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Abstract
The presence of ammonia in ashes (i.e. ammonia slip) is a direct consequence of the methods used for 
denitrification – selective catalytic and non-catalytic reduction (SCR, SNCR). The excess unreacted 
ammonia used in both of these methods passes as a constituent to ash, impairing its properties, and thus 
affects the quality of the commercial product. The summary of the available methods for removing NH3 
from fly ashes is presented. Both chemical and thermal methods of removing NH3are described. The results 
of the chemical methods depend on the kind of additional reagents used and composition of fly ashes.  
Thermal methods seem to be simpler and easier to use, but they are used mainly on the smaller scale.
Keywords:  flyash, deammonisation

Streszczenie
Obecność amoniaku w popiele (tzw. poślizg amoniaku) jest bezpośrednią konsekwencją stosowanych me-
tod odazotowania spalin – katalitycznej i niekatalitycznej selektywnej redukcji (SCR, SNCR). Stosowany 
w obu tych metodach nadmiar amoniaku przechodzi w formie nieprzereagowanej do popiołu, pogarszając 
jego właściwości użytkowe i tym samym wpływając na jego jakość jako produktu komercyjnego. Prezentu-
jemy przegląd dostępnych metod usuwania NH3 z popiołu, chemicznych a także termicznych.Efektywność 
metod chemicznych zależy od rodzaju zastosowanego substratu i składu popiołu lotnego. Metody termicz-
ne wydają się prostsze i łatwiejsze w zastosowaniu, ale są używane głównie w instalacjach o mniejszej skali.
Słowa kluczowe: popiół lotny, deamonizacja
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1.  Introduction

The adaptation of energy production facilities to meet the new and more demanding 
standards for emissions of nitrogen oxides (NOx), which came into effect on 1 January 2016, 
involves many aspects. A direct consequence of the methods of denitrification –both catalytic 
and non-catalytic selective reduction (SCR, SNCR) is the presence of ammonia in ashes (i.e. 
ammonia slip). Both methods create excess of unreacted ammonia, passing to the flue gases, 
bonded to particles of fly ash in the free form or as a part of ammonia salts, and degrading its 
properties, and thereby affecting the quality of commercial solid products [1–4]. 

Ammonia is widely used in industrial processes, in large quantities. It is a combustible gas, 
toxic, corrosive, and irritantto the human mucous membranes. These properties mean that 
ammonia is fraught with danger for human health and life. When bound with fly ash it may be 
released as a result of the operation during storage or during processing of materials, which in 
its composition contain fly ash[4].

The report made by the Electric Power Research Institute (EPRI) shows that the 
problems related to the ammonia content in fly ash have become a problem for coal plants in 
recent years, due to the increased use of ammonia in the process of the denitrification of flue 
gases. The study was conducted on the basis of samples from Conectiv’s BL England station, 
Georgia Power’s Plant Yates and the Orlando Utilities Commission (Table 1) [5].

Table 1.	Examples of fly ashesand its ammonia concentration [5]

Sample
name Source unit Unit type Coal type Ammonia source

Nominal
ammonia

concentration

Yates
Georgia Power,

Plant Yates,
Unit #5

CE,
T-fired

Eastern Bituminous,
High-VolatileA, 1.2% 

Sulfur

FlueGas
Conditioning 150 ppmw

Stanton
Orlando Utilities

Commission,
Stanton, Unit #2

B&W,
Wall-fired

Eastern Bituminous,
High-Volatile A, 

1.1% Sulfur
SCR 100 ppmw

BL 
England

Conectiv,
BL England,

Units #1 and #2

B&W,
Cyclone-

fired

Eastern Bituminous,
2 % Sulfur SNCR 700 ppmw

Based on the study on the release of ammonia from the ash, it has been shown that for 
objects that will be dealing with sales of ammonia containing ash, the chemical composition 
of the ash can be significant. From this point of view, there is the possibility of the release 
of ammonia during the subsequent use of fly ash as an additive to, for example, concrete. It 
seems that particular ash processing will force secretion of ammonia regardless of the ash 
characteristics. Therefore the total amount of ammonia present dictates the height of the 
release of ammonia, and whether it will be released or not [5].

While an analysis of the ammonia injection to electrostatic precipitators has shown that this 
may result in an increase in the ammonia content in the ash up to 2000–2500 ppm, resulting in ash 
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that is not suitable as a concrete additive. Moreover, it was shown that ammonia slip at the level of 
2 ppm may result in increased ammonia content in the fly ash above 100ppm and thus prevents 
the sale of such a non-market ash [6]. Fly ash as a cement additive must meet appropriate criteria 
in terms of physical and chemical properties. A higher ammonia content leads to more intense 
and unpleasant odour generated during processing. Despite the fulfilment of the basic parameters 
of ash, an unpleasant smell is not acceptable, thus based on industrial practice it was concluded 
that the ashes should contain up to 100 ppm of ammonia. On the other hand, power generation 
plants can generate fly ash ammonia contents of 200 to 2500 ppm [7].

In such cases it is necessary to modernize the ash processing plant to implement the chosen 
method of removing excess ammonia, occurring mainly in the form of ammonium sulphate 
[6]. It should be mentioned that no Polish and EU regulations on permissible level of NH3 
in fly ash have been developedthus far. Such regulations have been developed in particular 
countries due to the possibility of further utilization of fly ash.

2.  The origin of NH3 in by-products of combustion – mechanism of  ammonia 
transfer to ash

Ammonia is a polar, colourless, toxic, irritating the mucous membranes, gaseous compound 
with a characteristic odour. It condenses into a colourless liquid at a boiling point of –34°C 
(239.74 K), with a high heat of vaporization (1.3 g/kJ). It is most often used in refrigeration. 
It is soluble in water, where it is present in the form of ammonium ion (reaction 1), due to its 
interaction with water molecules and generation of hydrogen bonds. 

		  NH3(g) +H2O ↔ NH4
+ + OH–	 (1)

Due to its high solubility (1 volume of water dissolves 1176 volumes of NH3(g) at. 0°C) in 
aqueous solutions it occurs in the undissociated form, and to a certain degree it dissociates 
(in a solution of conc. 0.1 mol/dm3 only 1% ammonia molecules are present in the form of 
ions NH4

+). Consequently, aqueous ammonia solutions behave like a weak base. Solubility 
decreases with increasing temperature and increases with the increase of NH3(g) partial 
pressure (equation 2 and 3) [8, 9].
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wherein:
kH 	 – 	 Henry’s constant; 
NH3(aq)	 –	 the concentration of ammonia in aqueous solution; 
pNH3 (aq)	 –	 partial pressure of ammonia.
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Ammonia in aqueous solution is present in two chemical forms which differ significantly 
in their toxicity: unionized, toxic NH3 and ammonium NH4

+ (with low toxicity). A state of 
equilibrium between the two forms is represented by the equation (4) [8, 9].

		  NH3⋅nH2O(aq) ↔ NH4
+ + OH- + (n-1)H2O(l)       	 (4)

The ratio of both forms of ammonia is mainly dependent on the pH of the solution and, 
to a lesser extent, on temperature. The increase in the pH causes shift of the equilibrium to 
unionized form of NH3. At pH = 9.2 there is a balance between the concentration of both 
forms. As temperature rises, the equilibrium moving towards lower pH values [9].

Ammonia bonds to ash directly as unreacted substrate used in flue gas denitrification 
systems. Depending on the method used for denitrification, its sources are [8, 9]:

▶▶ SCR (selective catalytic reduction) Installation – due to addition of 24% solution of 
NH3, in stoichiometric excess: 1.02–1.1 with respect to NOx.

▶▶ SNCR (selective non-catalytic reduction) Installation – addition of 40% urea solution 
CO(NH2)2 , in stoichiometric excess: 2.0–3.1.

Excess of ammonia reacts with other gaseous components of flue gas to form ammonium 
salts (sulphates, carbonates, chlorides), which can be in solid or liquid form, depending on 
the temperature. The latter can eventually evaporate and leads to the formation of solids. This 
process is promoted by a steam and increased temperature. In the largest amount (approx. 
75%) ammonium hydrogen sulphates and sulphites are formed (Equation 5–7). Sulphites 
have a strong hygroscopic character and are therefore trapped in electrostatic precipitators 
– no significance for the process [9]. The SO3 presence in the exhaust gas is the main factor 
leading to the formation of sulphate and bisulphates [9, 10].

		  NH +SO + H O NH HSO3 3 2 4 4→ 	 (5)

		  NH + H SO NH HSO3 2 4 4 4→ 	 (6)

		

NH

NH + NH HSO3 4 4 →

	 (7)

To simplify the process of passing ammonia to ashes, two steps are proposed [8, 9]:
a)	 Intrinsic ammonia adsorption:  NH3 occurs as molecules adsorbed on the surface of 

the ash particle creating chemical bonds, an important role in the mechanism of the 
process is played by active acid sites on the surface of the ashes particles; the process 
is reversible;

b)	 Ammonia deposition: NH3 is present as an ammonium salt (mainly sulphates and 
bisulphates), which adhere to the grain ash.
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Ammonium bisulphate, is a solid compound with the chemical formula (NH4)HSO4, 
a decomposition temperature of 147°C and a very high solubility in water (for the pure (NH4)
HSO4 has a solubility of 1000 g/dm3). It is soluble in some organic solvents (e.g. methanol) 
and insoluble in acetone. It is a product of incomplete neutralization of sulphuric acid (VI) with 
ammonia, or may result from thermal decomposition of ammonium sulphate (reaction 8):

		  (NH4)2SO4 → NH4HSO4 + NH3                                  	 (8)

It has a strong hygroscopic character, a high viscosity (in liquid form) and therefore also 
causes corrosion and slag formation. In contrast, secondary component–ammonium sulphate 
is a dry, non-sticky powder having a particle diameter of ≤10 µm and unlikely to undergo 
deposition, but is carried along with the flue gas to electrostatic precipitators, where is not 
trapped and is considered to participate in PM10 emissions [9, 10].

In a solution of ammonia salts, when pH increases above 7 it can cause the transition of 
ammonia into the gas phase. It is precisely this phenomenon which is the most significant in 
the context of ammonia release from the ashes. For example, if the ash is wet, basic compounds 
can react with water, pH may be high and NH3 is released in gaseous form. This phenomenon 
occurs because of the neutralization of acidic groups of solids, which previously bonded the 
NH3.  This reaction is often seen in the processing of ash in cement production plants [10].

The literature [5, 11–15] indicates a close relation between ammonia adsorption and 
qualitative composition of the ash and the conditions of its formation. With increasing 
amounts of unburnt carbon, the possibility of NH3 adsorption increases –ashes with a higher 
content of silicates and aluminosilicates have a lower affinity for ammonia. It was confirmed 
that the oxides present on the surface of the carbon adsorb ammonia. This is explained by 
the fact that the acidic functional groups are combined with oxides and act as a Bronsted 
acid with respect to ammonia as a base. As a result of acid-base interaction proton transfer 
can occur to produce an ammonium ion NH4

+, which then interacts with an acidic or amide 
side causing formation of imides [11]. In other words, the existence of the ash surface acidic 
groups facilitates attachment of ammonia –by creating a kind of “active site” which attracts 
NH3 molecules. The increase of the acid groups is observed mainly for ash from lower quality 
coal. Conditions conducive to the adsorption of ammonia are a reducing atmosphere and 
a rapid lowering of temperature, causing a glassier phase in the ashes [11].

3.  Chemical methods of removing ammonia from fly ash

3.1.  STI Technology 

STI a patented technology which involves the addition of a small amount of water and 
alkali to the ashes in order to release ammonia, and then its catalytic reduction, or uptake 
during processing in wet absorbers.  The process reduces the total ammonia concentration 
to less than 100 ppm by weight of the dry fly ash. This value eliminatesa detectable ammonia 
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odour in the product during use, and thereby does not impair other properties of the product. 
Key features of the STI process are [6, 7, 16]:

▶▶ The addition of water: thisis efficient alone, but more efficient when combined with 
other methods.

▶▶ The addition of alkalis: accelerates the reaction the release of NH3, but too much 
addition causes the ashes to be useless. 

The main parameters, which were given and claimed in the patent granted: 
▶▶ addition of 5% H2O (< 20%), 
▶▶ addition of 5% alkali (< 10%), 
▶▶ addition of 0.25–1% CaO, Ca(OH)2
▶▶ process temperature 15–65.5°C
▶▶ process time 15 min (below 30min).

The principle of the method is displacement of a weaker base (NH4
+) in the salt 

((NH4)2SO4) by a stronger ion (Ca2+) according to Reaction 9. The chemical reaction takes 
place in a thin surface film of the aqueous phase surrounding the ash particles which is formed 
as a result of the addition of water while vigorous stirring. A larger contact area and the process 
of diffusion in the liquid phase accelerate the reaction rate. Steps which can limit the speed of 
the process are: the hydration reaction of quicklime (reaction 10), the migration of calcium ions 
and hydroxyl to the solution, dissociation of Ca(OH)2 which increases the pH of the mixture 
(reaction 11), which are accompanied by precipitation of the solid (reaction 12). Ammonium 
salt existing in the mixture is soluble in water, goes into the ionic form (reaction 13). Followed 
by reaction with hydroxyl ions goes into gaseous ammonia (reaction 14) [6, 7, 16].

The overall reaction is as follows:

		  (NH4)2SO4(s)+ CaO(s)→2NH3(g)+ CaSO4(s) + H2O(g)	 (9)

Detailed reactions:
		  CaO(s) + H2O→Ca(OH)2(s)	 (10)

		  Ca(OH)2(s) ↔ Ca2+ + 2OH–	 (11)

		  Ca2+ + SO4
2– → CaSO4(s)	 (12)

		  (NH4)2SO4(s)↔2NH4
+ + SO4

2–	 (13)

		  NH3(g) + H2O↔NH4
+ + OH–	 (14)

The reaction of ammonium salts with lime is highly privileged because of a chemical 
imbalance. A key feature of the STI is the limited quantity of water (1 to 4%, typically 2 wt.%) 
and small amounts of alkali (< 2%). A larger amount of water is detrimental to the process – it 
causes dilution of the reaction system, and thus slows down the release of ammonia, at the same 
time it increases the moisture content of the ash, which must be subsequently removed from the 
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solid product. The pH of the resulting mixture of ash-lime-water should be higher than 10. Small 
amounts of alkali are added to provide this pH value, depending on the natural acidity of the ash. 
Therefore, this method is most suitable when the pH of the ash is high, the displacement of the 
equilibrium of the reaction is the easiest and requires minimal costs of raw materials[6, 7, 16]]. 

In subsequent publications, authors show the maximum efficiency of ammonia removal 
in the reaction of quicklime in the presence of 1–4% water at pH > 10 [9–11].Table 2 shows 
the dependence of efficient response time with respect to the amounts of substrates used 
under an unacceptable concentration of NH3 to 100 ppm [6, 7, 16].

The usage of an equivalent amount of Ca(OH)2 instead of CaO improves response time 
by eliminating the limiting step (Reaction 10), but on the other hand the reaction (10) is 
strongly exothermic and produces heat affecting the rate of the reaction and the phase 
transitions of water in the gaseous state. The usage of an equivalent amount of NaOH against 
Ca(OH)2 decreases the efficiency of the reaction because of the extremely high values of  
pH > 14 and leads to ashagglomeration [6, 7, 16].

Use of an equivalent amount of Ca(OH)2 instead of CaO improves response time by 
eliminating the limiting step (Reaction 10), but on the other hand the reaction (10) is strongly 
exothermic and provides heat affecting the rate of the reaction and the phase transitions 
of water in the gaseous state. Use of equivalent amount of NaOH relative to Ca(OH)2 
decreases the efficiency of the reaction because of the extremely high values of pH > 14 and 
ashagglomeration [6, 7, 16].

Table 2.	Dependence of the reaction time on the content of the substrates, pH = 8.8 [7]

Alkali content Water content Reaction time [min]

0.25% CaO 4% >> 15

0.5% CaO 4% 10

0.5% CaO 2% > 15

1% CaO 2% 8

1% CaO 1% >> 15

0.36% NaOH 4% > 15

0.33% Ca(OH)2 4% > 15

0.66% Ca(OH)2 2% 8

0.66% Ca(OH)2 4% 4

In the process mentioned above, there are two stages in which ash is mixed with lime and 
water. The successively deammonized ash is transported to the dryers where, at approx. 65°C, 
evaporation of water from the ash takes place. Then the gaseous ammonia can be converted 
to nitrogen, or captured in water absorbers [7].

There are disadvantages of STI technology:
▶▶ It is necessary to build an ammonia – ash separation plant.
▶▶ Additional costs arising from the use of alkalis;
▶▶ The decrease in production efficiency associated with the need to remove moisture 

from the ash;
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▶▶ The by-product, in the case of non-catalytic methods will be NH3. Then it is necessary 
to use e.g. acid scrubbers. This is an additional element that causes an increase in capital 
expenditures.

The advantages of the installation of STI[6,7,16]:
▶▶ The high efficiency of the process – the reduction of ammonia from 87% at the end of 

the ammonia content of 100 mg/kg;
▶▶ The byproduct of the process of enrichment of ash is molecular nitrogen (N2), which is 

an inert gas and does not increase the negative impact on the environment, in the case 
of the use of catalytic methods;

▶▶ Possibility of use N2 for other purposes (e.g. explosion and fire protection, reducing the 
microbial degradation of biomass stored in a silo);

▶▶ The process occurs at ambient temperatures, drying the ash need only raise the 
temperature to 65°C;

▶▶ The final product is a high quality ash, which can be used as an additive for concrete 
production;

▶▶ The process of removing ammonia can be installed as a separate system in existing 
plants;

▶▶ The process has been implemented industrially since 1997;
▶▶ The ability to use fly ash from fluidized-bed boilers and dust;
▶▶ No restrictions on the DeNOx method(work with both SCR and with SNCR).

In Florida, two installations have been built: in Tampa and in Jacksonville. Both systems 
include the patented process, which reduces the content of ammonia in fly ash levels greater 
than 2000 ppm to < 75 ppm. The first plant capacity is 350.000 t/y. The installation includes 
three separators. On the other hand, the installation in Jacksonville contains two separators 
and the process of ammonia removal is 300.000 t/y. By 2013, 12 such installations have been 
implemented, i.a.: North America, Europe and Canada [17].

3.2.  ASMTechnology

This technology involves treating the fly ash with calcium hypochlorite, Ca(ClO)2, as 
a strong oxidizing agent[18]. The ammonia contained in the ash is oxidized to nitrogen with 
95%efficiency, and also chloride ions are released. Under conditions of equimolar mixture of 
hypochlorite to ammonia, N2 is the product, but too large an excess of reagents in the relation 
2:1 (Cl:N) results in the oxidation of NH3 to nitrates. In practice the additive is applied in 
1.0 to 1.5 molar excess relative to ammonia. A larger excess of reagents is used if the ash has 
higher carbon content or lower than the optimum pH value. Reaction proceeds according to 
the equation:
		  2NH3 + 3ClO– → N2 + 3Cl– + 3H2O	 (15)

Table 3 shows the experimental results obtained. Calcium hypochlorite has been 
preliminarily dissolved in water and sprayed in the form of a mist to ash and then mixed. 
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Table 3.	Oxidation efficiency and ammonia removal data [18]

Proportion of 
reagents (Cl:N)

Addition of calcium 
hypochlorite [kg/t]

Moisture 
content(%)

Final NH3 content 
(ppm)

Reaction 
efficiencyNH3(%)

0.0:1.0 0 0 500 0

0.5:1.0 1.81 1 300 40

1.0:1.0 3.62 2 30 94

1.5:1.0 5.44 3 20 96

2.0:1.0 7.26 4 15 97

The ammonia removal depends on: the pH of the ash, the process temperature, the process 
time, the amount of reagent, and the amount of reducers (in the ash) which can slow down the 
reaction [18]. It is proposed to use two methods depending on the moisture of ash: dry mixing 
(dry ash) – the reagent is activated by the addition of water and then in its active form reacts with 
ammonia or wet mixing (wet ash) –occurs more rapidly, a good mixing of the components is 
necessary. In practice, systems in the United States process ash containing of NH3 at the 75–300 
ppm level, using 1–1.4 kg of calcium hypochlorite per 1 ton of ash. Technologies are adapted to 
operate in the range of 0–2.7 kg of calcium hypochlorite per 1 ton of ash, depending on its quality. 
The reported costs of running the installation with a capacity of 150 ton/h is less than $500 000, 
and the building time of the installation is 6 to 9 months (according to data for 2005) [18].

The advantages of the ASM technology:
▶▶ the small amount of reagent used,
▶▶ the small investment and low maintenance costs,
▶▶ two variants of the process: dry or wet, depending on the destination of ash,
▶▶ the cost of the reagent can be minimized by using technology equipped with the “on 

demand” option. Then the ash is cleaned when necessary.
The disadvantages of ASM technology:

▶▶ license fee,
▶▶ the addition of excess calcium hypochlorite can cause difficulties with the ashes,
▶▶ usage if dry calcium hypochlorite because of its strong oxidizing properties (constituent 

of explosive mixtures) carries the obligation to comply with stricter safety standards 
and regulations,

▶▶ usage of wet method generates additional energy and costs,
▶▶ it is not specified how to prevent corrosion caused by calcium hypochlorite and its 

impact on the life of the installation, which does not preclude the need for additional 
corrosion protection.

3.3.  Catalytic methods of conversion of ammonia to nitrogen

Selective catalytic oxidation (SCO) of ammonia to nitrogen based on reaction (17) [19, 
20]:
		  4 NH3+ 3O2→ 2N2 + 6 H2O	 (17)
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For the catalytic activity in this process, we can use e.g.: CuO, Fe2O3, Co3O4, MnO2, MoO3, 
V2O5, CuO/La2O3, CuO/RuO2. The main problem is to obtain good selectivity with respect 
to nitrogen. More recently, catalyst systems have been proposed were oxides of Mg-Cu-Fe 
are formed from the precursor, a hydrotalcite (Mg6Al2(CO3)(OH)16.4(H2O)) [20, 21]. The 
best obtained results are: 60% conversion rate of the ammonia to N2 with a selectivity of over 
90% at 450°C for the composition of the inlet gas: 0.5% ammonia, 2.5% oxygen, 97% of inert 
gas [20, 21]. The publication indicates that the catalyst is resistant to water vapour, however, 
it doesn’t show the information about the sensitivity to SO2.The SCO process using these 
catalysts can be carried out in the temperature range of 300–450°C. At a laboratory scale, 
with gas flow of 40 ml/min and the amount of catalyst 100mg no significant decrease in the 
conversion extent to GHSV 61600h-1 catalyst loading was observed. There are two reaction 
paths within the SCO. The first two-step reaction “in situ” (18, 19) [19, 20]:

		  4NH3 + (3+2x)O2→ 4NOx + 6H2O	 (18)

		  3NOx + 2xNH3 → (x+1.5)N2 + 3xH2O	 (19)

The second is based on ∙NH2 radical formation, with the intermediate stage comprising 
hydrazine formation (20–23) [19,20]:

		  NH3(g) → NH3(ads)	 (20)

		  NH3(ads) → ∙NH2(ads) + H+ + e–	 (21)

		  2∙NH2(ads)→ N2H4(ads)	 (22)

		  N2H4(ads) → N2+ 4H+ + 4e–	 (23)

The advantage of selective oxidation of ammonia is the ability to eliminate it, prior 
to separation of the ash from the exhaust gas, while the necessity of the catalysis is the 
disadvantage. Then the problem might be catalyst poisoning in the presence of components 
such as SO2 or some of the heavy metals present in the ash, such as As, Hg, Pb. However, 
no detailed information has been found about thelifespan of catalysts used in the process. 
The license fee for the implementation of the technology will increase investment costs 
[19, 20].

In addition, a copper/titanium dioxide catalystis proposed, which works well at lower 
temperatures (95% conversion rate of the ammonia at a temperature of 250°C with 
a oad of catalyst GHSV = 50 000h–1. The reaction selectivity to nitrogen is above 93% at 
temperatures up to 350°C [19, 20]. The problem concerning the catalytic process is the 
leaching of the catalyst bed with the flue gas contaminated with ash. A scheme for the 
mechanism of selective oxidation of ammonia to nitrogen over a Cu/TiO2 is shown in 
Figure 1 [19, 20].
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Fig. 1.	Illustration of the mechanism of selective oxidation of ammonia to nitrogen  
over a Cu/TiO2 [19, 20]

On the other hand, another catalyst system is described by the authors of publication [21]. 
The study involved Cu–SSZ-13 (a new, more robust and active small-pore Cu-exchanged 
chabazite (CHA; SSZ-13 and SAPO-34) zeolites have been recently commercialized, in this 
paperwe explore the effect of using Cu–SSZ-13 as the SCR component of the ASC)andPt/Al2O3 
in several variants. Reactions on catalysts are describedby the reaction equations (18, 19). The 
catalysts were tested in: pure form, dual-layer catalysts, where dual-layer catalysts comprised 
a Cu–SSZ-13 top layer and a Pt/Al2O3base layer and mixed layer. In each embodiment, the 
catalyst has the form of monoliths with a cell density of 400 cpsi and dimensions of 1  in. 
diameter and 3 in. length. These were cut into 2 or 0.5 cm long, ∼0.8 cm diameter samples, and 
were coated by dipping the monolith.Tested catalysts are shown in Table 4.

Table 4.	etailed description on monolith catalysts used [21]

Samplename Pt loading 
(g/ft3 monolith)

Pt/Al2O3 loading 
(g/in3 monolith)

Cu–SSZ-13 loading 
(g/in3 monolith)

Pt(3) 2.7 1.4 0

Cu–SSZ(1.5) 0 0 1.5

CuZ(0.85)Pt(3) 2.8 1.4 0.85

CuZ(1.5)Pt(3) - a 2.6 1.3 1.5

CuZ(1.5)Pt(3)_high - b 2.5 1.3 1.5

CuZ(3)Pt(3) 2.8 1.4 3

Hybrid - c 2.7 1.4 2.2

a – Dual layer and mixed catalysts.
b – Cu wt% in Cu–SSZ-13 used ∼5.71.
c –  0.7 g/in3 of Cu–SSZ-13 coated on top of mixed CuZ(1.5)Pt(3).

The prepared catalyst was placed in a tubular reactor and subsequently treated using three 
differentgas mixtures. First; Cu-SSZ-13, 500 ppm NH3, 375 ppm NO, 125 ppm NO2, 5% O2, 
2.5% H2O, 2% CO2, bal. Ar. GHSV= 66k h-1; second; Cu-SSZ-13, 500 ppm NH3, 375 ppm 
NO, 125 ppm NO2, 5% O2, 2.5% H2O, 2% CO2, bal. Ar. GHSV= 265k h-1;Third; Cu-SSZ-13, 
500 ppm NH3, 500 ppm NO, 5% O2, 2.5% H2O, 2% CO2, bal. Ar. GHSV= 265k h-1.Figures 
2,3and 4 show the results obtained for the Cu-SSZ-13 [21].
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For the first test the maximum NH3 conversion was 94% at 300°C. For the second and 
third test while increasing the volume flow rate, the degree of conversion decreased, as seen 
in Figures 2 and 3 [21].

Figure 5 (a, b, c, d) shows the results of the tests of the catalysts described in Table 4. 
The highest selectivity of 90% relative to the N2is given by catalyst CuZ(1.5)Pt(3) and 
CuZ(3)Pt(3)_high at 375°C. The authors also describe the effect of the content of individual 
elements on the catalytic activity of the catalysts used [21].

Fig. 2.	Catalyst: Cu-SSZ-13, 500 ppm NH3, 375 ppm NO, 125 ppm NO2, 5% O2, 2.5% H2O, 2% CO2,  
bal. Ar. GHSV= 66k h–1[21]

Fig. 3.	Catalyst: Cu-SSZ-13, 500 ppm NH3, 375 ppm NO, 125 ppm NO2, 5% O2, 2.5% H2O, 2% CO2,  
bal. Ar. GHSV= 265k h–1[21]
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Fig. 4.	Catalyst: Cu-SSZ-13, 500 ppm NH3, 500 ppm NO, 5% O2, 2.5% H2O, 2% CO2,  
bal. Ar. GHSV= 265k h-1[21]
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Fig. 5.	Research of catalysts (a) NH3 conversion, (b)NOx selectivity, (c) N2 selectivity (d) N2O selectivity; 
500 ppm NH3, 5% O2, 2.5% H2O, 2% CO2 and GHSV=66 k h−1[21]
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3.4.  Ash ozonation

According to the literature [21] fly ash can act catalytically on the process of oxidation 
of ammonia with ozone atroom temperature (230C). Tests were carried out using a fixed 
bed reactor. The aim of the research was to investigate the catalytic properties of fly ash with 
a constant ammonia content (11ppmv) This led to efficiency between 35–60% of ammonia 
conversion at a starting concentration about 11ppm by volume, and the ozone concentration 
in the range of 62 to 866 ppm by volume. The catalytic activity of the ash slightly depends on 
their origin. The best results obtained by the authors are:

▶▶ 45% degree of conversion of ammonia, the ammonia content of the initial 11 ppmvol; 
residence time 0.34s; an ozone concentration of 62 ppmv.; amount of ash in the bed 5 g;

▶▶ The content of formed nitrogen dioxide does not exceed 3%. 
The potential reaction mechanism is as follows (reactions 24–29):
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O OH

O O OO

	 (24)

		  O charcoalormetaloxide OH3 9g ads ph( ) ( )+ →…→ > 	 (25)

		  OH NH NH H O2ads g ads g( ) ( ) ( ) ( )+ → +3 2 	 (26)

		  OH NH N H O2g ads ads g( ) ( ) ( ) ( )+ → +2 	 (27)

		  NH OH N H O2ads g ads g( ) ( ) ( ) ( )+ → + 	 (28)

		  2 2N Nads g( ) ( )→ ↑ 	 (29)

All phases could initiate adsorption/reaction with ozone. In the use of char the authors 
speculate that it is primarily carbon that interacts with O3 - meanwhile metals could also be 
present on the char surface, due to the presence of ash in the original biomass. The general 
consensus in the literature is that ozone dissociatively adsorbs onto metal oxides (Mn, Co, 
Cu, Fe, Ni) forming active oxygen species (O, .OH). Additionally was observed that gas 
humidification favours the process [21].

The authors of the patent [22] provide experimental data of ammonia oxidation by ozone. 
The process was conducted by applying water to the ash in the form of a mist or warm humid 
air, constituting 1–5 wt-% moisture in the solid ash. Under these conditions, in the so-called 
water fog method was implemented using a mixture of ozone, air with ozone, oxygen with 



45

ozone, and oxygen with 30% hydrogen peroxide as a co-oxidizing agent (co-oxidant), as 
a source of fog. All the results of the methods which used ozone with dry or semi-dry ash 
(1–5% water) are shown in Table 5. In all variants of the process, pH should be increased (pH 
> 10) by using an addition of Ca(OH)2 [22].

Table 5.	Resultsof ozonation by O2 or O3 [22]

Oxidizing agent Final content of NH3 (ppm)*

O2 (150°C) 1200

O3 4000 ppm (20°C) 850

O3 4000 ppm (150 ˚C) 500

O3 2 % obj. (150°C) 400

* initial concentration NH3 at 1200 ppm.

Ozone reduces the ammonia content in all the conditions used, and the best results were 
obtained for an ozone concentration at a level of 2% by volume and process temperatures of 
150°C [22].

3.5.  Methods of wet and semi-dry ammonia leaching 

3.5.1.  Ammonia absorption with the modified turbulent scrubber usage

Studies were performed using an exhaust gas scrubber containing fly ash and operating 
in batch mode. Exhaust gases are introduced into the water by a thin gap, and then through 
the use of multiple baffles a highly turbulent flow of the gas-liquid mixture was obtained. This 
approach allows single step removal of fly ash to a hydraulic diameter to 0.5 microns) and 
a water-soluble gases such as ammonia [23–25].

Key features of the resulting solutions are:
▶▶ Maximum efficiency of removal of ammonia (79%) was obtained with a gas initially 

containing 45 ppm by volume of ammonia at a flow rate of 3.5 m3/min; the water level 
in the apparatus was 60 cm;

▶▶ Maximum efficiency of removal of fly ash (62.48%) is achieved for particles having 
a diameter of 0.25 microns with a mass flow rate of the exhaust gas ratio of 140 mg/min; 
volumetric flow rate of the exhaust gas 3.5m3/min, the water level in the apparatus 58 cm,

▶▶ The maximum recorded pressure drops in the flow (150 mm H2O) was obtained for 
volumetric flow rate 4.5m3/min and the water level in the apparatus 60 cm.

In the cited publication there were no design guidelines for increasing the scale of 
operations. Tests were carried out at room temperature. In the case of continuous mode of 
operation, a second apparatus –a filtration device – would be required. Other problems will 
be wastewater containing traces of heavy metal and vibrations generated during operation 
(due to the strongly turbulent flow) [23–25].
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3.5.2.  Humid air in a stationary or fluidized bed

There is also a process proposed in which the fly ash is in contact with a humid air in 
a stationary or fluidized bed. Parameters used at lab scale[23–25]:

▶▶ Gas distributor: porous glass 0.15–0.18 mm,
▶▶ Reactor diameter of 25 mm,
▶▶ Flow of moist air of 0.9–0.8 l/min,
▶▶ The amount of ash 10 g.

However, the required time contact (on the order of several hours) precludes usage. In the 
cited work the use of so-called atomized mist in form of suspended micro droplets of water has 
also been proposed. The dispersion of water in the air was obtained using an ultrasound device. 
In this case, at a contact time of five minutes the ammonia content was reduced from 950 ppm to 
about 250 ppm. Measurements were carried out in batch mode in which each phase of wetting or 
drying the ash lasts about 10 minutes. A disadvantage of the system may be that more moisture will 
cause ash particle agglomeration which leads to an increase in flow resistance in the fluidized bed. 
Furthermore, hydrogen peroxide has been proposed as the oxidizing agent [23–25].

3.6.  The release of ammonia to the water from fly ash

Studies show that ammonium sulphate and ammonium interact strongly enough with the 
surface of the ash to make the release of ammonium ion much slower than the expected rate 
of dissolution in the water. Despite this, after a period of about 10 minutes, about 85% of 
ammonia was released from the ash into the water [23–25].

4.  Thermalmethods 

It is known from thermogravimetry studies that the temperature profile of ammonia release 
depends on the composition of the fly ash, which also indicates that ammonia is not present in the 
pure form of sulphate and bisulphate [32]. Typically, the release of ammonia from the ash takes place 
at a higher temperature than the thermal decomposition of pure ammonium sulphate (in the cited 
studies ammonia release temperature was 390°C for ash and 210°C for pure ammonium sulphate). 
It is also known that ammonia can be adsorbed on the active centres of acidic aluminium silicate 
in the ash. There are temperature profiles of ammonia release from the ashes available, obtained 
from the SCR and SNCR processes. In the case of SNCR release of ammonia was observed in the 
temperature range 200–400°C, in the case of SCR in the range of 320–480oC [28–35].

4.1.  Carbon Burn-Out technology

Burning of carbon residue and thermal decomposition of ammonium sulphate and 
ammonium bisulphate has been proposed. The process is conducted in a fluidized bed 
reactor at a temperature of about 700°C with a residence time of 45 minutes. As a result of 



47

this process ash content of less than 5 ppm ammonia is obtained. In addition, the ash has 
higher pozzolan activity and improved performance (lower TOC). The inventor of the ash 
technology is Progress Materials Inc., with the support of members of EPRI. Commercial 
installations of CBO™ include the Wateree Station of South Carolina Electric and Gas (1999, 
two units, process 180,000 tons per year of ash with an average of 12.5% LOI) and Winyah 
Station of Santee Cooper (2002; 200,000 tons of fly ash peryear) [26, 27].

4.2.  ERC Technology (Energy Research Center)

It proposes a process in which the fly ash from the silo is introduced into the fluidized bed 
and fluidized by heated air. The release of ammonia begins at 150°C. The process is carried 
out with a continuous flow through the bed ash. Agglomerates of fine-grained fraction are 
broken down by the application of acoustic waves generated by speakers emitting sound 
waves of high intensity. Studies were conducted in terms of the ammonia content of 500 to 
1000 ppm. It is also possible to modify the system by installing an additional electric heater 
(submerged in the bed). When using this method it is also necessary to install additional 
ash coolers –heat exchangers – at the end of the bed. The use of sound waves requires an 
analysis of the mechanical energy transfer efficiency as well as the transmission of vibrations 
of selected frequency to other parts of the apparatus in the vicinity of the installation [33, 34].

Advantages of ERC [33]:
▶▶ no need for additional resources,
▶▶ relatively easy scaling of  installations operating in a continuous mode,
▶▶ no energy inputs for subsequent drying of ash,
▶▶ no investment in additional equipment (dryers, filtration, trays of raw materials),
▶▶ relatively low process temperature 343–398°C,
▶▶ the ability to remove up to 90% of ammonia absorbed in the ashes.

Disadvantages of ERC [33]:
▶▶ technology dedicated to BFB fluidized bed boilers, in which the waste gases must be 

above the bed as long as possible,
▶▶ technology developed at laboratory scale,  lack of experience in production scale,
▶▶ need to ensure a constant flow of exhaust gas stream,
▶▶ needof fluidized bed equipped with a sound system preventing agglomeration of the 

bed.

4.3.  Other thermal methods

Compared to other options, the advantage of processes based on thermal desorption 
at 300–450°C is mainly the small investment cost. In this case, it is necessary to provide 
thermogravimetric analysis to determine the conditions of the process. The ERC method 
has so far only been used for ashes with a high ammonia content (> 500 ppm) and no data 
are available on its effectiveness for ashes with lower ammonia content (but exceeding the 
maximum allowed level)[28–35].
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5.  Conclusions

Analysis of the cases associated with the presence of ammonia in ashes indicates that this 
is a direct consequence of the denitrification –catalytic and non-catalytic selective reduction 
(SCR, SNCR) of flue gases. The excess of ammonia used in these methods passes in unreacted 
form to the fly ash impairing its properties and thus affecting the quality of the final solid 
product. This bounding occurs due to the presence of acidic functional groups on ash particles 
surface which increase ammonia attachment. Ash neutralization with a base cause immediate 
emission of NH3 to the environment. The optimal process that can be applied should be able 
to reduce the total ammonia content to less than 100 ppm in the dry ash. 

Despite the variety of methods presented, it is difficult to choose a method that could 
be implemented in the energy market without additional modifications. For all methods, 
the imperfections of the applied technologies may bring investment and operational costs 
that should be taken into account. Additional costs are also generated by licenses for a patent 
covering the technology. When choosing the right technology it is necessary to consider 
economic aspects, production capacity and chemical composition of processed raw material 
as well as final product application.
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