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Abstract

This paper is connected with the theory of a-nonexpansive mappings, which were introduced

by K. Goebel and M. A. J. Pineda in 2007. These mappings are a natural generalisation of

nonexpansive mappings from the point of view of the fixed point theory. In particular, they

proved that in Banach spaces all o =(a,,...,a,) -nonexpansive mappings with o, big enough,
1

namely o, > 2!-7  have minimal displacement equal to zero. This paper introduces some new
results connected with this problem.
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Streszczenie

Niniejszy artykut jest zwigzany z odwzorowaniami o-nieoddalajacymi, ktore zostaty wprowa-
dzone przez K. Goebla i M. A. J. Pined¢ w 2007 r. Odwzorowania te sg naturalnym uogoélnie-
niem odwzorowan nieoddalajacych z punktu widzenia teorii punktu statlego. Wyzej wspomniani

autorzy wykazali, ze w przestrzeniach Banacha odwzorowania o = (a.,,...,0,) -nieoddalajace,
1

majgce odpowiednio duze o, a doktadniej o > ZE, posiadajg minimalne przesunigcie row-

ne zeru. W artykule przedstawiono pewne nowe wyniki z zwigzane z tym problemem.

Stowa kluczowe: odwzorowania o-nieoddalajqce, minimalne przesuniecie, punkt staly

DOI: 10.4467/2353737XCT.15.111.4148

* Institute of Mathematics, Faculty of Physics, Mathematics and Computer Science, Cracow University
of Technology; krzysztof.wesolowski@pk.edu.pl.



1. Introduction and preliminaries

Let (X, d) be a metric space, and let a=(ay,...,a,) be a multi-index satisfying

o, >0,0,>0, a,>0,i=2,...,n—1 and Z;l. In [2], the following notions were

introduced:
The mapping T:X — X is said to be «a-Lipschitzian with constant k>0, if

Zaid(Tix,Tiy) <kd(x,y) for all x,ye X.
i=1

The mapping T:X — X is said to be o-nonexpansive (O-contraction), if T is
o-Lipschitzian with constant k=1 (k < 1 resp.).

Denote the Lipschitz constant with k(T) and the o-Lipschitz constant of T with k(a., T).

Define also d(T)=inf{d(x,Tx), x € X}, which we will call the minimal displacement
of T. Sometimes it is also called the approximate fixed point of T.

These notions are natural generalisations of Lipschitzian mappings, nonexpansive
mappings and contractions from the point of view of the fixed point theory. For more
information concerning o-nonexpansive mappings and other Lipschitzian mappings
connected with the fixed point theory, we refer to [4].

In [2], the authors proved the following:

Theorem 1.1. (see also [4], chapter 3) Let X be a Banach space, let C be a nonempty,
closed, convex and bounded subset of X. Let T:C—C be an o.=(0,,...,0,) _

L
-nonexpansive mapping where o, > 2. Then d(T)=0.

Notice that the problem of determining the set of multi-indices o for which each
o-nonexpansive mapping 7 has d(7") = 0 is still open.

The aim of this paper is to prove two results (Theorem 2.1, Theorem 2.2) which give
a partial answer to the above open problem (see [4]).

Before proceeding further, let us recall the generalised Banach contraction principle
(abbreviated to GBCP), which is formulated as follows:

Theorem 1.2. ([1], [S]) In complete metric space X if for some N> 1 and 0 <M < 1
the mapping T:X — X satisfies min{d (T’x,T’y), 1< j<N}<Md(x,y) for any
x,y € X, then T has the unique fixed point.

In author’s PhD thesis [6] the more general version of the above theorem was presented.
Let us recall it without proof.

Theorem 1.3. Let (X, d) be a complete metric space, N > 1. Assume that
¢:[0,00) > [0,1] is a continuous, non-increasing function satisfying ¢&(t) =1 if, and only
if, t=0.Let T:X — X be such that min{d(T’x,T’y), 1< j <N} <d(d(x,y))-d(x,y)
forall x,y € X. Then T has the unique fixed point.



2. Main results

Firstly, let us note a simple fact, there exist some o-Lipschitzian mappings which are not
a-nonexpansive; however, their minimal displacement is equal to zero; moreover, they may
have the unique fixed point.

This is illustrated by:

Example 2.1. Let T:I n{xel :x>0, ieN}>I n{xel :x,>0, ieN}

1

. . 2x, ™2
be defined in the following way: T :x=(x,x,,...0>Tx =|1, , =,

I+x; 1+x,

1
2xs M . :
, ,... |- Then T is not a-nonexpansive for any o; however, for properly chosen
I+x5 1+x,

o =(a,,0,) the mapping 7T'is o-Lipschitzian with constant k arbitrarily close to 1. Moreover,

T has the unique fixed point.
Obviously, the mapping 7 has the unique fixed point (1, 0, 0, ...).

Also, we have |[Tx-Ty||<2|x-y| and “Tix—Tiy“§||x—y||,iZ2 for any
x,y€l n{xel :x; >0, i€ N}. On the other hand, taking x" :(0,0,1,0,0,..) and
n

“Txn_Tyn ) 2.

n= 2 — 2, n—>o0; therefore, K(T) = 2.

" =(0,0,...) we have
n+l1

1
— n
[ =] 1k
n
Similarly, &(T%) =1 and k(T")>1, i >3.

In [, it is not possible to choose o such that o, >0 and T is o-nonexpansive;

00

l||Tx—Ty||+n—_l“sz—sz“gn—+1||x—y ; therefore, assuming n to be big
n n n

however,

. . 1 n-1 . . . o
enough, the mapping 7' is o :(—,n—j -Lipschitzian with constant k(o,7") arbitrarily
n o n

close to 1.

It is worth mentioning that the existence and uniqueness of the fixed point

X X3

1+§x2 1+3x,
2

of T also follows from Theorem 1.3. Indeed, we have T 2x= 1,




X —Yi ‘< |xi_yi|

X4 X5
‘_l+|xi+yi|_

1+3x4 1+3x;s
2

3 9
1+5(xi +yl-)+zxiyi

cAm=nl 1ol N The tatter inequality follows from the fact t
< < , . quality follows from the fact that ¢ —>
1+|xi+yi| 1+||x—y|| 1+1

is an increasing function on [0,00). Similarly, Il x; _1 y; |< 1 ||)|‘| -y ” "’ therefore,
+3x; 1+3y; +llx—y

“T x-T 2y”§ so T satisfies the assumptions of Theorem 1.3 with

1
iV
l+||x—y||” |

1
b=

1
Now, let us exchange the condition o, >2!-" with the other regularity condition

of a mapping 7.
Theorem 2.1. Let X be a Banach space, let 0€ C < X be nonempty, closed, convex
and bounded. Let T:C—>C be a a=(a,...,0,)-nonexpansive mapping such that

“Ti(px)—Ti(;,ty)“g“Ti(Kx)—Ti(Ky)“ forany x,y e C, 0<u<A, iefl,...,n}.
Then d(T)=0.

Proof. Fix k > 1. Define S, := (1—%) T. Obviously, S;x = %-0+(1—%j Tx € C. Then

1
Isex-sel=(1-1 ) Ims-1o.

Next, we have:

o (- )

therefore, by assumptions:

)
DL ()

<[(1=g )l

Jstv-502 -




Similarly, for i > 3 we have:

Stx—" ([l—aTxJ:(1—%)T[[1—%jT[...[(l—%)Tx]...D;

oS
(DB A1) )
<€% (o2} (-2)m)- )
< 1—% 7=y

By assumptions, "o |Tx-Tx <|[x— for some o =(a,,...,0, ) satisfyin.
Y p ), % y 1 n ymg

Jste-sts|-

0<a; <1 and n % = 1. Therefore:

i=

>

, : ; , N P o 1
mln{“S]{x—S,{y“, 1<j< n} < [Z:;(x,- “Skx—Sky“ < (l—zj"x—y
By Theorem 1.2, §, has the unique fixed point. Denote this fixed point by x,. We get:

1
1—— |Tx, —Tx

| = Toxe ]| = Siexie = T | =

:%”Txk"—)O, k- oo,

this completes the proof.
|

For k > 3, there exists a mapping 7' which does not satisfy the assumptions of
Theorem 1.1; however, for k> 2, it satisfies the assumptions of Theorem 2.1. This will be
illustrated by the following example:

Example 2.2. Fix & > 2. Let t:[-L1]—>[-L1] be a non-decreasing function,
having the Lipschitz constant k(t) =4k, concave on [—1,0], convex on [0,1] and such that
k
7(0) = 0. Now define T: B; > x = (x;,%,,...) > Tx = (r(xz),ﬁxpx“,xs,...) €B.

We will show that the assumptions of Theorem 1.1 are not satisfied for any multi-
-index o of length n. Notice, that:
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k 00
"TX—T)’" :|T(x2)—‘t(y2)|+m|x3 _)’3|+z :4|xi _J’i|

i

k o0
§k|x2_y2|+m|x3_y3|+zi:4|xi_yi|,
k k k

™) e

+k2_1|x4—J’4|+2j:5|xi_J’i|
k

k 00
2 _1|x3 _J’3|+m|x4 _J’4|+Zi:5| X =Vl

|72 -

<

2

kf 1>1,i22.

Therefore, k(T) =k and k(T") =

It is easy to see that for k> 3, the assumptions of Theorem 1.1 are not satisfied for any

1 1
.. — — 2 1
multi-index o of length n. Indeed, we would need to have o, >2=7 >213 = V2

2 2
and thus for any such a =(a,,...,a,), the mapping " would not be o--nonexpansive.

We will now show that 7T satisfies the assumptions of Theorem 2.1; therefore,
d(T)=0.
. . 1 k=1y..» 2
It is enough to take n = 2. It is easy to check that E||Tx—Ty||+T“T x-T y“ <

. 1 k-1 .
<|x—y|; therefore, T'is —,k— -nonexpansive. We only have to show that
kK k

|7 () = T ()| <[|T(hx) =T (Wp)| for any x,y € B, 0 <p <.

If |t(p.x2 )=y, )| < |1(M2) —1(Ay, )| , then obviously,

)= 0= )~ s~

0 -
+Zi4 A =

LI
-1’
k
Ly
-1

k
<|T(M2)—T(7\J/2)|+|k2 _1M3 -

- |70 -T0)|

It is enough to prove that |17(uv)—r(pw)| §|'c(7»v)—r(7»w)| for v=wand O <p<A.
Firstly, assume that v,w> 0. Without the loss of generality, we can assume that w < v.
Therefore, 0 < pw < pv, Aw < Av.
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Assume that 0 < pw < pv < Aw < Av. Choose a € (Aw,Av] such that a—Aw = v —pw.

Of course, such an a exists since A(v—w)>u(v—w). Therefore, pv= a—mw pw +
a—uw
YT o and aw = azhw W+7»w—p.wa. Due to the convexity of T on [0,1]
a—pw a—pw a—pw
T(uv):‘c[a_“v HW+HV—HWGJ
a—pw a—pw
—pv —pw
< LB o)+ B 1)
a—-p pw
r(}.w):'c[a Aw Aw—puw )
a—puw a—pw
a—»\ Aw—pw
< T 1)+ 2 1)
= B () + S x(a)
a—pw a—pw

Adding the above estimates side-by-side and taking into consideration the fact that T is
non-decreasing, we get:

R B KKt s
=1(uww) + (@) < T(uw) + (),
this implies that |t(p.v) - ’E(},LW)l < |'c(kv) = r(kw)|.
On the other hand, if 0 <puw <Aw <puv<Av, then let us choose a € (uv,Av] such
that a—pv=Aw—pw. Of course, such an a exists since (A—p)v>(A—p)w. Then

= azhw W+kw—uwa and pv = i p.w+“v_uwa. Due to the convexity of T on
a—pw a—pw a—pw a—puw

[0,1], we have:

w

a—w Aw—pw j
pw+ a
a—pw a—pw

T(Aw) = ’C(

< a—kwr(uw)+7»w—uwr(a)
a—pw a—puw
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T(uv) = r( a-w pw + HV—HWGJ

a—pw a—pw
s“ e r(w>+“ @)

a—pw —u
XW Aw—pw

'c( )+ t(a)

Again, addmg the above estimations side-by-side, we get:

t(kw)+t(pv)<[a kw+Kw—uwjt(uw)+(kw—uw+a—kwjt(a)
a-pw  a—pw —pw

= t(uww) + t(a) < T(uw) + T(W),
this leads to [t(uv) — t(uw)| < [t(Av) — t(Aw)|.

Similarly, it is easy to check that the estimation |t(uv)—t(pw)| <|t(Av)—Tt(Aw)|
remains true for v,w <0 and for other cases. This shows that 7 satisfies the assumptions

of Theorem 2.1.
A set satisfying Ax, +(1-A)y € C for all y € C, A €[0,1] we call star-like set C with

respect to x,.
Theorem 2.2. Let X be a Banach space, x, € X, NEN, let Cc X be a bounded,
star-like set with respect to x. Let T : C — C be such that

1. min{|r/x-1/y|, 1< j < Nf<[x-y] for all x,y€C,
2. there exists 0<by<1 such that for all 0<b<hy, 1<j<N-1, x,yeC
|ry -1y < a+p)r -1y,
where Tyx = (1-b)Tx + bx,. Then d(T) =0.
Proof. Fix arbitrary x,y € C and take J € {L,....N} such that [7/x~77y| <|x-y||
Let us note that:
|75~ =m0 -1, )
= |a=Byr @ x)+ by ~ =BT (T )~ x|
= (=)@ 0 -1 ")
<(1-b)1+ b)”fo ~7/ y“

<(1=bM)x=)]
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Therefore, for any x,y€C there exists J€1{L....,N} such that HTbjx—I})jy“S

< (1-b%)||x = y|. Theorem 1.2 ensures, that 7, has the unique fixed point.
Now, fix an arbitrary &>0 and choose 0<h<ph, such that |T,z—Tz|=
= ||~ )Tz + by — T2 = b xy Tz < & forany z € C.
Letz, € Cbe such that 7z, = z,.
Therefore, ||zb —Tz, || < ||zb -1z, || + ||szb —Tz, || <0+¢ =g, this proves that 4(7T") =0.
O

Let us illustrate the possible application of Theorem 2.2.

Example 2.3. Let 7 be the same as in Example 2.2. Then T satisfies Theorem 2.2
(we have already shown that 7" does not satisfy Theorem 1.1 for k£ > 3).
Indeed, let us calculate

k
T(T,x) = (r((l—b)mxsj

and

sz:[T(%ij,%xébxs,)%,...)

We have:
k k
T (1-b X |—t] (1-b
(( e 3) (( )kz—lysj

k k
m(l —b)x, —m(l -b)y,

k k
<t X |—1T| —— +
(kz—l 3) (kz—ljy3

LA

2 _1(1—b)x4,(1—b)x5,(1—b)x6,...J

701 (1) -

+

+|(1—b)x5 —(1—b)y5|+...

k k
21t e

:“sz—sz“§(1+b)HT2x—T2y”.

+|xs = ys|+...

We have already taken into account the fact, that |t(ps) —t(us)| < |t(As) —t(At)| for any
0<pu<A, s,te[-1,1]. We proved this fact in Example 2.2.

The estimate min{"Tx—Ty||,“T2x—T2y“}g%||Tx—Ty||+%”T2x—T2y”§||x—y||

shows that 7 satisfies Theorem 2.2.
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