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A b s t r a c t

This article describes a new ant colony optimisation algorithm for the discrete knapsack problem with 
a new heuristic pattern, based on the ratio of the square of the profit coefficient to the square of the weight 
coefficient of the original problem. This new heuristic is used in order to choose objects that should be 
packed into the knapsack. This pattern was compared with two used in ant algorithms and which have 
been presented in the literature on the subject of ant colony optimisation algorithms for the 0-1 Knapsack 
Problem. The two other patterns are based on the ratio of the profit coefficient to the weight coefficient 
multiplied respectively by the total and the current knapsack load capacity. Results of tests under a width 
range of ant algorithm parameters such as the number of cycles, the number of ants, the evaporation rate, 
and the load knapsack capacity are shown and discussed.
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S t r e s z c z e n i e

W artykule przedstawiono algorytm mrówkowy dla dyskretnego problemu plecakowego z nową heurystyką 
wyboru obiektów i został on porównany z dwoma innymi algorytmami spotkanymi w literaturze przedmiotu 
pod względem uzyskiwanego całkowitego zysku z załadowanych do plecaka przedmiotów. Nowa 
heurystyka wyboru została wyrażona poprzez stosunek kwadratu zysku do kwadratu wagi wybranego 
przedmiotu, gdy dwie znane już heurystyki to stosunek zysku do wagi odpowiednio pomnożony przez 
całkowitą i bieżącą ładowność plecaka. W artykule przedstawiono wyniki przeprowadzonych testów dla 
szerokiego zakresu parametrów algorytmów mrówkowych takich jak: współczynnik parowania, liczba 
cykli, liczba mrówek, ładowności plecaka jak i dla różnej liczby dostępnych przedmiotów do załadunku.

Słowa kluczowe: problem plecakowy, algorytm mrówkowy, heurystyka
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1. Introduction

Many optimisation problems in decision-making can be presented as the 0-1 Knapsack 
Problem (KP) [1]. The 0-1 Knapsack Problem consists of loading objects in to a knapsack in 
such a way that the obtained total profit of all objects included in the knapsack is maximum and 
the sum of the weights of all packed objects does not exceed the total knapsack load capacity. 
Each object can be loaded or not loaded into the knapsack; this is the 0-1 decision concerning 
object loading. There are also other versions of this problem such as the Multi-dimensional  
0-1 Knapsack Problem [10, 13–15] or the Multiple 0-1 Knapsack Problem [7–9, 11, 12]. 

The 0-1 Knapsack Problem is an NP-difficult (NP: non-polynomial) problem [2]. The 
exact solution to an NP problem is not obtained in a short period of time, computer algorithms 
take a great deal of time to arrive at a solution. The 0-1 Knapsack Problem can be solved by 
using the exact methods [4–6]. In order to obtain the solution for the 0-1 KP in a short period 
of time, heuristic algorithms are used. Such algorithms, which are based on the behaviour of 
ants, are taken into consideration in this paper.

Ant algorithms are very suitable for NP-complete problems [17]. Ants construct solutions 
to the problem and the best solution from their work is remembered in each algorithm cycle. 
Ants construct their solution using a pheromone, which is a chemical signal. The quantity of 
the pheromone connected with the objects, which constitute a solution to the problem, varies 
during the algorithm action. The quantity of the pheromone decreases for all objects and is 
shown as evaporation. The quantity of the pheromone rises when an additional quantity is 
added to all objects, which constitutes the best solution. A greater quantity of the pheromone 
means a greater probability of the object being selected by ants during their search for the 
optimal solution to the problem. A decision on element selecting depends not only on the 
quantity of the pheromone, but also on heuristic information, which can be expressed with 
a different kind of pattern. The heuristic pattern is additional information for ants about the 
problem, which helps them to find a better solution in comparison to a situation when this 
heuristic information is not used during optimal construction of a solution by all ants.

A mathematical model of the 0-1 Knapsack Problem is presented in section 2, a general 
pseudo-code of the Ant Colony Optimisation algorithm is discussed, a proposed heuristic 
pattern and two other patterns which have been used in ant algorithms, are formulated in 
section 3. The results of the conducted tests are shown and discussed in section 4. These 
experiments compare the action of algorithms with all three heuristic patterns – the new 
version presented in this paper, the static version used in papers [7–9, 11] and the dynamic 
version used in papers [10, 12–16].

In the static heuristic pattern, the total load knapsack capacity does not change at all 
during the algorithm’s operation, whereas in the dynamic heuristic pattern, the current load 
knapsack capacity changes constantly since objects are constantly added to the knapsack in 
each cycle of the ant algorithm.  

2. Mathematical formalisation

The mathematical model of the 0-1 Knapsack Problem can be stated in the same way as 
in paper [3]:
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		  (1)

with constraints:

		  (2)

where:
	 C	 –	 is the total knapsack load capacity,
	 zi 	 –	 is the profit on an object i,
	 wi 	 –	 is the weight of an object i,
	 C, zi, wi 	 –	 are all integers and positive numbers,
and 	 xi = 0 	 –	 when an object i has not been loaded into a knapsack,
or	 xi = 1 	 –	 when an object i has been loaded into a knapsack.

The knapsack has its own capacity C. Each object has its own weight wi. The total 
weight of all objects which have been packed into the knapsack should not exceed the  
total knapsack load capacity. All objects should be selected to be packed so that the total 
profit Z of all objects which have been packed into the knapsack should be maximal.  
An object oi has been loaded into a knapsack or it has not been loaded; thus a variable xi 
corresponding to this object has two states or values {0, 1}. There are n objects to be loaded 
into the knapsack {o1, o2, ..., on}. Each object oi has its own profit zi and its own weight wi. 
The set N = {o1, o2, ..., on} is the set of all available objects which can be loaded into the 
knapsack.

When an object oi goes into the knapsack, the latter’s capacity is decreased by the weight 
of this loaded object oi. This new value for the available knapsack capacity is called the 
current knapsack capacity Vc. If the weight of any object is greater than the current knapsack 
capacity Vc, then that object cannot be loaded into the knapsack and is removed from the 
list N. After an object oi is loaded into the knapsack, a new list Nj has to be compiled. This 
new list Nj is obtained from the preceding list Ni, which was stated before the object oi was 
loaded into the knapsack. The solution to the problem constitutes the objects loaded into the 
knapsack, i.e. objects which have been included in the set S. 

The total weight of all packed objects in the knapsack should not be larger than the 
knapsack load capacity and the total profit of all packed objects in the knapsack should be 
maximal. At the beginning of the ants’ work, the knapsack is empty; thus the set S is also 
empty (S = {}). Next, all objects from the set N are verified in terms of their weights and 
the knapsack load capacity. A new object oi can be selected to be packed into the knapsack 
only from those objects whose weight is less than the current knapsack load capacity. After 
a selected object oi has been packed into the knapsack, the current knapsack capacity is 
reduced. There is an object oi inside the knapsack S = {oi1}. 

In some steps j, other objects are loaded into the knapsack, so the contents of the set Sj 
are {oi1, oi2, ..., oij}. If the set Sk = {oi1, oi2, ..., oik} is the solution to the problem, then the 
set Sj = {oi1, oi2, ..., oij} is a partial solution to the problem or a solution under construction,  
j < k. The final contents of the set Sk are obtained as a result of the selection of objects from 
available objects N. When the next object oim is selected, then state Sj changes to another state 

max z xi ii
n
=∑ 1

w x Ci ii
n ≤
=∑ 1
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Sm = {oi1,oi2, ..., oij, oim}, j  m < k. The total current profit of objects is Zj and Zm according to 
the states j and m. After an object oj is packed into the knapsack, the current knapsack load 
capacity is less than it was before. 

As a result of the reduced current knapsack load capacity, not all objects from the set Ni 
can now be loaded since their weights are too great in comparison to the current knapsack 
load capacity. Some objects from the set Ni are removed, since their weights are too great to 
be packed into the knapsack, and thus a new set Nj of available objects is obtained. The set Nj, 
from which a new object oj can be selected in order to be packed into the knapsack, is called 
the neighbourhood of state Si. Objects which constitute this neighbourhood Nj come from 
neighbourhood Ni; these objects came in turn from neighbourhood Ni, with a weight less than 
or equal to the current knapsack load capacity Vc. 

3. Structure of the ACO algorithm

In ant algorithms a colony of artificial ants is looking for a good solution to the 
investigated problem. The pseudo-code of the ACO algorithm is presented as procedure 1. 
Each artificial ant constructs an entire solution to the problem in a certain number of steps; 
at each step there is an intermediate solution, a partial solution or a state. In each step, 
each ant k goes from one state i to another state j and thus constructs a new intermediate 
solution. At the end, the entire solution will have been obtained in a certain number of 
steps. At each step, each ant k takes into consideration a set of feasible expansions to its 
current state and moves to one of these in probability. This set of feasible expansions is 
called a neighbourhood. 

In the presented algorithm for the 0-1 Knapsack Problem, at each state i there is a partial 
solution Si of the Knapsack Problem; each ant selects the next object oi from the set Ni of 
available objects, goes to the next state j and adds this selected object to a partial solution 
Sj in order to construct, at the end of the algorithm operation, the entire solution S to the  
0-1 Knapsack Problem. At the end of the algorithm operation, the set of objects S constitutes 
a solution to the 0-1 Knapsack Problem. Each ant k starts with an empty set S and successively 
adds to this set objects selected one after the other with probability pj moving from one 
state i to another state j. At each state i there are certain objects in set Si which constitute 
a partial solution. Each ant, in order to construct a solution, uses common information 
which is encoded in pheromone trails τj. Each ant also deposits pheromones on all objects 
included in the knapsack when a solution has been found. The quantity of the pheromones 
∆τ deposited depends on the quality of this solution Q. Each ant’s move also depends on the 
so-called attractiveness of the move µj. In order to avoid a very rapid convergence to a locally 
optimal solution, the evaporation mechanism τ = ρτ is used. Over time, the pheromone trail 
evaporates, thus reducing its attractive strength. Each ant k moves from one state i to another 
state j according to a transition probability rule pj: 

		  (3)p
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P r o c e d u r e  1

ACO procedure for the 0-1 Knapsack Problem

begin 
	 while (a cycle exists) do 
	 while (an ant k, which has not yet worked, exists) do
	 while (Vc ≥ 0) do 
	 select a next object oj from Ni with probability p
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	 add a selected object to a partial solution S = S + {oj}
	 update the current knapsack load capacity VC = VC – wj

	 update the profit Z = Z + zj

	 update the neighbourhood of the current state Ni = {oi : wi ≤ VC}
	 end 
	 remember the best solution if a better solution has been found
	 end 
	 remember a global best solution if a better solution has been found
	 use an evaporation mechanism τ = ρτ
	 update pheromone trails τ = τ + ∆τ 
	 end 
end.

using the pheromone trail τj and the attractiveness µj of the move. The pheromone trail τj 
is useful information, deposited by other ants, about their usage of object j in the past. The 
attractiveness µj is the desire to select an object j from the neighbourhood Ni of the current 
state. The attractiveness µj enables better selection of an object from all available objects 
which constitute the neighbourhood Ni of the current state and which can be added to the 
solution under construction. The neighbourhood Ni of state i is composed of objects which 
can be added to a constructed partial solution. At the start of the ants’ work, all objects can be 
added to a partial solution of the problem, i.e. to a solution of a problem under construction. 
The number of these objects is reduced afterwards not only because of their inclusion in the 
partial solution S, but also because some of these objects cannot be added to a solution which 
is under construction, since these objects already fail to satisfy solution constraints. Only those 
objects which still satisfy solution constraints can be added to a constructed partial solution. 
The partial solution of the problem is a part of a solution or a solution under construction. 
The partial solution is a subset of the objects which constitute an entire solution to the 
problem. Parameters α and β, which are used in the transition probability rule pj expressed 
by formula (3), indicate how important the pheromone trail τj and the attractiveness µj are 
during transitions from one state to another. After a solution has been found, each ant deposits 
some quantity ∆τ of pheromones on all objects which constitute the solution S, in accordance 
with the pattern:

	 τ = τ + ∆τ	 (4)
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A quantity of deposited pheromones ∆τ is expressed as:

		  (5)

Thus those objects which were included into a solution have received an additional 
quantity of pheromones and can be selected afterwards with a higher probability than other 
objects. 

An evaporation mechanism is incorporated into ant algorithms in order to avoid too rapid 
a convergence to a suboptimal solution. The intensity of evaporation is controlled by the 
parameter ρ. The quantity of the pheromone on each object is updated at the end of each cycle 
in accordance with the pattern:

	 τ = ρτ,   ρ ∈ (0, 1] 	 (6)

Three ant colony optimisation algorithms were implemented. They are called:
1)	AKA1, – with the attractiveness µj of the move expressed as:

		  (7)

2)	AKA2, – with the attractiveness µj of the move expressed as:

		  (8)

3)	AKA3, – with the attractiveness µj of the move expressed as:

		  (9)

where:
	 C	 –	 is the total knapsack load capacity,
	 Vc 	 –	 is the current knapsack load capacity, V C wC gg Si
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	 Si 	 –	 is a partial solution,
	 ( )wgg Si∈∑ 	 –	 is the weight of all objects which were included in the partial 

solution Si, 
	 wj 	 –	 is the weight of selected object j,
	 zj 	 –	 is the profit of selected object j,
	 µj 	 –	 is the attractiveness of selecting an object j.
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AKA1 and AKA3 are algorithms with static and dynamic heuristic patterns.  
The heuristic patterns for algorithms AKA1 and AKA3 are the ones used in ant algorithms 
for multi-knapsack systems and which have been adopted to the one-knapsack system  
in this paper. The heuristic pattern of the AKA2 algorithm is the one proposed in this paper. 
All tests were conducted on a computer with an Intel Celeron CPU, 1.7 GHz and 256 MB 
RAM.

4. Results of experiments

The first experiment was conducted for a different number of algorithm cycles  
{100, 200, 300, 400, 500, 600} for 300 objects and for a knapsack load capacity equal to 
3000, for an evaporation rate set at 0.95 and for a number of ants equal to 120. A profit zi and 
a weight wi were randomly generated for each object oi in the range <1, 10> and <1, 100> 
adequately. Thus, it was possible to generate 1000 different objects (wi, zi). Average values 
were obtained from 10 measurements for each number of cycles – these values are shown 
in Table 4.1 and in Fig. 4.1. The results show that the AKA2 algorithm yields a higher profit 
than the other two algorithms. These three values of profit converge when the number of 
cycles rises, but if the result must be obtained as fast as possible, the AKA2 algorithm is the 
most suitable. The AKA2 algorithm yields a higher profit than the other two algorithms when 
the number of cycles is equal to or less than 200.

T a b l e  1

Profit in dependence on number of cycles

n. of cycles 100 200 300 400 500 600
AKA1 815.0 820.0 820.2 820.2 820.4 820.8
AKA2 819.9 820.9 821.1 821.2 820.9 820.9
AKA3 817.3 819.5 819.9 820.8 820.4 820.9

Fig. 1. Profit in dependence on number of cycles
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T a b l e  2

Profit in dependence on number of ants

n. of ants 20 40 60 80 100 120 140
AKA1 799.8 800.6 800.4 801.2 801.5 801.9 801.5
AKA2 801.2 801.6 802.1 801.8 802.1 802.3 802.2
AKA3 799.7 800.6 800.6 800.8 801.0 801.7 801.5

Fig. 2. Profit in dependence on number of ants

The second experiment was conducted for a constant number of cycles equal to 500 and 
for a different number of ants {20, 40, 60, 80, 100, 120, 140}, for a load knapsack capacity 
equal to 3000, an evaporation rate equal to 0.95 and a constant number of available objects 
set at 300. A profit zi and a weight wi were randomly generated for each object oi in the 
range <1, 10> and <1, 100> adequately. Thus, it was possible to generate 1000 different 
objects (wi, zi). Average values were obtained from 10 measurements for each different 
number of cycles; these values are shown in Table 2 and in Fig. 2. The results show that 
the AKA2 algorithm yields a higher profit than the other two algorithms for all numbers of 
ants. All profit values of three algorithms rise when the number of ants rises. There is also 
some degree of saturation – if the number of ants is higher than 60, there is no significant 
improvement in obtained profit. 

T a b l e  3

Profit in dependence of evaporation rate

ρ 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
AKA1 827.7 827.6 828.3 828.3 828.5 828.9 828.2 828.1 827.3
AKA2 829.4 829.5 829.8 829.5 829.7 829.5 829.5 829.6 828.9
AKA3 828.6 828.6 828.7 829.4 828.6 828.8 828.6 828.2 827.1
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Fig. 3. Profit in dependence of evaporation rate

The third experiment was conducted for a constant number of cycles equal to 500 and 
for a constant number of ants equal to 100, for a constant load knapsack capacity set at 3000 
and for a constant number of available objects set at 300, but for different evaporation rates 
(0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99). A profit zi and a weight wi were randomly 
generated for each object oi in the range <1, 10> and <1, 100>, respectively. Thus, it was 
possible to generate 1000 different objects (wi, zi). Average values were obtained from 10 
measurements and shown in Table 3 and in Fig. 3. The results of the experiment show that 
the AKA2 algorithm yields a higher value of profit than the other two algorithms. The best 
range for the AKA2 algorithm is between 0.93 and 0.98. 

T a b l e  4

Profit in dependence on the number of ants for a number 
of cycles equal to 200

n. of ants 40 60 80 100 120
AKA1 833.8 833.8 834.3 834.0 835.0
AKA2 835.7 836.2 836.4 836.5 836.8
AKA3 833.9 833.4 833.9 834.7 834.5

p. of reference 837.2 837.2 837.2 837.2 837.2

Fig. 4. Profit in dependence on the number of ants for a number of cycles equal to 200
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The first experiment has shown that there is no need to set the number of cycles higher 
than 200 when the number of ants equals 120. Therefore, the number of cycles can be set 
lower without lowering the quality of the solution. In Tables 4 and 5 and in Fig. 4 and 5, 
the results for the numbers of cycles equal to 200 and 300 and for different numbers of ants 
have been shown. The point of reference is the profit obtained when the number of cycles 
and ants were set at 500 and 120, respectively. This point of reference is achieved when the 
number of cycles and the number of ants are set at 300 and 60, respectively. Thus, there is 
no need to set the number of cycles at 500 and the number of ants at 120 and wait longer 
in order to find a solution to the problem.

T a b l e  5

Profit in dependence on number of ants for a number 
of cycles equal to 300

n. of ants 40 60 80 100 120

AKA1 835.0 834.8 834.9 835.0 835.7

AKA2 836.5 837.2 837.0 836.9 836.9

AKA3 834.6 835.2 835.7 834.8 835.7

p. of reference 837.2 837.2 837.2 837.2 837.2

Fig. 5. Profit in dependence on number of ants for a number of cycles equal to 300

The next experiment concerns a profit in dependence on the knapsack load capacity. 
The number of cycles was set at 300, the number of ants to 80, the evaporation rate 
to 0.95, the number of objects to 300, the knapsack load capacity consecutively to  
(1000, 2000, 3000, 4000, 5000). A profit zi and a weight wi were randomly generated  
for each object oi in the range <1, 10> and <1, 100>, respectively. Thus it was possible to 
generate 1000 different objects (wi, zi). Average values were obtained from 10 measurements 
and are shown in Table 6 and in Fig. 6. The AKA2 algorithm yields higher profits than  
the other two algorithms and its superiority is applicable for all knapsack load capacity 
values.
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Ta b l e  6

Profit and differences in profit for variable load knapsack capacity

Load capacity 1000 2000 3000 4000 5000
AKA1 466.7 664.1 817.2 946.4 1058.3
AKA2 467.7 665.2 817.7 947.0 1059.7
AKA3 466.6 664.1 816.6 946.3 1058.4

AKA1-AKA3 0.1 0.0 0.6 0.1 –0.1
AKA2-AKA3 1.1 1.1 1.1 0.7 1.3
AKA3-AKA3 0.0 0.0 0.0 0.0 0.0

Fig. 6. Differences in profit for variable knapsack load capacity

The following experiment concerns profit and the number of objects. The number of 
cycles was set at 300, the number of ants at 80, the evaporation rate at 0.95, the knapsack 
load capacity at 3000 and the number of objects consecutively at (100, 200, 300, 400, 500). 
A profit zi and the weight wi were randomly generated for each object oi in the range <1, 10> 
and <1, 100>, respectively. It was possible to generate 1000 different objects (wi, zi). Average 
values were obtained from 10 measurements – these are shown in Table 7 and in Fig. 7. 
The AKA2 algorithm yields higher profits than the two other algorithms and rises when the 
number of objects rises.

T a b l e  7

Profits for different numbers of objects

n. of objects 100 200 300 400 500
AKA1 482.5 672.8 817.2 936.3 1048.5
AKA2 482.5 673.0 817.7 938.6 1051.7
AKA3 482.6 672.6 816.6 937.1 1048.6

AKA1-AKA1 0.0 0.0 0.0 0.0 0.0
AKA2-AKA1 0.0 0.2 0.5 2.5 3.2
AKA1-AKA1 0.1 –0.2 –0.6 0.8 0.1
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Fig. 7. Differences in profit for different entry numbers of objects

The last (but not least) experiment concerns profit and the number of objects. The 
number of cycles was set at 300, the number of ants at 80, the evaporation rate at 0.95, the 
knapsack load capacity at 3000 and the number of objects consecutively at (100, 200, 300, 
400, 500). A profit zi and the weight wi were randomly generated for each object oi in the 
range <1, 10> and <1, 10>, respectively. Thus, it was possible to generate 100 different 
objects (wi, zi), so that objects were generated with the same characteristics (wi, zi). Average 
values were obtained from 10 measurements for each different number of cycles – these 
values are shown in Table 8 and in Fig. 8. The AKA2 algorithm yields higher profits than 
the other two algorithms and rises when the number of objects rises. Objects with repeated 
characteristics (wi, zi) do not influence the result of the experiment.

T a b l e  8

Profits for different entry numbers of objects

n. of objects 100 200 300 400 500
AKA1 458.6 635.4 750.0 842.9 925.2
AKA2 459.0 636.4 751.4 843.7 927.5
AKA3 458.9 635.8 750.8 842.7 925.8

AKA1-AKA1 0.0 0.0 0.0 0.0 0.0
AKA2-AKA1 0.4 1.0 1.4 0.8 2.3
AKA3-AKA1 0.3 0.4 0.8 –0.2 0.6

The last experiment concerns a profit and a number of objects. The number of cycles was 
set at 300, the number of ants at 80, the evaporation rate at 0.95, the knapsack load capacity 
at 3000 and the number of objects consecutively at (100, 200, 300, 400, 500). A profit zi and 
the weight wi were randomly generated for each object oi in the range <1, 100> and <1, 100> 
respectively. Thus, it was possible to generate 10,000 different objects (wi, zi) and there was 
almost no chance to generate objects with the same characteristic (wi, zi). Average values were 
obtained from 10 measurements and are shown in Table 9 and in Fig. 9. The AKA2 algorithm 
yields higher profits than the other two algorithms and rises when the number of objects rises.
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T a b l e  9

Profit for the different entry numbers of objects

n. of objects 100 200 300 400 500
AKA1 4400.8 6465.7 7826.7 8921.9 9890.5
AKA2 4399.3 6466.3 7835.3 8943.5 9914.1
AKA3 4396.9 6465.7 7833.1 8922.9 9898.4

AKA1-AKA1 0.0 0.0 0.0 0.0 0.0
AKA2-AKA1 –1.5 0.6 8.6 21.6 23.6
AKA3-AKA1 –3.9 0.0 6.4 1.0 7.9

Fig. 8. Differences in profit for different entry numbers of objects

Fig. 9. Differences in profit for different entry numbers of objects

5. Conclusion

The experiments have shown that the AKA2 algorithm can find a solution with a higher 
total profit than the other two algorithms. Moreover, it can find this solution more rapidly, as 
it appears from the first experiment, in which the AKA2 algorithm yields a maximal profit 
after 200 cycles as compared to 600 cycles for the other two algorithms.
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