
*	 Ph.D. Krzysztof Schiff, e-mail: kschiff@pk.edu.pl, Department of Automatic Control and
Information Technology, Faculty of Electrical and Computer Engineering, Cracow University
of Technology.

KRZYSZTOF SCHIFF∗

ANT COLONY OPTIMIZATION ALGORITHM
FOR THE 0-1 KNAPSACK PROBLEM

ALGORYTM MRÓWKOWY
DLA 0-1 PROBLEMU PLECAKOWEGO

A b s t r a c t

This article describes a new ant colony optimisation algorithm for the discrete knapsack problem with
a new heuristic pattern, based on the ratio of the square of the profit coefficient to the square of the weight
coefficient of the original problem. This new heuristic is used in order to choose objects that should be
packed into the knapsack. This pattern was compared with two used in ant algorithms and which have
been presented in the literature on the subject of ant colony optimisation algorithms for the 0-1 Knapsack
Problem. The two other patterns are based on the ratio of the profit coefficient to the weight coefficient
multiplied respectively by the total and the current knapsack load capacity. Results of tests under a width
range of ant algorithm parameters such as the number of cycles, the number of ants, the evaporation rate,
and the load knapsack capacity are shown and discussed.

Keywords: knapsack problem, ant colony optimisation, heuristic algorithm

S t r e s z c z e n i e

W artykule przedstawiono algorytm mrówkowy dla dyskretnego problemu plecakowego z nową heurystyką
wyboru obiektów i został on porównany z dwoma innymi algorytmami spotkanymi w literaturze przedmiotu
pod względem uzyskiwanego całkowitego zysku z załadowanych do plecaka przedmiotów. Nowa
heurystyka wyboru została wyrażona poprzez stosunek kwadratu zysku do kwadratu wagi wybranego
przedmiotu, gdy dwie znane już heurystyki to stosunek zysku do wagi odpowiednio pomnożony przez
całkowitą i bieżącą ładowność plecaka. W artykule przedstawiono wyniki przeprowadzonych testów dla
szerokiego zakresu parametrów algorytmów mrówkowych takich jak: współczynnik parowania, liczba
cykli, liczba mrówek, ładowności plecaka jak i dla różnej liczby dostępnych przedmiotów do załadunku.

Słowa kluczowe: problem plecakowy, algorytm mrówkowy, heurystyka

40

1. Introduction

Many optimisation problems in decision-making can be presented as the 0-1 Knapsack
Problem (KP) [1]. The 0-1 Knapsack Problem consists of loading objects in to a knapsack in
such a way that the obtained total profit of all objects included in the knapsack is maximum and
the sum of the weights of all packed objects does not exceed the total knapsack load capacity.
Each object can be loaded or not loaded into the knapsack; this is the 0-1 decision concerning
object loading. There are also other versions of this problem such as the Multi-dimensional
0-1 Knapsack Problem [10, 13–15] or the Multiple 0-1 Knapsack Problem [7–9, 11, 12].

The 0-1 Knapsack Problem is an NP-difficult (NP: non-polynomial) problem [2]. The
exact solution to an NP problem is not obtained in a short period of time, computer algorithms
take a great deal of time to arrive at a solution. The 0-1 Knapsack Problem can be solved by
using the exact methods [4–6]. In order to obtain the solution for the 0-1 KP in a short period
of time, heuristic algorithms are used. Such algorithms, which are based on the behaviour of
ants, are taken into consideration in this paper.

Ant algorithms are very suitable for NP-complete problems [17]. Ants construct solutions
to the problem and the best solution from their work is remembered in each algorithm cycle.
Ants construct their solution using a pheromone, which is a chemical signal. The quantity of
the pheromone connected with the objects, which constitute a solution to the problem, varies
during the algorithm action. The quantity of the pheromone decreases for all objects and is
shown as evaporation. The quantity of the pheromone rises when an additional quantity is
added to all objects, which constitutes the best solution. A greater quantity of the pheromone
means a greater probability of the object being selected by ants during their search for the
optimal solution to the problem. A decision on element selecting depends not only on the
quantity of the pheromone, but also on heuristic information, which can be expressed with
a different kind of pattern. The heuristic pattern is additional information for ants about the
problem, which helps them to find a better solution in comparison to a situation when this
heuristic information is not used during optimal construction of a solution by all ants.

A mathematical model of the 0-1 Knapsack Problem is presented in section 2, a general
pseudo-code of the Ant Colony Optimisation algorithm is discussed, a proposed heuristic
pattern and two other patterns which have been used in ant algorithms, are formulated in
section 3. The results of the conducted tests are shown and discussed in section 4. These
experiments compare the action of algorithms with all three heuristic patterns – the new
version presented in this paper, the static version used in papers [7–9, 11] and the dynamic
version used in papers [10, 12–16].

In the static heuristic pattern, the total load knapsack capacity does not change at all
during the algorithm’s operation, whereas in the dynamic heuristic pattern, the current load
knapsack capacity changes constantly since objects are constantly added to the knapsack in
each cycle of the ant algorithm.

2. Mathematical formalisation

The mathematical model of the 0-1 Knapsack Problem can be stated in the same way as
in paper [3]:

41

		 (1)

with constraints:

		 (2)

where:
	 C	 –	 is the total knapsack load capacity,
	 zi 	 –	 is the profit on an object i,
	 wi 	 –	 is the weight of an object i,
	 C, zi, wi 	 –	 are all integers and positive numbers,
and 	 xi = 0 	 –	 when an object i has not been loaded into a knapsack,
or	 xi = 1 	 –	 when an object i has been loaded into a knapsack.

The knapsack has its own capacity C. Each object has its own weight wi. The total
weight of all objects which have been packed into the knapsack should not exceed the
total knapsack load capacity. All objects should be selected to be packed so that the total
profit Z of all objects which have been packed into the knapsack should be maximal.
An object oi has been loaded into a knapsack or it has not been loaded; thus a variable xi
corresponding to this object has two states or values {0, 1}. There are n objects to be loaded
into the knapsack {o1, o2, ..., on}. Each object oi has its own profit zi and its own weight wi.
The set N = {o1, o2, ..., on} is the set of all available objects which can be loaded into the
knapsack.

When an object oi goes into the knapsack, the latter’s capacity is decreased by the weight
of this loaded object oi. This new value for the available knapsack capacity is called the
current knapsack capacity Vc. If the weight of any object is greater than the current knapsack
capacity Vc, then that object cannot be loaded into the knapsack and is removed from the
list N. After an object oi is loaded into the knapsack, a new list Nj has to be compiled. This
new list Nj is obtained from the preceding list Ni, which was stated before the object oi was
loaded into the knapsack. The solution to the problem constitutes the objects loaded into the
knapsack, i.e. objects which have been included in the set S.

The total weight of all packed objects in the knapsack should not be larger than the
knapsack load capacity and the total profit of all packed objects in the knapsack should be
maximal. At the beginning of the ants’ work, the knapsack is empty; thus the set S is also
empty (S = {}). Next, all objects from the set N are verified in terms of their weights and
the knapsack load capacity. A new object oi can be selected to be packed into the knapsack
only from those objects whose weight is less than the current knapsack load capacity. After
a selected object oi has been packed into the knapsack, the current knapsack capacity is
reduced. There is an object oi inside the knapsack S = {oi1}.

In some steps j, other objects are loaded into the knapsack, so the contents of the set Sj
are {oi1, oi2, ..., oij}. If the set Sk = {oi1, oi2, ..., oik} is the solution to the problem, then the
set Sj = {oi1, oi2, ..., oij} is a partial solution to the problem or a solution under construction,
j < k. The final contents of the set Sk are obtained as a result of the selection of objects from
available objects N. When the next object oim is selected, then state Sj changes to another state

max z xi ii
n
=∑ 1

w x Ci ii
n ≤
=∑ 1

42

Sm = {oi1,oi2, ..., oij, oim}, j m < k. The total current profit of objects is Zj and Zm according to
the states j and m. After an object oj is packed into the knapsack, the current knapsack load
capacity is less than it was before.

As a result of the reduced current knapsack load capacity, not all objects from the set Ni
can now be loaded since their weights are too great in comparison to the current knapsack
load capacity. Some objects from the set Ni are removed, since their weights are too great to
be packed into the knapsack, and thus a new set Nj of available objects is obtained. The set Nj,
from which a new object oj can be selected in order to be packed into the knapsack, is called
the neighbourhood of state Si. Objects which constitute this neighbourhood Nj come from
neighbourhood Ni; these objects came in turn from neighbourhood Ni, with a weight less than
or equal to the current knapsack load capacity Vc.

3. Structure of the ACO algorithm

In ant algorithms a colony of artificial ants is looking for a good solution to the
investigated problem. The pseudo-code of the ACO algorithm is presented as procedure 1.
Each artificial ant constructs an entire solution to the problem in a certain number of steps;
at each step there is an intermediate solution, a partial solution or a state. In each step,
each ant k goes from one state i to another state j and thus constructs a new intermediate
solution. At the end, the entire solution will have been obtained in a certain number of
steps. At each step, each ant k takes into consideration a set of feasible expansions to its
current state and moves to one of these in probability. This set of feasible expansions is
called a neighbourhood.

In the presented algorithm for the 0-1 Knapsack Problem, at each state i there is a partial
solution Si of the Knapsack Problem; each ant selects the next object oi from the set Ni of
available objects, goes to the next state j and adds this selected object to a partial solution
Sj in order to construct, at the end of the algorithm operation, the entire solution S to the
0-1 Knapsack Problem. At the end of the algorithm operation, the set of objects S constitutes
a solution to the 0-1 Knapsack Problem. Each ant k starts with an empty set S and successively
adds to this set objects selected one after the other with probability pj moving from one
state i to another state j. At each state i there are certain objects in set Si which constitute
a partial solution. Each ant, in order to construct a solution, uses common information
which is encoded in pheromone trails τj. Each ant also deposits pheromones on all objects
included in the knapsack when a solution has been found. The quantity of the pheromones
∆τ deposited depends on the quality of this solution Q. Each ant’s move also depends on the
so-called attractiveness of the move µj. In order to avoid a very rapid convergence to a locally
optimal solution, the evaporation mechanism τ = ρτ is used. Over time, the pheromone trail
evaporates, thus reducing its attractive strength. Each ant k moves from one state i to another
state j according to a transition probability rule pj:

		 (3)p
j N

j N
j

j j

j jj Ni

i

i

=
∈

∉









∈∑
τ µ

τ µ

α β

α β ,

,

for

for0

43
P r o c e d u r e 1

ACO procedure for the 0-1 Knapsack Problem

begin
	 while (a cycle exists) do
	 while (an ant k, which has not yet worked, exists) do
	 while (Vc ≥ 0) do
	 select a next object oj from Ni with probability p

j N

j N
j

j j

j jj N

i

i

i
=

∈

∉









∈∑
τ µ

τ µ

α β

α β ,

,

for

for0

	 add a selected object to a partial solution S = S + {oj}
	 update the current knapsack load capacity VC = VC – wj

	 update the profit Z = Z + zj

	 update the neighbourhood of the current state Ni = {oi : wi ≤ VC}
	 end
	 remember the best solution if a better solution has been found
	 end
	 remember a global best solution if a better solution has been found
	 use an evaporation mechanism τ = ρτ
	 update pheromone trails τ = τ + ∆τ
	 end
end.

using the pheromone trail τj and the attractiveness µj of the move. The pheromone trail τj
is useful information, deposited by other ants, about their usage of object j in the past. The
attractiveness µj is the desire to select an object j from the neighbourhood Ni of the current
state. The attractiveness µj enables better selection of an object from all available objects
which constitute the neighbourhood Ni of the current state and which can be added to the
solution under construction. The neighbourhood Ni of state i is composed of objects which
can be added to a constructed partial solution. At the start of the ants’ work, all objects can be
added to a partial solution of the problem, i.e. to a solution of a problem under construction.
The number of these objects is reduced afterwards not only because of their inclusion in the
partial solution S, but also because some of these objects cannot be added to a solution which
is under construction, since these objects already fail to satisfy solution constraints. Only those
objects which still satisfy solution constraints can be added to a constructed partial solution.
The partial solution of the problem is a part of a solution or a solution under construction.
The partial solution is a subset of the objects which constitute an entire solution to the
problem. Parameters α and β, which are used in the transition probability rule pj expressed
by formula (3), indicate how important the pheromone trail τj and the attractiveness µj are
during transitions from one state to another. After a solution has been found, each ant deposits
some quantity ∆τ of pheromones on all objects which constitute the solution S, in accordance
with the pattern:

	 τ = τ + ∆τ	 (4)

44

A quantity of deposited pheromones ∆τ is expressed as:

		 (5)

Thus those objects which were included into a solution have received an additional
quantity of pheromones and can be selected afterwards with a higher probability than other
objects.

An evaporation mechanism is incorporated into ant algorithms in order to avoid too rapid
a convergence to a suboptimal solution. The intensity of evaporation is controlled by the
parameter ρ. The quantity of the pheromone on each object is updated at the end of each cycle
in accordance with the pattern:

	 τ = ρτ, ρ ∈ (0, 1] 	 (6)

Three ant colony optimisation algorithms were implemented. They are called:
1)	AKA1, – with the attractiveness µj of the move expressed as:

		 (7)

2)	AKA2, – with the attractiveness µj of the move expressed as:

		 (8)

3)	AKA3, – with the attractiveness µj of the move expressed as:

		 (9)

where:
	 C	 –	 is the total knapsack load capacity,
	 Vc 	 –	 is the current knapsack load capacity, V C wC gg Si

= −
∈∑ () ,

	 Si 	 –	 is a partial solution,
	 ()wgg Si∈∑ 	 –	 is the weight of all objects which were included in the partial

solution Si,
	 wj 	 –	 is the weight of selected object j,
	 zj 	 –	 is the profit of selected object j,
	 µj 	 –	 is the attractiveness of selecting an object j.

∆τ = =
+

−
f Q z z

z
best

best

() 1

1

µ j
j

j

C

z
w
V

=

µ j
j

j

z
w

= 2

µ j
j

j

z
w
C

=

45

AKA1 and AKA3 are algorithms with static and dynamic heuristic patterns.
The heuristic patterns for algorithms AKA1 and AKA3 are the ones used in ant algorithms
for multi-knapsack systems and which have been adopted to the one-knapsack system
in this paper. The heuristic pattern of the AKA2 algorithm is the one proposed in this paper.
All tests were conducted on a computer with an Intel Celeron CPU, 1.7 GHz and 256 MB
RAM.

4. Results of experiments

The first experiment was conducted for a different number of algorithm cycles
{100, 200, 300, 400, 500, 600} for 300 objects and for a knapsack load capacity equal to
3000, for an evaporation rate set at 0.95 and for a number of ants equal to 120. A profit zi and
a weight wi were randomly generated for each object oi in the range <1, 10> and <1, 100>
adequately. Thus, it was possible to generate 1000 different objects (wi, zi). Average values
were obtained from 10 measurements for each number of cycles – these values are shown
in Table 4.1 and in Fig. 4.1. The results show that the AKA2 algorithm yields a higher profit
than the other two algorithms. These three values of profit converge when the number of
cycles rises, but if the result must be obtained as fast as possible, the AKA2 algorithm is the
most suitable. The AKA2 algorithm yields a higher profit than the other two algorithms when
the number of cycles is equal to or less than 200.

T a b l e 1

Profit in dependence on number of cycles

n. of cycles 100 200 300 400 500 600
AKA1 815.0 820.0 820.2 820.2 820.4 820.8
AKA2 819.9 820.9 821.1 821.2 820.9 820.9
AKA3 817.3 819.5 819.9 820.8 820.4 820.9

Fig. 1. Profit in dependence on number of cycles

46
T a b l e 2

Profit in dependence on number of ants

n. of ants 20 40 60 80 100 120 140
AKA1 799.8 800.6 800.4 801.2 801.5 801.9 801.5
AKA2 801.2 801.6 802.1 801.8 802.1 802.3 802.2
AKA3 799.7 800.6 800.6 800.8 801.0 801.7 801.5

Fig. 2. Profit in dependence on number of ants

The second experiment was conducted for a constant number of cycles equal to 500 and
for a different number of ants {20, 40, 60, 80, 100, 120, 140}, for a load knapsack capacity
equal to 3000, an evaporation rate equal to 0.95 and a constant number of available objects
set at 300. A profit zi and a weight wi were randomly generated for each object oi in the
range <1, 10> and <1, 100> adequately. Thus, it was possible to generate 1000 different
objects (wi, zi). Average values were obtained from 10 measurements for each different
number of cycles; these values are shown in Table 2 and in Fig. 2. The results show that
the AKA2 algorithm yields a higher profit than the other two algorithms for all numbers of
ants. All profit values of three algorithms rise when the number of ants rises. There is also
some degree of saturation – if the number of ants is higher than 60, there is no significant
improvement in obtained profit.

T a b l e 3

Profit in dependence of evaporation rate

ρ 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
AKA1 827.7 827.6 828.3 828.3 828.5 828.9 828.2 828.1 827.3
AKA2 829.4 829.5 829.8 829.5 829.7 829.5 829.5 829.6 828.9
AKA3 828.6 828.6 828.7 829.4 828.6 828.8 828.6 828.2 827.1

47

Fig. 3. Profit in dependence of evaporation rate

The third experiment was conducted for a constant number of cycles equal to 500 and
for a constant number of ants equal to 100, for a constant load knapsack capacity set at 3000
and for a constant number of available objects set at 300, but for different evaporation rates
(0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99). A profit zi and a weight wi were randomly
generated for each object oi in the range <1, 10> and <1, 100>, respectively. Thus, it was
possible to generate 1000 different objects (wi, zi). Average values were obtained from 10
measurements and shown in Table 3 and in Fig. 3. The results of the experiment show that
the AKA2 algorithm yields a higher value of profit than the other two algorithms. The best
range for the AKA2 algorithm is between 0.93 and 0.98.

T a b l e 4

Profit in dependence on the number of ants for a number
of cycles equal to 200

n. of ants 40 60 80 100 120
AKA1 833.8 833.8 834.3 834.0 835.0
AKA2 835.7 836.2 836.4 836.5 836.8
AKA3 833.9 833.4 833.9 834.7 834.5

p. of reference 837.2 837.2 837.2 837.2 837.2

Fig. 4. Profit in dependence on the number of ants for a number of cycles equal to 200

48

The first experiment has shown that there is no need to set the number of cycles higher
than 200 when the number of ants equals 120. Therefore, the number of cycles can be set
lower without lowering the quality of the solution. In Tables 4 and 5 and in Fig. 4 and 5,
the results for the numbers of cycles equal to 200 and 300 and for different numbers of ants
have been shown. The point of reference is the profit obtained when the number of cycles
and ants were set at 500 and 120, respectively. This point of reference is achieved when the
number of cycles and the number of ants are set at 300 and 60, respectively. Thus, there is
no need to set the number of cycles at 500 and the number of ants at 120 and wait longer
in order to find a solution to the problem.

T a b l e 5

Profit in dependence on number of ants for a number
of cycles equal to 300

n. of ants 40 60 80 100 120

AKA1 835.0 834.8 834.9 835.0 835.7

AKA2 836.5 837.2 837.0 836.9 836.9

AKA3 834.6 835.2 835.7 834.8 835.7

p. of reference 837.2 837.2 837.2 837.2 837.2

Fig. 5. Profit in dependence on number of ants for a number of cycles equal to 300

The next experiment concerns a profit in dependence on the knapsack load capacity.
The number of cycles was set at 300, the number of ants to 80, the evaporation rate
to 0.95, the number of objects to 300, the knapsack load capacity consecutively to
(1000, 2000, 3000, 4000, 5000). A profit zi and a weight wi were randomly generated
for each object oi in the range <1, 10> and <1, 100>, respectively. Thus it was possible to
generate 1000 different objects (wi, zi). Average values were obtained from 10 measurements
and are shown in Table 6 and in Fig. 6. The AKA2 algorithm yields higher profits than
the other two algorithms and its superiority is applicable for all knapsack load capacity
values.

49
Ta b l e 6

Profit and differences in profit for variable load knapsack capacity

Load capacity 1000 2000 3000 4000 5000
AKA1 466.7 664.1 817.2 946.4 1058.3
AKA2 467.7 665.2 817.7 947.0 1059.7
AKA3 466.6 664.1 816.6 946.3 1058.4

AKA1-AKA3 0.1 0.0 0.6 0.1 –0.1
AKA2-AKA3 1.1 1.1 1.1 0.7 1.3
AKA3-AKA3 0.0 0.0 0.0 0.0 0.0

Fig. 6. Differences in profit for variable knapsack load capacity

The following experiment concerns profit and the number of objects. The number of
cycles was set at 300, the number of ants at 80, the evaporation rate at 0.95, the knapsack
load capacity at 3000 and the number of objects consecutively at (100, 200, 300, 400, 500).
A profit zi and the weight wi were randomly generated for each object oi in the range <1, 10>
and <1, 100>, respectively. It was possible to generate 1000 different objects (wi, zi). Average
values were obtained from 10 measurements – these are shown in Table 7 and in Fig. 7.
The AKA2 algorithm yields higher profits than the two other algorithms and rises when the
number of objects rises.

T a b l e 7

Profits for different numbers of objects

n. of objects 100 200 300 400 500
AKA1 482.5 672.8 817.2 936.3 1048.5
AKA2 482.5 673.0 817.7 938.6 1051.7
AKA3 482.6 672.6 816.6 937.1 1048.6

AKA1-AKA1 0.0 0.0 0.0 0.0 0.0
AKA2-AKA1 0.0 0.2 0.5 2.5 3.2
AKA1-AKA1 0.1 –0.2 –0.6 0.8 0.1

50

Fig. 7. Differences in profit for different entry numbers of objects

The last (but not least) experiment concerns profit and the number of objects. The
number of cycles was set at 300, the number of ants at 80, the evaporation rate at 0.95, the
knapsack load capacity at 3000 and the number of objects consecutively at (100, 200, 300,
400, 500). A profit zi and the weight wi were randomly generated for each object oi in the
range <1, 10> and <1, 10>, respectively. Thus, it was possible to generate 100 different
objects (wi, zi), so that objects were generated with the same characteristics (wi, zi). Average
values were obtained from 10 measurements for each different number of cycles – these
values are shown in Table 8 and in Fig. 8. The AKA2 algorithm yields higher profits than
the other two algorithms and rises when the number of objects rises. Objects with repeated
characteristics (wi, zi) do not influence the result of the experiment.

T a b l e 8

Profits for different entry numbers of objects

n. of objects 100 200 300 400 500
AKA1 458.6 635.4 750.0 842.9 925.2
AKA2 459.0 636.4 751.4 843.7 927.5
AKA3 458.9 635.8 750.8 842.7 925.8

AKA1-AKA1 0.0 0.0 0.0 0.0 0.0
AKA2-AKA1 0.4 1.0 1.4 0.8 2.3
AKA3-AKA1 0.3 0.4 0.8 –0.2 0.6

The last experiment concerns a profit and a number of objects. The number of cycles was
set at 300, the number of ants at 80, the evaporation rate at 0.95, the knapsack load capacity
at 3000 and the number of objects consecutively at (100, 200, 300, 400, 500). A profit zi and
the weight wi were randomly generated for each object oi in the range <1, 100> and <1, 100>
respectively. Thus, it was possible to generate 10,000 different objects (wi, zi) and there was
almost no chance to generate objects with the same characteristic (wi, zi). Average values were
obtained from 10 measurements and are shown in Table 9 and in Fig. 9. The AKA2 algorithm
yields higher profits than the other two algorithms and rises when the number of objects rises.

51

T a b l e 9

Profit for the different entry numbers of objects

n. of objects 100 200 300 400 500
AKA1 4400.8 6465.7 7826.7 8921.9 9890.5
AKA2 4399.3 6466.3 7835.3 8943.5 9914.1
AKA3 4396.9 6465.7 7833.1 8922.9 9898.4

AKA1-AKA1 0.0 0.0 0.0 0.0 0.0
AKA2-AKA1 –1.5 0.6 8.6 21.6 23.6
AKA3-AKA1 –3.9 0.0 6.4 1.0 7.9

Fig. 8. Differences in profit for different entry numbers of objects

Fig. 9. Differences in profit for different entry numbers of objects

5. Conclusion

The experiments have shown that the AKA2 algorithm can find a solution with a higher
total profit than the other two algorithms. Moreover, it can find this solution more rapidly, as
it appears from the first experiment, in which the AKA2 algorithm yields a maximal profit
after 200 cycles as compared to 600 cycles for the other two algorithms.

52

R e f e r e n c e s

[1] 	Kolhe P., Christensen H., Planning in Logistics: A survey, PerMIS’10 September
28–30, Baltimore 2010.

[2] 	Garey M.R., Johnson D.S., Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, San Francisco 1979.

[3] 	Sysło M., Deo N., Kowalik J., Algorytmy optymalizacji dyskretnej, PWN, 1993.
[4] 	Toth P., Dynamic programming algorithms for the 0-1 knapsack problem, Computing

25, 1980, 29-45.
[5] 	Fayard D., Plateau G., Algorithm 47: An algorithm for the solution of the 0-1 knapsack

problem, Computing 28, 1982, 269-287.
[6] 	Koleasr P., A branch and bound algorithm for the knapsack problem, Management

Science 13, 1967, 723-735.
[7] 	Fidanova S., Ant Colony Optimization for Multiple Knapsack Problem and Heuristic

Model, Kluwer Academic Publishers, 2004.
[8] 	Fidanova S., Ant Colony Optimization for Multiple Knapsack Problem and Model

Bias, [in:] Margenov S., Vulkov L.G., Wasniewski J. (Eds.), Numerical Analysis and
Its Applications, LNCS, Vol. 3401, Springer, Berlin Heidelberg, 2005, 280-287.

[9] 	Fidanova S., Probabilistic Model of Ant Colony Optimization for Multiple Knapsack
Problem, In Lirkov I., Margenov S., Wasniewski J. (Eds.), LSSC 2007, LNCS 4818,
Berlin 2008, 545-552.

[10]	 Alaya I., Solnon C., Gheira K., Ant algorithm for the multi-dimensional knapsack
problem, International Conference on Bioinspired Optimization Methods and their
Applications, (BIOMA 2004), 2004, 63-72.

[11]	 Fidanova S., Heuristic for the multiple knapsack problem, IADIS International
Conference on Applied Computing, 2005, 255-260.

[12] 	Boryczka U., Ants and Multiple Knapsack Problem, 6th International Conference on
Computer Information Systems and Industrial Management Applications (CISIM’07),
2007, IEEE Computer Society, No. P2894, 2007, 149-154.

[13]	 Ke L., Feng Z., Ren Z., Wei X., An ant colony optimization approach for the
multi-dimensional knapsack problem, Journal of Heuristics, Vol. 16, No. 1, 2010,
65-83.

[14]	 Shahrear I., Faizul B., Sohel R., Solving the Multidimensional Multi-choice Knapsack
Problem with the Help of Ants, M. Dorigo et al. (Eds.), ANTS 2010, LNCS 6234, Berlin
2010, 312-323.

[15]	 Ji J., Huang Z., Liu C., Liu X., Zhong N., An Ant Colony Optimization Algorithm
for Solving the Multidimensional Knapsack Problems, [in:] Proceedings of the 2007
IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IEEE
Computer Society, Los Alamitos, 2007, 10-16.

[16]	 Leguizamon G., Michalewicz Z., A new version of ant system for subset problems; [in:]
Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, Vol. 2,
1999, 1458-1464.

[17]	 Dorigo M., Caro D.G., Gambardella L.M., Ant algorithms for discrete optimization,
Artificial Life, Vol. 5, No. 2, 1999, 137-172.

