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A b s t r a c t

This article describes a new hybrid ant colony optimization algorithms for the set covering 
problem. The problem is modeled by means of a bipartite graph. New heuristic patterns, which 
are used in order to choose a vertex to a created covering set have been incorporated into 
modified hybrid algorithms. Results of tests on investigated algorithms are discussed.
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S t r e s z c z e n i e

W artykule przedstawiono nowy hybrydowy algorytm mrówkowy dla problemu zagadnienia 
pokrycia zbioru o minimalnym koszcie. Problem jest zamodelowany za pomocą grafu dwu-
dzielnego. W modyfikowanym algorytmie wprowadzono nową heurystykę wyboru wierzchoł-
ków do podzbioru wierzchołków pokrywających. Opracowany algorytm przetestowano i po-
równano, a wyniki tych badań omówiono. 
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1. Introduction

Many practical optimization problems such as for example facility location problem, 
airline crew scheduling, nurse scheduling, vehicle routing and resource allocation problem can 
be described and modeled as the Set Covering Problem (SCP) [1, 2, 10–12] and many other 
combinatorial problems can be modeled in such a way. There are many kinds of computer 
algorithms that have been designed so far to solve SCP such as exact algorithms [13, 14], heuristic 
algorithms [15–18], meta-heuristics algorithms [19–21], also algorithms, which are based on ant 
colony optimization strategy [3, 6, 22, 23] and hybrid of Ant Colony Optimization Algorithm 
(ACO) with so called Constraint Programming (CP) [26, 27]. Ant algorithms were designed to 
solve many combinatorial problems [5, 8, 24, 25]. This paper presents new algorithms, which 
are based on an ant colony optimization strategy, for the set covering problem with a minimum 
covering cost and a new heuristic information patterns, which have been used in these algorithms. 
Transition probability rule and pheromone update rule and also a mechanism checking constraints 
consistency are used all together in order to solve the SCP and to minimize the total covering 
cost. The remainder of this paper is structured as follows: in section 2 the SCP is introduced, in 
section 3 the structure of ACO algorithm is described, in section 4 pseudo-code of ant algorithms 
with new heuristic patterns and transition probability rules, which is used in new elaborated ant 
algorithms, are discussed and in section 5 results of the conducted computational experiments on 
a special kind of a graph with an almost equal density and in section 6 conclusions are presented. 

2. Set covering problem

The set covering problem can be modeled as a bipartite graph network G(V1 + V2, E, w) 
with weights wij assigned to edges eij, such that eij = (vi ∈ V1, vj ∈ V2), eij ∈ E as it is shown 
in Fig. 1 and in the same way as it is presented in [9]. The degree of vertex i is the sum of 
edges adjacent to this vertex i. All vertices v1i can be grouped into subsets in such a way that 
all vertices from the set V2 are covered by vertices from the some subset Vs of vertices V1. 
A vertex v2i is covered by a vertex v1j if an edge eij exists between a vertex i and a vertex j in 
a bipartite graph, for example subset Vs ⊂ V1 which consists of vertices v11, v13, v14 and v16 
covers all vertices from the set V2 and the another example of set Vs is subset which consists 
of vertices v14 and v17. In general if the cardinality number of set Vs is lower than the total set 
covering cost is higher. In the set covering problem with minimum the cardinality number of 
set Vs and the cost the total cost of set covering, this means the sum of weights assigned to all 
graph edges, which are participating in the set covering, has to be minimized.

The objective function F is to find a cover set with a minimum cost and is described in 
(1) and (2):

	 min , ,F x w i V j Vij ijj
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where:
xij = 1, when a vertex j is covered by a vertex i,
xij = 0, when a vertex j is not covered by a vertex i,
wij 	– 	this is a weight associated to edge eij (a cost of covering a vertex j by a vertex i),
Vs 	 –	  is a subset of vertices V1 which cover all vertices V2.

Fig. 1. The set covering problem modeled by a bipartite graph 

Rys. 1. Problem pokrycia zbioru modelowany grafem dwudzielnym

3. Structure of ACO algorithm

In ant algorithms a colony of artificial ants is looking for a good quality solution of the 
investigated problem. The pseudo-code of ACO procedure is presented as algorithm 1. Each 
artificial ant constructs an entire solution of the problem in some number of steps, called 
intermediate solutions. Any of intermediate solutions are referred to as solution states. In 
each step m of the algorithm each ant k goes from a one state i to an another state j and thus 
constructs a new intermediate solution called later a partial solution of the problem since 
the entire solution is received in some number of steps and at each of these steps there is an 
intermediate solution called a partial solution or a solution under construction. At each step 
each ant k computes a set of feasible expansions to its current state and moves to one of these 
in probability. This set of feasible expansions is called a neighborhood of current state. In 
presented algorithms concerning processing of bipartite graph, this means working on a graph 
model of the set covering problem at each state each ant chooses a vertex from the set V1 and 
adds it to a partial solution in order to construct finally at the end of algorithm action the entire 
solution to the SCP problem. At the end of algorithm action the set of vertices Vs constitute 
a solution to the SCP problem. Each ant k starts with an empty set Vs and successively adds to 
this set Vs a vertex chosen one after the other from the set V1 with probability p

k
ij moving from 

a one to another state. At each state i there are some vertices in the set Vs and these vertices 
from the set Vs constitute a partial solution of a problem at step m, this means at state m. Each 
ant in order to construct a solution uses common information which is encoded in pheromone 
trails, this means the trail level of the move, indicating how proficient it has been in the past to 
make that particular move. Each ant also deposits a pheromone on a trail when a solution has 
been found and a quantity of the pheromone deposited depend on a quality of this solution. 
The move of each ant also depends on so called the attractiveness of the move, as computed 
by some heuristic indicating the a priori desirability of that move. In order to avoid a very fast 
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convergence to a locally optimal solution an evaporation mechanism is used, this means that 
over the time the pheromone trail evaporates, thus reducing its attractive strength. 

Algorithm 1
ACO procedure 

begin 
	 while (exist cycle) do 
		  while (exist any ant, which has not worked) do
			   while (a solution has not been completed) do 
	 	 	 	 choose a next vertex to a constructed solution with a probability pk

ij ;
	 	 	 	 update neighborhood of current state; 
			   end 
	 	 	 update a best solution if a better solution has been found; 
		  end 
	 	 update a global best solution if a better solution has been found; 
	 	 use an evaporation mechanism; 
	 	 update a pheromone trails τ(i) = τ(i) + ∆τ; 
	 end 
end.

Each ant k moves from one state i to another state j with a transition probability rule pk
ij(t), 

which is described by the formula:
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using the pheromone trail τij and the attractiveness µij of the move. The pheromone trail τij 
is the useful information, which is deposited by others ants, for each ant during its work 
on construction of solution, about the usage of vertex j in the past by others ants. The 
attractiveness µij is a desire of choosing a vertex j from the neighborhood Ni of current state 
when there is a partial solution yet constructed in state i and the attractiveness µij can by 
expressed by a some heuristic formula. The attractiveness µij allows to better choose a some 
vertex from all vertices, from the neighborhood Ni of current state, to be added to a solution 
under construction taking an objective function into a consideration. The neighborhood Ni 
of state i is constituted by vertices which can be added to a constructed partial solution. 
At the start all vertices can be added to a partial solution of the problem, this means to 
a solution of a problem under construction and the number of these vertices is reduced not 
only because of their inclusion into the solution, which is under the construction, but also 
because some of these vertices cannot be yet added to a solution, which is under construction, 
since these vertices does not satisfied solution constraints and only these vertices can be 
added to constructed partial solution which still satisfied solution constraints. The partial 
solution of the problem is a part of solution and the partial solution is a subset of vertices, 
which constitute a solution of the problem. Parameters α and β which is used in the transition 
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probability rule pk
ij(t) expressed by (3), indicate about this, how important the pheromone 

trail τij and the attractiveness µij are during transition from one to another state. Values of 
these parameters α and β should be set by experiment and tuned to the set covering problem 
with minimum covering cost. 

After a solution has been found each ant deposits a pheromone with a quantity ∆τ on all 
vertices, which constitute the solution Vs, in accordance with the pattern:

	 τ τ τij ijt t( ) ( )= + ∆  	 (4)

Thus these vertices which were included into a solution have received an additional 
quantity of a pheromone and can be chosen to a solution that would be constructed next with 
a higher probability than others vertices from the set V1. 

An evaporation mechanism is incorporated into an ant algorithm in order to avoid a too 
fast convergence to a sub-optimal solution. An intensity of evaporation is controlled by 
a parameter ρ and a quantity of a pheromone on each vertex from the set V1 is update at the 
end of each cycle in accordance with the pattern:

	 τ ρ τ ρij ijt t( ) ( ) ( ), ( , ]= − ∈1 0 1 	  (5)

Thus a diversity of a solution is granted. Values of a parameter ρ should be set by 
experiment.

A quantity of deposited pheromone ∆τ depends on a quality of solution Q and if the better 
is a solution than the more pheromone is deposited and in general can be stated as formula:

	 ∆τ = f Q( ) 	  (6)

and in particular can be expressed by some specific formula, which take into account the 
covering cost.

4. Hybrid ACO algorithm

Both ACO-SCP algorithms, which are discussed in this paper, are modified versions of 
the hybrid algorithm described in [6] and in this paper the general pseudo-code of these 
algorithms is presented as algorithm 2. In the algorithm presented in this paper a new dynamic 
heuristic rule is proposed. The dynamic heuristic information:

	 µ
ν

1
1

21( ) , and and is not covered yeti c if x j S
j w

ij
ij

= = ∈
=∑

j 	 (7)

is defined in the same way as in the paper [6] and the dynamic heuristic information µ2(i) 
and µ3(i) can be defined adequately:

	 µ2 1
( ) ,maxi w w if w w k Vij ij kj sj
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44

	 µ3 1
( ) ,i w w if w w k Vkj ij ij kj sj

n
= −( ) <( ) ∈



=∑ 	  (8b)

where:
vc 	 – 	 this is a number of additionally covered vertices from S2 if vertex i 

would be included into a solution Vs,
wmax 	 – 	 this is the maximal weight from weights associated to an edges eij,
wij 	 – 	 this is a weight associated to an edge eij,
Vs 	 – 	 this is a constructed yet subset of V1 vertices,
k 	 –	  this is a vertex already included into set Vs,
µ1(i) 	 – 	 desirability of vertex i when not covered vertices j from the set V2 

are taken into consideration,
µ2(i) and µ3(i) 	 – 	 desirability of vertex i when edge covered vertices j from the set V2 

are taken into consideration,
xij = 1 when an edge eij exists between vertex i and vertex j and xij = 0 otherwise. 

In both algorithms a following vertex that should be added to a partial solution is chosen 
with a probability that depends on a pheromone trail, heuristic information and transition 
rule. Main differences between elaborated algorithms and algorithm, which is presented in 
the paper [6] concern a transition probability rule (9), (10) and heuristic information (8a), 
(8b). Since the quality of a solution depends on a total weight of covering, this means 
depends on a sum of weights assigned to all edges between all vertices of the set V2 and the 
set Vs, the attractiveness µij of choosing vertex j expressed as a function of a weight is very 
important. At any state only these vertices from the set V1 which can improve quality of 
solution should be considered when any ant choose following vertex that should be added to 
a partial solution and to a set of vertices Vs. Such vertices from the set V1 which can improve 
quality of a solution will be called available vertices and will be constitute a set VA and these 
vertices will be also constitute the neighborhood Ni of a current state. These vertices from 
the set V1, which cannot improve a quality of solution are excluded as a result of consistency 
checking from available vertices VA and such vertices constitute a set Vex. It is obvious that 
if any vertex is included into a partial solution Vs it cannot belongs to a set of available 
vertices VA, so taking the above into consideration the number of available vertices VA can be 
computed in accordance with expression VA = V1 – Vs – Vex. The attractiveness µ1(i) and µ2(i) 
and µ3(i) of choosing vertex i from available vertices VA depend on weights of its edges and 
not only it concerns not covered yet vertices from the set V2 expressed by the attractiveness 
µ1(i), but also these vertices from the set V2, which have been covered up till now, this means 
up to this moment of choosing from the neighborhood Ni of a current state the next following 
vertex i expressed by the attractiveness µ2(i) and µ3(i):
a)	 for HACO1-SCP:

	 p i i i i
i i i

V V
i V

A
A

( )
( ) ( ) ( )
( ) ( ) ( )

,=
( )

∈
∈∑
τ µ µ

τ µ µ
1 2

1 2
1 	 (9)

b) 	for HACO2-SCP:

	 p i
i i i

i i i
V V

i V
A

A

( )
( ) ( ) ( )
( ) ( ) ( )

,=
( )

∈
∈∑
τ µ µ

τ µ µ
1 3

1 3
1 	 (10)



45

where:
VA

 	 – 	 this is a set of available vertices, VA = V1 – Vs – Vex,
Vex 	 – 	 these are vertices, which are excluded as a result of consistency 

checking,
τ(i) 	 – 	 this is a pheromone trail on a vertex i,
(µ1 (i) µ2 (i)) 	 – 	 this is a heuristic information associated with a vertex i in part a),
(µ1 (i) µ3 (i)) 	 – 	 this is a heuristic information associated with a vertex i in part b).

A quantity of pheromone ∆τ is deposited by ants during one cycle of algorithm action on 
all vertices of the set Vs, which were included into the best constructed solution, in accordance 
with the formula:

	 ∆τ =
−

−
1

1 c c
c
best

best

	  (11)

where:
cbest 	 – 	 this is the best cost of covering,
c 	 – 	 this is an actual cost of covering.

Algorithm 2
Hybrid ACO procedure for SCP 

begin
	 while (exist cycle not done) do
		  for (k:=1 to n Ants) do
			   while (a solution (a subset Vs) is not completed ) do
	 	 	 	 Update Available Vertices;
	 	 	 	 Choose next vertex i with probability p(i) and consistency checking;
	 	 	 	 Add to a Partial Solution;
	 	 	 	 Update Partial Solution;
			   end 
	 	 	 Save a Better Solution; 
		  end 
	 	 Update Optimum;
	 	 Use an evaporation mechanism;
	 	 Update Pheromone;
	 end 
Return Best Solution Founded;
end.

Constraint Programming based on Edge Consistency with pre and post-processing.
An edge adjacent to a vertex i from the set V1 and exactly from the set VA can be added to 

a partial solution only if a cost (weight) of this edge is lower in comparison to a cost of any 
edges which are already included to a partial solution VS and when both these edges, which 
weights are compared, cover the same vertex j from the set V2. Adjacent edges of this vertex 
i, whose costs are higher, cannot be added to any partial solution, thus to a solution of the 
problem.
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A vertex i from set V1, which has been already included into a partial solution Vs, will be 
excluded from this partial solution VS only when costs (weights) all of its edges are higher in 
comparison to costs of other edges adjacent to vertices which are too already included into 
a partial solution, this means that a vertex i will be excluded if this vertex i has no edge, this 
means that its edges were with higher weights and were excluded before from constructed 
partial solution up till now and thus a vertex i has now no edge at all and a vertex i can be now 
excluded from a partial solution Vs.

A vertex i from set V1, which can be chosen to a partial solution Vs, is excluded from these 
available vertices to be chosen to a partial solution VA if costs of all its all edges are higher in 
comparison to costs of edges from a constructed yet partial solution, this means from the set 
Vs covering these some vertices j from the set V2 and any of its edges cover any vertex j from 
the set V2, which is not yet included into a partial solution Vs. 

This new modified heuristic pattern lets to receive a better solution than a solution which 
is received by the hybrid ACO algorithm, which is presented in [6] for a bipartite graph with 
almost equal degree of all vertices. The constraint programming technique used in this paper 
is based on the edge consistency with pre and post processing [4, 6, 7]. Thus a number of 
available vertices which can be potentially included into a partial solution is minimized and 
any no longer needed vertices are eliminated from a partial solution and also only these edges 
with lower weights are added to a solution under construction and these with higher weights 
are eliminated from a partial yet constructed solution. 

5. Experiments

There are three algorithms which were studied during experiments. The first is the 
HACO algorithm, which was described in [6], the second is the HACO1-SCP algorithm 
with desirability µ2(i) and the third is the HACO2-SCP with desirability µ3(i), which 
are described in this paper. Two parameters were under observation during conducted 
experiments: an average minimum cost of set covering and an average cardinality number 
of the set Vs, which were received as a result of 10 measures. All algorithms were studied for 
a bipartite graph with 100 x 100 vertices and for a different graph densities q, which were 
generated in random. Later all algorithms were studied for a bipartite graph with random 
generated edges for each its vertex, this means with random generated vertex degree and 
for measure cases with different number of vertices, this means for 50 x 50, 100 x 100, 
150 x 150, 200 x 200 and 250 x 250 vertices in a bipartite graph. These bipartite graphs 
belong to the particular kind of a bipartite graph since each edge in each of these graphs 
exists with a probability q and thus each vertex of graph has almost equal degree, this 
means has almost equal number of adjacent edges. An average minimum set covering costs 
for 10 measures were presented in Table 1 and Fig. 2 and an average minimum cardinality 
numbers of the set Vs for 10 measures were presented in Table 2 and Fig. 3. These all three 
algorithms ran with the following common parameters setting for each measure cases: the 
evaporation rate was set to 0.995, the number of ants was set to 200 and the number of 
cycles was set to 300.
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Fig. 2. An average cost in dependency on a graph density q

Rys. 2. Średni koszt pokrycia w zależności od gęstości grafu

T a b l e  1

An average cost in dependency on a graph density q 

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
HACO 2233.0 2000.4 1757.8 1738.5 1736.6 1706.8 1678.9 1845.6 1988.3

HACO1-SCP 2006.9 1736.5 1676.0 1608.3 1677.4 1583.5 1633.1 1794.4 1969.8
HACO2-SCP 1865.5 1721.7 1587.7 1606.3 1606.4 1610.8 1651.3 1792.3 2111.1

T a b l e  2

An average cardinality number of Vs in dependency on a graph density q 

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
HACO 25.9 15.6 11.6 8.7 6.9 5.7 5,0 4,0 3.2

HACO1-SCP 25.3 15,0 10.3 7.9 6.1 5.0 4,0 3.1 2.2
HACO2-SCP 26.4 15,0 10.8 7.9 6.3 4.9 4,0 3,0 2,0

There is an improvement in quality of the solution when the HACO1-SCP or HACO2- 
-SCP algorithm is used instead of the HACO algorithm since there are lower cardinality 
numbers of the set Vs and there are lower covering costs for all investigated graph densities 
q = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. The HACO2-SCP algorithm is better than 
the HACO1-SCP algorithm when average costs are taken into consideration for rare graphs 
q ≤ 0.5 and there is not a difference between both algorithms for dense graphs 0.5 < q. As 
concern average cardinality numbers HACO1-SCP and HACO2-SCP algorithm do not differ 
from one another.
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Fig. 3. An average cardinality number of Vs in dependency on a graph density q

Rys. 3. Średnia liczba kardynalna zbioru Vs w zależności od gęstości grafu q

The HACO1-SCP and the HACO2-SCP algorithm are also better than the HACO-SCP 
algorithm when average costs of set covering and average cardinality numbers of the set 
Vs are taken into consideration in function of a number of bipartite graph vertices n with 
different vertices degree. These two above parameters has been observed during conducted 
tests when a graph density was differentiated for different number of graph vertices and 
received values of two above parameters have been shown in the Table 3 and in the Table 
4 or in the Fig. 4 and in the Fig. 5. In order to get a bipartite graph with a different density 
for each graph vertex each edge was generated with any probability so degree of each graph 
vertex has different values, this means each graph vertex has a different number of adjacent 
edges and thus a bipartite graph has vertices with different degree.

All experiments have shown that both elaborated algorithms give a better quality of 
solution than the HACO algorithm which has been presented in the paper [9].

T a b l e  3

An average cost in dependency on a number of vertices

n 50 100 150 200 250
HACO 856.1 1696.1 2538.6 3314.4 4026.3

HACO1-SCP 839.8 1636.5 2433.8 3215.3 3933.9
HACO2-SCP 829.9 1571.7 2374.4 3106.9 3927.9

All algorithms, the HACO algorithm and these both elaborated algorithms HACO1- 
-SCP and HACO2-SCP, which are presented in this paper, are implemented in Microsoft 
Visual C++ under Microsoft Windows XP on Intel Celeron CPU 1.7GHz, 256 Mb RAM and 
the running time of these algorithms are proportional to the time complexity expressed by 
a multiplication of a quadratic number of vertices n2 existing in a bipartite graph, a number 
of cycles, a number of ants and a cardinal number of a set Vs. 
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Fig. 4. An average cost in dependency on a number of vertices 

Rys. 4. Średni koszt w zależności od liczby wierzchołków

Ta b l e  4

An average cardinality number of Vs in dependency on a number of vertices 

n 50 100 150 200 250

HACO 6.1 7.0 7.8 8.4 9.0

HACO1-SCP 5.0 6.1 7.0 7.6 8.0

HACO2-SCP 5.0 6.1 7.0 7.8 8.0

Fig. 5. An average number of cardinality number Vs in dependency on a number of vertices 

Rys. 5. Średnia liczba kardynalna zbioru Vs w zależności od liczby wierzchołków
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6. Conclusions 

In this article the minimum cost set covering problem was solved by using the ACO 
algorithm with Constraint Programming and with new heuristic patterns. These new 
proposed heuristics, which have been used in the HACO1-SCP and the HACO2-SCP 
algorithm, lets to match in a better way an available vertex i from the neighborhood Ni of 
state to an already constructed partial solution Vs in case of graphs with an almost equal 
degree of vertices and with edges, which have been generated in random with a determined 
probability q and in case of graphs with different number of vertices and different degree 
of vertices and with edges, which are generated in random with any probability q for 
each graph vertex. Both the HACO1-SCP and the HACO2-SCP algorithm look for a new 
vertex form the set VA to be added to a partial solution Vs with the highest number of 
additional edges and with the lowest corresponding overall cost of partial solution. The 
HACO algorithm is taking into account only these available vertices from the set VA which 
are outside of a partial solution VS and which can be added to a partial solution with 
a minimum additional average cost, this means with an average minimum sum of edge 
weights and thus omits these available vertices from the set VA which can be added to 
a  partial solution Vs with a higher number of additional edges and a little higher cost 
than an average minimum sum of edge weights and which can minimize the overall cost 
of a constructed partial solution because of lower weights of its edges covering already 
covered yet vertices from the set V2.
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