meet the criteria of the so-called triangular norm T (T-norm):

205

 µA∩B(x) = T(µA(x), µB(x)) (2)

Similarly to the execution of the intersection operation, numerous operators are used
for the purpose of the operation of joining (logical sum which corresponds to the logical
operation OR). The most commonly applied operators meet the criteria of the so-called
triangular norm S (S-norm) also referred to as T-conorm:

 µA∪B(x) = S(µA(x), µB(x)) (3)

The criteria defining triangular norms consist of four fundamental conditions and due to
a limited length of this article will not be presented here. These conditions were described,
among others, in [1, 2, 8, 9].

The most commonly used T-norms (mapping logical operator AND) are the minimum
MIN (a, b) and the product (PROD) a · b. Whereas the most commonly used S-norm
operators (mapping logical operator OR) are the maximum MAX (a, b) and the so-called
algebraic (probabilistic) sum a + b – a · b.

A relevant S-norm corresponds to each T-norm, provided that the following condition
is met:

 T(a, b) = 1– S(1 – a, 1 – b) or S(a, b) = 1 – T(1 – a, 1 – b) (4)

Operators that meet the condition (4) form the so-called complementary (conjugate,
dual) pairs. Numerous operators meeting the conditions of T-norms and S-norms have been
developed and described. These operators are divided into non-adjustable, with a constant
mode of operation, and adjustable (parametrized), also referred to as families of triangle
norms, in the case of which the mode of operation changes depending on the accepted
parameter (the degree of freedom) for the operator in question. Table 4 presents selected
triangle norms forming complementary pairs.

Operators of triangle norms indicated in Table 4 execute operations only on two fuzzy
(variable) sets. Operations on a greater number of sets can be executed gradually, by
combining sets into pairs with the sequence of combining sets into pairs having no effect on
the result (coherency quality).

From the above reasoning, it results that the degree of meeting a complex condition is
calculated based on the degrees of meeting partial conditions as well as selected T-norm and
its complementary S-norm.

A fuzzy query converted to an equivalent SQL standard query using Oracle 11g XE,
as presented in Table 5, will display the offer of new cars with high engine cubic capacity.
All variables are defined by the trapezoidal membership function, the definition of which
(presented in Fig. 5) was formulated in PL/SQL in Oracle 10g XE database. In the query in
question:
 – a defined fuzzy set corresponding to the term new for the attribute prod_year was

applied,
 – a defined fuzzy set corresponding to the term high for the attribute engine_capacity was

applied,
 – a conjunction of both of the above-mentioned fuzzy conditions was carried out, which

resulted in defining T-norm as the minimum operation.

206

T a b l e 4
Selected non-adjustable triangle norms forming complementary pairs

(prepared based on [7–10])

No. T(a, b) S(a, b)

1 Minimum
MIN (a, b)

Maximum
MAX (a, b)

2 PROD algebraic product
a · b

Algebraic sum
(probabilistic product)

a + b – a · b

3 Limited difference (Łukasiewicz’s)
MAX (0, a + b – 1)

Limited sum (Łukasiewicz’s)
MIN (1, a + b)

4
Drastic product

min(,), max(,)
,

a b if a b
otherwise

=

1
0

Drastic sum
max(,), min(,)

,
a b if a b

otherwise
=

0
1

5
Hamacher product

� a b
a b a b

⋅
+ − ⋅

Hamacher sum
a b a b

a b
+ − ⋅ ⋅
− ⋅

2
1

6

Einstein product
a b

a b a b
⋅

− + − ⋅()

2

Einstein sum
a b

a b
+

+ ⋅

1

T a b l e 5

Example: display new cars for sale with high engine capacity (first way)

Fuzzy query (conventional form) An equivalent query in SQL – Oracle 11g XE

SELECT *
FROM tbl_cars
WHERE prod_year IS ‘NEW’
AND engine_capacity IS ‘HIGH’

SELECT *
FROM (
SELECT c.model, c.type, c.prod_year, c.engine_
capacity,
MIN(CASE column_name
WHEN ‘prod_year’ THEN FP_
TRAPEZOID(prod_year,a,b,c,d)
WHEN ‘engine_capacity’ THEN FP_
TRAPEZOID(engine_capacity,a,b,c,d) END) AS
FUZZY_DEGREE
FROM tbl_cars c, tbl_possibility
WHERE (linguistic_variable=’NEW’ or
linguistic_variable=’HIGH’) AND (column_
name=’prod_year’ or column_name=’engine_ca-
pacity’)
group by c.model, c.type, c.prod_year, c.engine_
capacity
) WHERE FUZZY_DEGREE > 0;

207

T a b l e 6

Example: display new cars for sale with high engine capacity (second way)

Fuzzy query (conventional form) An equivalent query in SQL – Oracle 11g XE

SELECT*
FROM tbl_cars
WHERE prod_year IS ‘NEW’
AND engine_capacity IS ‘HIGH’

SELECT c.model, c.type, c.prod_year,
c.engine_capacity,
MIN(CASE column_name
WHEN ‘prod_year’ THEN FP_
TRAPEZOID(prod_year,a,b,c,d)
WHEN ‘engine_capacity’ THEN FP_
TRAPEZOID(engine_capacity,a,b,c,d) END)
AS FUZZY_DEGREE
FROM tbl_cars c, tbl_possibility
WHERE (linguistic_variable=’NEW’ or
linguistic_variable=’HIGH’) AND (column_
name=’prod_year’ or column_name=’engine_
capacity’)
group by c.model, c.type, c.prod_year, c.engine_
capacity
having MIN(CASE column_name
WHEN ‚prod_year’ THEN FP_
TRAPEZOID(prod_year,a,b,c,d)
WHEN ‚engine_capacity’ THEN FP_
TRAPEZOID(engine_capacity,a,b,c,d) END)
>0;

Fig. 8. Result of the fuzzy query from Table 5 – joining fuzzy conditions

The value of the column labelled fuzzy_degree, the result of which was presented in
Fig. 8, was set as min(µprod_yearNEW(prod_year), µengine_capacityHIGH(engine_capacity)), the
definition of which can be found in Table 5.

208

3.4. Fuzzy queries – fuzzy condition for a similarity type variable

As it was already mentioned in item 3.1, for attributes with a discrete domain, in the case
of which similarity between pairs of elements of the domain was defined, a similarity type
fuzzy condition can be used. In the exemplary database, a similarity relation was defined on
the type attribute of tbl_cars table (Table 2).

A fuzzy query converted into an equivalent SQL standard query using Oracle 11g XE, as
presented in Table 7, will display cars with bodywork similar to coupe. Additionally, the cut-
off threshold was set to 0.7.

T a b l e 7

Example: display cars with bodywork similar to coupe. Set cut-of threshold to 0.7

Fuzzy query (conventional form) An equivalent query in SQL-Oracle 11g XE

SELECT THRESHOLD 0.7 c.*
FROM tbl_cars c
WHERE type IS ‘COUPE’;

SELECT c.model, c.type, c.prod_year, c.engine_
capacity, c.price, s.degree
FROM tbl_cars c, tbl_similarity s
WHERE (c.type, s.degree) in (
SELECT value_2,degree
FROM tbl_similarity
WHERE value_1=’COUPE’ and degree > 0.7)
GROUP BY c.model, c.type, c.prod_year,
c.engine_capacity, c.price, s.degree
ORDER BY s.degree

As a result of the query, we received four offers presented in Fig. 9. The column labelled
fuzzy_degree contains the information on the degree to which a given row meets conditions
of the query. Due to the set cut-off threshold, only values greater than 0.7 have been included.

Fig. 9. Result of the fuzzy query from Table 7 – fuzzy condition for a similarity type variable

Needless to say, a fuzzy query can contain complex conditions resulting from joining
single conditions with logical operators according to the rule presented in item 3.3.

209

3.5. Tests

Two different tests on the Oracle 11g XE database have been performed to analyze
proposal presented in this article [19]:
 – varying complexity of the query (examples of queries presented in this article),
 – varying the number of tuples computed on a same query, to analyze the system

scalability.
Tests have been conducted on a PC equipped with an Intel Core i5 2.80 GHz and 12 GB

of memory. Queries that vary in complexity, are represented in Table 8 together with
a description of them.

T a b l e 8

Set of queries

Query ID Fuzzy Query Description

Q1 new cars for sale fuzzy condition for possibility
type variable

Q2 new cars for sale with high engine capacity
(first way) combining fuzzy conditions

Q3 new cars for sale with high engine capacity
(second way) combining fuzzy conditions

Q4 cars with bodywork similar to coupe fuzzy condition for a similarity
type variable

T a b l e 9

Execution times (in milliseconds) varying number of tuples

Number of tuples Q1 Q2 Q3 Q4

10 3 3 13 4

50 8 3 13 4

100 12 4 13 4

200 21 6 14 4

300 22 6 14 3

400 36 9 18 3

500 46 9 19 5

1000 54 13 22 8

210

Fig. 10. Execution times in queries performed on Oracle 11g XE

Scalability was measured by varying the number of tuples in the database from 10 to
1000. To do that, examples of queries presented in this article have been executed. Execution
times are shown in Table 9 and they have been illustrated in Fig. 10. In this figures, we
can notice how the scalability grows accordingly with the number of computed rows in the
queries. The ones that have more computational needs and/or have more complex syntax
(e.g. this same example of a query (in Table 9 marked as Q2, Q3) are presented in Table 5
and Table 6 has different execution times). However, it is noticeable that varying the number
of rows is not enough to distinguish the delay provoked by the changes in the number of
computed rows, especially in the simplest queries [19].

4. Comparison of most relevant features in fuzzy query systems [19]

A comparison between the features of the main fuzzy relational databases in the
literature [19] and proposal presented in this article is shown in Table 10. First models were
mainly theoretical proposals of fuzzy relational databases. Prade H. and Testemale C. [13]
have presented the original code in MACLISP on DPS8 for fuzzy query processing. Umano
[12] and Fukami have presented FOOBD in SQL. The most complete implementations were
provided by: Bosc P. and Pivert O. [17] called Sqlf and Kacprzyk J. and Zadrożny S. [18]
called FQuery in Microsoft Access. In addition, Medina et al. [15] proposed a conceptual
framework for fuzzy representation called GEFRED (Generalized Model for Fuzzy
Relational Databases) and a language called FSQL (Fuzzy SQL, SQL extension) in Oracle.
An implementation presented in this article is based on a Kacprzyk J. and Zadrożny S. and
Medina’s proposal (Table 10). It is worth noting that there are a few functionalities, that
GEFRED has defined theoretically [19], that neither have been included in the implemented
version, i.e. fuzzy joins and fuzzy quantifiers, nor in implementation presented in this
article.

211
T

a
b

le
 1

0

C
om

pa
ri

so
n

of
 m

os
t r

el
ev

an
t f

ea
tu

re
s i

n
fu

zz
y

qu
er

y
sy

st
em

s [
19

]

M
od

el
B

uc
kl

es
 B

.P
.,

Pe
try

 F
.E

.
[1

2]

Pr
ad

e
H

.,
Te

st
em

al
e

C
.

[1
3]

Ze
m

an
ko

va
 M

.,
K

an
de

l A
.

[1
4]

M
ed

in
a

J.M
.,

Po
ns

 O
.,

V
ila

 M
.A

.
[1

5]

U
m

an
o

M
.,

H
at

on
o

I.,
Ta

m
ur

a
H

.
[1

6]

B
os

c
P.

,
Pi

ve
rt

O
.

[1
7]

K
ac

pr
zy

k
J.,

Za

dr
oż

ny
 S

.
[1

8]

M
ar

tin
ez

-C
ru

z
C

.,
N

og
ue

ra
 J.

M
.,

V
ila

 M
.A

.
[1

9]

Pr
op

os
al

 p
re

-
se

nt
ed

 in
 th

is

ar
tic

le

M
an

ag
e

sc
al

ar
 d

at
a

x
x

x
x

x
x

x
x

x
M

an
ag

e
no

n-
sc

al
ar

 d
at

a
x

x
x

x
x

Si
m

ila
rit

y
re

la
tio

ns
hi

p
x

x
x

x
x

Po
ss

ib
ili

ty
 d

is
tri

bu
tio

ns
x

x
x

x
x

x
x

D
eg

re
e

in
 a

ttr
ib

ut
es

 le
ve

l
x

x
x

x
x

D
eg

re
e

in
 tu

pl
e

le
ve

l
x

x
x

x
x

x
x

x
Fu

zz
y

m
od

ifi
er

s
x

x
Fu

zz
y

qu
an

tifi
er

s
x

x
x

Fu
zz

y
co

m
pa

ris
on

op

er
at

or
s

x
x

x
x

x
x

x
x

x

Fu
zz

y
gr

ou
p

by
x

x
Fu

zz
y

jo
in

s
x

x
x

x
St

or
e

fu
zz

y
da

ta
x

x
x

x
x

Fu
zz

y
qu

er
ie

s
x

x
x

x
x

x
x

x
x

Ex
te

ns
io

n
SQ

L
la

ng
ua

ge
x

x
x

x
x

x

212

5. Conclusions

Fuzzy queries enable using a natural language. Nevertheless, in order to maintain the
fuzzy nature of these expressions, they are modelled with fuzzy sets. This way, fuzzy queries
enable improved representation of the requirements of the user through direct expression of
the same with linguistic terms and through the use of complex methods of aggregation of
partial conditions.

Fuzzy queries can be applied even if the user precisely defined his/her requirements.
Yet, their application is only justified in the event there is no data, which meets these
requirements. When a classic query with precisely defined conditions yields an empty data
set, a fuzzy query with imprecisely defined conditions may yield a data set, which is not
empty. Some of the obtained results (with the highest degree of meeting conditions of the
query) may be accepted by the user. This way, the user will have a better chance of learning
the content of the database and consequently will have the opportunity to modify the query.
A modified query may take into account the content of the database and may better reflect
the actual requirements of the user. The following conclusion can be drawn: as fuzzy queries
arrange results according to the degree of meeting conditions of the query, it is easier to
analyze the results and the risk of obtaining an empty reply is reduced thanks to an extended
interpretation of the conditions of the query.

The provided examples of conversion of fuzzy queries into SQL standard queries using
Oracle 11g XE point to easy to implement methods of obtaining fuzzy information from the
database and by the same token expand its functionality. Moreover, a qualitative comparison
between the most relevant fuzzy query systems in the literature and proposal presented in
this article has addressed the strengths and drawbacks of this contribution [19].

Acknowledgment

Presented results of the research, which was carried out under the theme No. E-3/627/2016/DS, were
funded by the subsidies on science granted by Polish Ministry of Science and Higher Education.

R e f e r e n c e s

[1] Zadrożny S., Zapytania nieprecyzyjne i lingwistyczne podsumowania baz danych,
Akademicka Oficyna Wydawnicza, Warszawa 2006.

[2] Myszkorowski K., Zadrożny S., Szczepaniak P.S., Klasyczne i rozmyte bazy danych:
modele, zapytania i podsumowania, Warszawa 2008.

[3] Zadrożny S., Kacprzyk J., Bipolar Queries Using Various Interpretations of Logical
Connectives, Foundations of Fuzzy Logic and Soft Computing, 2007.

[4] Mesiar R., Thiele H., On T-Quantifiers and S-Quantifiers, [In:] Novak V., Perfilieva I. (eds.),
Discovering the World with Fuzzy Logic, Physica-Verlag, Heidelberg 2000, 310–326.

[5] Novak V., Perfilieva I., Fuzzy Logic on the Basis of Classical Logic, Kacprzyk J., Kraw-
czak M., Zadrożny S. (red.), Issues in Information Technology, EXIT, 2002.

213

[6] Nowakowski G., Open source relational databases and their capabilities in
constructing a web-based system designed to support the functioning of a health clinic,
Technical Transactions, vol. 1-AC/2013, 53–65.

[7] Baczyński D., Bielecki S., Parol M., Piotrowski P., Wasilewski J., Sztuczna inteligencja
w praktyce, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2008.

[8] Rutkowska D., Piliński M., Rutkowski L., Sieci neuronowe, algorytmy genetyczne
i systemy rozmyte, Wydawnictwo Naukowe PWN, Warszawa 1997.

[9] Yager R., Filev D., Podstawy modelowania i sterowania rozmytego, WNT, Warszawa
1995.

[10] Czogała E., Pedrycz W., Elementy i metody teorii zbiorów rozmytych, Wydawnictwo
Naukowe PWN, Warszawa 1985.

[11] Rozmyte zapytania do baz danych, (online) homepage: http://www.cs.put.poznan.
pl/mhapke/LR-Rozmyte%20zapytania%20do%20baz%2 0danych%20II.pdf (date
of access: 2016-06-30).

[12] Buckles B.P., Petry F.E., A fuzzy representation of data for relational databases, Fuzzy
Sets and Systems, Vol. 7, Issue 3, May 1982, 213–226.

[13] Prade H., Testemale C., Generalizing database relational algebra for the treatment of
incomplete or uncertain information and vague queries, Information Sciences, Vol. 34,
Issue 2, November 1984, 115–143

[14] Zemankova M., Kandel A.: Implementing imprecision in information systems,
Information Sciences, Volume 37, Issue 1–3, Dec. 1985, 107–141

[15] Medina J.M., Pons O., Vila M.A., GEFRED. A Generalized Model of Fuzzy Relational
Databases, Information Sciences, vol. 76(1–2), 1994, 87–109

[16] Umano M., Hatono I., Tamura H.: Fuzzy database systems, Proceedings of the FUZZ-
IEEE/IFES’95 Workshop on Fuzzy Database Systems and Information Retrieval,
Yokohama, Japan, 1995, 53–36

[17] Bosc P., Pivert O., SQLf: a relational database language for fuzzy querying. IEEE
transactions on Fuzzy Systems 3 (1), 1995, 1–17.

[18] Kacprzyk J., Zadrożny S.: SQLf and FQUERY for Access, Proceedings of the IFSA
World Congress and 20th NAFIPS International Conference, vol. 4, 2001, 2464–2469.

[19] Martinez-Cruz C., Noguera J.M., Vila M.A., Flexible queries on relational databases
using fuzzy logic and ontologies, Information Sciences, Vol. 366, 20 October 2016,
150–164.

