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Abstract

This paper presents a micropolar fluid model that direct applies Cosserat’s continuum to
hydrodynamics. The corresponding system of equations describing isotropic micropolar fluid
is obtained by assuming lack of symmetry of the Cauchy stress tensor and taking into account
the conservation of angular momentum. This turns out to be an extension of the Navier-
Stokes fluid but containing turbulent effect built in.
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Streszczenie

W artykule przedstawiono mikropolarny model cieczy stanowigcy bezposrednie zastosowanie
kontinuum Cosseratéw w hydromechanice. Zaktadajac brak symetrii tensora napr¢zenia
Cauchy’ego oraz uwzgledniajac zasade zachowania momentu pedu otrzymano uktad réwnan
opisujacy izotropowa ciecz mikropolarng. Uklad réwnan jest uogélnieniem rownan Naviera-
Stokesa poprzez uwzglednienie efektu turbulentnego.
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1. Introduction

Over one hundred years ago, the Cosserat brothers published fundamental work
containing a new version of continuum mechanics [8]. This was based on the idea of
considering rotational degrees of freedom of material particles to be independent variables
and corresponding couple stresses. This material model was later named the Cosserat or
micropolar continuum. The basic ideas of this approach were first presented in [7].

The general nonlinear theory of the micropolar continuum was developed by Truesdell
[44, 45]. The problem of finite deformation was considered by Grioli [19, 20], Toupin [43],
Green & Rivlin [18], Eringen & Kafadar [14, 24], Stojanovic [39, 40, 41], Besdo [5] and
Reissner [33, 34, 35]. The linear Cosserat theory is presented in the original papers, by inter
alia Giinther [21], Aero & Kuvshinskii [3, 4], Toupin [42], Mindlin & Tiersten [28], Koiter
[25], Palmov [32], Eringen [15, 16], Schaefer [38], and lesan [23].

In the case of micropolar fluids, the review of achievements starts with pioneering
papers by Aero et al. [2] and Eringen [17] as well as monographs by Migoun &
Prokhorenko [27], Lukaszewicz [26], Eremeyev & Zubov [9], the micropolar continuum is
applied to model magnetic liquids, polymer suspension, liquid crystals, and other types of
fluids with a microstructure. In particular, Rosensweig uses magnetic fluids [36], named
also ferrofluids, developing the micropolar hydromechanics where a magnetic field induces
voluminous couples. Compared to micropolar elasticity, micropolar hydrodynamics is a
more extensive part of mechanics with well-established experimentally constitutive
equations. Some generalizations of the viscous micropolar constitutive model are presented
by Eremeyev & Zubov [10, 47] and also Eringen [11, 12, 13].

The Cosserat brothers considered a simplified version of the micropolar continuum
called quasi micropolar theory. This is based on the assumption that the rotation of local
particles is equal to the average rotation of displacement field. The quasi micropolar
continuum is well developed and comprises several general theorems, methods of
integration and solutions of fundamental problems, see Hamel [22], Koiter [25], Mindlin
and Tiersten [28], Muki & Sternberg [29], Bogy & Sternberg [6], Sawin [37].

2. Micropolar fluid model

Classical hydromechanics is based on an idealised model of a continuum in which the
transmission of transitions between both sides of a surface element is only described by the
Cauchy stress t; = o;n;. This approach leads to symmetrical states of stress and strain
which properly describe majority of solid and fluid materials. However, essential
differences between the model and experimental evidence arise in the case of high stress
gradients, vibrations excited by high frequencies, granular media and polymers. The above
discrepancies between the theory of symmetric continuum and experimental data were the
subject of investigations by Voigt [46] who first introduced additional transmission by a
couple traction m; = p;;n;. Such an assumption leads to the existence of the couple stress
tensor p;; as well as a lack of symmetry of Cauchy’s stress tensor o;;. The general theory of
non-symmetrical continuum was developed by the Cosserat brothers [8]. According to their
concept, the kinematics of the continuum point is described by the displacement vector u;
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and the micropolar rotation vector ¢;. Since the present section deals with the micropolar
fluid model let us adapt Cosserat’s formalism to our purpose as was done by Ostoja-
Starzewski [31]. First of all, both vectors u; and ¢; are replaced by their respective time
rates v; = u; and w; = ¢;. Additionally, the microinertia tensor of angular momentum per
unit mass J;; is introduced. The system of balance equations is as follows:

the conservation of mass

D
24 pvi =0 @
the balance of linear momentum
Dv;
p—t =gy +pX; (2
the balance of angular momentum
D(Jijw))
P—pr = Hjij T PY; +€ij Ok 3)

In the case of an isotropic micropolar fluid, J;; = J§;;, where ] is the microinertia of a
continuum fluid particle. The above assumption comprises the isotropy of the geometric
shape of fluid particles and has nothing to do with the isotropy of constitutive equations —
these will be discussed separately.

Taking advantage of kinematic equations

Yji = Vij—€ji Wk
Kji = Wy

(4)

one can perform constitutive equations of the linear micropolar, isotropic and
centrosymmetric fluid

oji = (W4 1)V + (W= 1w )Vij + (=P + Wik )Sij

. . ) ®)
Wi = (ca + ca)Kji + (cqg — o)k + oKy i 8ij
in the format proposed by Lukaszewicz [26]
ajy = (=P + Wi )8y + w(vis +vip) + (Vg = Vi) =20 Emyy Om ©)

I’lji = Co(,l)k‘ksij + Cd(wj,i + wi,j) + Ca(wi,j - wj,i)

It is worth noting here that the term centrosymmetry plays an analogous role to the term
isotropy in case of classical continuum. Therefore, the governing equations (2-3) become

Dv;
PD—Z =pX;—p; + A+ u—p)vyji + W+ W)Vigr + 20y Ejji Wy @
Dw;
p]D—OZ = pY; + 2u:(€jic Vik — 2w;) + (6o + €4 — ca)w; ji + (Cq + €)Wk
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If there are no body forces and couples, the governing equations (1, 7) may be rewritten
in absolute notation to the format

2e 4 pdivv = 0
Dt
p Dv/Dt = —gradp + (u + p)V?v+ (A + p — p)grad(divv) + 2p,rotw (8)
pJ Dm/Dt = (cq + c )V + (¢ + ¢4 — cg)grad(divew) + 2p,rotv — 4y,

in which the viscosity coefficients assuring the positive definiteness of the entropy growth
are

u>0 3A+2u>0
Cqgt+cg =0 3cg+2¢c; 20 (©)]
_(Cd+ca)<cd_ca<(cd+ca) ur>0

According to Eq. (8), the motion of micropolar fluid can be treated as turbulent. However,
when the micropolar effects tend to vanish, the fluid becomes classical Newtonian and in
the special case of vanishing bulk viscosity A + 2/3u — 0 it simplifies to a Navier-Stokes
fluid.

3. Quasi-micropolar fluid model

Apart from the general micropolar theory, the Cosserat brothers also considered a
simplified theory, according to which, couple inertia terms vanish Dw/Dt = 0 in Eq. (83)
and the rotation of a local particle is equal to the average rotation of the displacement field,
see Nowacki [30]. It is assumed that Eq. (4,) reduces to

]'(A=§rotv—m=0 (10)

nevertheless, the transmission of tractions and couple transitions through an arbitrary
surface is done by stress tensor ¢ and couple stress tensor p, and obviously, both tensors
are still unsymmetrical.

Introducing w calculated from Eq. (10) into Eqgs (8,.3) we obtain

pDV/Dt = —gradp + L(v) — 2y, roty?
(cq + c)VHYA + (co + cq — co)grad divy? + 4p.y4 — ;(cd + cq)V?rotv = 0 (1)
in which the differential operator
LC) =@+ p)V?(.) + A+ p— pograd div(..) + perot rot(..) (12)
may be simplified to the format

L(.) =AV2(.) 4+ (A + wegrad div(..) (13)
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The above reduction yields of known relation V2(..) — grad div(..) + rot rot(..) = 0.
Unsymmetrical stress tensor defined as

oh = ZMrYA (14)
serves for the reduction of y2 in Eq. (11) yielding

p DV/Dt = —gradp + L(v) — rote® 15)
¢t = —%(cd + cg)V?rotv

Finally, applying differential operator (13) and introducing (15,) into Eq. (15;) we find
2 pdivv = 0
Dt L (16)
p DV/Dt = —gradp + uV?v + (A + p)grad divv — s(ca+ cq)V?rot rot v
In the case of vanishing bulk viscosity A + 2/3u — 0, we get the system of equations
18+ pdivv = 0
Dt

av 2 1 ; 2 n
p( /at +v-Vv) = —gradp + u(V v+ ggrad div v) — (cq + c4)Verotrot v

which is the generalisation of the Navier-Stokes equations by the underlined term. Eq. (17,)
include not only the conventional coefficient of dynamic viscosity p but also the sum of
two micropolar viscosity coefficients c; + c,. All above coefficients of viscosity are
constants according to the assumption of isotropy and linearity of constitutive equations (5)
or (6). It is also worth to noting that the underlined term can be treated as a specific integral
of the Navier-Stokes equations. Moreover, since according to Eq. (17,) the turbulent effect
is activated from the very beginning, we suggest that it be preceded by a specific
continuous switch function dependent on Reynold’s number

f(Re) = _Re-Remin (18)

Remax—Remin

as is shown in Fig. 1. Reynold’s number includes only the conventional coefficient of
J(Re)

0 Repin  Repay Re

Fig. 1. Switch function f(Re) preceding turbulent effect term in Eqs (17)
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dynamic viscosity p, hence the sum of two micropolar viscosity coefficients c; + ¢, serves
as the length scale.

Example of application of the above quasi-micropolar fluid model will be a subject of
separate paper.

Nomenclature

Co» Ca» Ca — micropolar viscosity coefficients

D /Dt — absolute differential with respect to time

Jij — microinertia tensor of a fluid particle

n; — outer normal unit vector

m; — couple traction vector

p — pressure

Re — Reynold’s number

t —time

t; — traction vector

u;,u — displacement vector

Vi, V — time differential of displacement vector

w; — time differential of microrotation vector

X, Y; — body force per unit mass and body torque per unit mass
0 /ot or - over a symbol — partial differential with respect to time

Jij — Kronecker’s symbol

Eijk — Levi-Civita’s symbol

Yij Kij — strain rate tensor and couple strain rate tensor
A — unsymmetrical part of strain rate tensor

Al — conventional viscosity coefficients

T — dynamic microrotation viscosity

p — mass density

Oijy Myj — Cauchy’s stress tensor and couple stress tensor
¢’ — unsymmetrical part of Cauchy’s stress tensor
©;, P — micropolar rotation vector

w;, ® — time differential of micropolar rotation vector
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