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1. Introduction

Dimensional analysis offers a method for reducing complex physical problems to the 
simplest form prior to obtaining a quantitative answer. 

The method is of great generality and mathematical simplicity. At the heart of dimensional 
analysis is the concept of similarity. In physical terms, similarity refers to some equivalence 
between two things, processes or phenomena that are actually different. Different with respect 
to nature or scale, processes or phenomena. 

Mathematically, similarity refers to a transformation of variables that leads to a reduction 
in the number of independent variables that specify the problem. A problem that at first looks 
formidable may sometimes be solved with little effort after dimensional analysis.

In problems so well understood that one can write down in mathematical form all the 
governing laws and boundary conditions, and only the solution is lacking, similarity can also 
be inferred by normalizing all the equations and boundary conditions in terms of quantities 
that specify the problem and identifying the dimensionless groups that appear in the resulting 
dimensionless equations. This is an inspectional form of similarity analysis.

Dimensional analysis is, however, the only option in problems where the equations and 
boundary conditions are not completely articulated, and always useful because it is simple to 
apply and quick to give insight.

Some of the basic ideas of similarity and dimensional analysis had already presented in 
Fourier’s work in the first quarter of the nineteenth century, but the subject received more 
methodical attention only toward the close of that century, notably in the works of Lord 
Rayleigh, Reynolds, Maxwell, and Froude in England, and Carvallo, Vaschy and a number 
of other scientists and engineers in France [22, 24]. By the 1920’s Buckingham’s now well-
known Π-theorem had appeared [5] and Bridgman had published the monograph which 
still remains the classic in the field [4]. Since then, the literature has grown enormously. 
Applications now include different branches of knowledge and science. The procedure is the 
same in all applications, a great variety of which may be found in the references and in the 
scientific literature at large (see for example following books, handbooks and monographs: 
[2–3, 6, 8–21, 23, 25–34, 36–39]. 

2. Physical quantities and relationships

2.1. Physical properties

An object or event or phenomenon is described in terms of basic properties like length, 
mass, colour, shape, speed, and time. None of these properties can be defined in absolute 
terms. We can do no more than compare one thing with another.

A physical property first arises as a concept based on experience and is formalized by 
defining a comparison operation for determining whether two samples of it are equal (A=B) 
or unequal (A≠B).
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This operation, which is an entirely physical procedure, defines the property. Properties 
of the same kind are compared by means of the same comparison operation. Properties of 
different kinds cannot be compared. Asking whether a particular mass is physically equal to 
a particular length is meaningless: no procedure exists for making the comparison.

Properties like shape and colour are useful for describing things, but cannot play a role in 
any quantitative analysis.

2.2. Physical quantities and base quantities

Science begins with observation and description of things and phenomena. Its ultimate 
goal is to infer from those observations laws that express the phenomena of the physical 
world in the simplest and most general terms. The language of mathematics is ideally suited 
for expressing those laws. The allowed types of properties are called “physical quantities”.

Physical quantities are of two types: base quantities and derived quantities. The base 
quantities form a complete set of derived quantities that may be introduced as necessary. The 
base and derived quantities together provide a rational basis for describing and analysing the 
physical world in quantitative terms.

A base quantity is defined by specifying two physical operations:
1.	 A comparison operation for determining whether two samples A and B of the property are 

equal (A=B) or unequal (A≠B);
2.	A n addition operation that defines what is meant by the sum C=A+B of two samples of 

the property.
Base quantities with the same comparison and addition operations are of the same kind. 

The addition operation A+B defines a physical quantity C of the same kind as the quantities 
being added. All physical quantities are properties of physical things, events, processes, or 
phenomena.

The comparison and addition operations are physical, but they are required to have 
certain properties that mimic those of the corresponding mathematical operations for pure 
numbers [35]:
1.	T he comparison operation must obey the identity law (if A=B and B=C, then A=C);
2.	T he addition operation must be commutative (A+B=B+A), associative [A+(B+C)= 

=(A+B)+C], and unique (if A+B=C, there exists no finite D such that A+B+D=C).
The two operations together define, in entirely physical terms:

1.	T he concept of larger and smaller for like quantities (if there exists a finite B such that 
A+B=C, then C>A);

2.	S ubtraction of like quantities (if A+B=C, then A≡C-B);
3.	M ultiplication of a physical quantity by a pure number (if B=A+A+A, then B≡3A);
4.	D ivision of a physical quantity by a pure number (if A=B+B+B, then B≡A/3).

A base quantity is thus a property for which the following mathematical operations are 
defined in physical terms: comparison, addition, subtraction, multiplication by a pure number, 
and division by a pure number. Each of these operations is performed on physical properties 
of the same kind and yields a physical property of that kind, and each physical operation 
obeys the same rules as the corresponding mathematical operation for pure numbers.
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It is important to note that mathematical operations other than the ones listed above are 
not defined in physical terms. Products, ratios, powers, and exponential and other functions 
such as trigonometric functions and logarithms are defined for numbers, but have no physical 
correspondence in operations involving actual physical quantities.

2.3. Measure unit, dimension and numerical value

The two operations that define a base quantity make it possible to express any such 
quantity as a multiple of a standard sample of its own kind, i.e. a unit of measure or simply – 
a unit. The standard sample – the unit – may be chosen arbitrarily.

The measuring process consists of physically adding replicas of the unit and fractions 
thereof until the sum equals the quantity being measured. A count of the number of whole 
and fractional units required yields the numerical value of the quantity being measured. If 
a is the unit chosen for quantities of type A, the process of measurement yields a numerical 
value A Aa=



 (a number) such that:

	 A Aa=


	 (2.1)

In further considerations the unit of measure a will be called the dimension of the quantity 
A and will be described as:

	 [ ]a A= ;      [ ]A A A=


	 (2.2)

The numerical value of a base quantity depends on the choice of unit. A physical quantity 
exists independently of the choice of unit. A quantity A can be measured in terms of a unit a 
or in terms of another unit a’, but the quantity itself remains physically the same, that is:

	 [ ] [ ]A Aa A A A a A A′ ′= = = ′ = ′
   

	 (2.3)

If the unit [A’] is times larger than [A]:

	 [ ] [ ],A N A′ =


	 (2.4)

it follows from equation (2.3) that:

	 1 .A N A−′ =
  

	 (2.5)

If the size of a base quantity’s unit is changed by a factor N


, the quantity’s numerical 
value changes by a factor 1N − .

The ratio of the numerical values of any two base quantities of the same kind is independent 
of base unit size.

Note also that when base quantities of the same kind are added physically (A+B=C), 
the numerical values satisfy an equation of the same form as the physical quantity equation 
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(A+B=C), regardless of the size of the chosen unit. In other words, the numerical value 
equation mimics the physical equation, and its form is independent of the unit’s size.

2.4. Fundamental measure unit base

Set of k base quantities {A}={A1, …, Ak} which are one dimensionally independent, i.e. 
none of its members has a dimension that can be expressed in terms of the dimensions of the 
remaining members, and which are sufficient and complete to describe the dimensions all 
other quantities involving in describing a respective object, event or physical phenomenon, 
is called fundamental measure unit base or shortly fundamental unit base. For example in 
mechanics such a base contains three base quantities: L – length, M – mass, T – time. In 
thermomechanics problems another base quantity appears, i.e. τ – temperature. 

2.5. Derived quantities, their dimensions and dimensionless quantities

Describing physical things, events or phenomena quantitatively, we refer to numerical 
values of base quantities and also introduce numbers derived by inserting these values into 
certain mathematical formulas, expressions, relationships, etc. 

Derived quantities by definition are those quantities which satisfy the following rules:
1.	A n arbitrary derived quantity Q can be presented in a form:

	 [ ]Q Q Q=


	 (2.6)

where Q


 is the numerical value of the Q and [Q] is the dimension of the Q.
2.	N umerical values of derived quantities are defined by respective mathematical formulas, 

expressions, relationships, etc. containing mathematical operators such as: algebraic op-
erators, functional operators, derivative operators, integral operators, operators like: lim, 
∑, etc., in which numerical values of base quantities appear.

3.	N umerical values of derived quantities can be presented in a power-low form:

	 1
1

Q Qk
kQ qA Aα α= … 	 (2.7)

where 1
1

Q Qk
kQ qA Aα α= … is a dimensionless quantity (number) and powers: αQ1, …, αQk are real numbers, 

whose values distinguish one type of derived quantity from another. All monomial derived 
quantities have this power-law form; no other form represents a physical quantity.
4.	T he dimension [Q] of the derived quantity Q mimics the mathematical formula for the 

numerical value of the quantity Q omitting the number 1
1

Q Qk
kQ qA Aα α= …, i.e. 

	 [ ] [ ] [ ]1

1 .Q Qk

kQ A Aα α= … 	 (2.8)
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5.	T he derived quantity Q is defined in terms of the numerical value Q which depends on the 
choice of base units. 
Whether applied to a base or derived quantity, the dimension is simply a formulaic 

indication of how the quantity’s numerical value transforms when the sizes of the base units 
are changed. A derived quantity’s dimension follows from its defining equation. We simply 
substitute for each base quantity the symbol for its dimension, omit the numerical coefficient 

1
1

Q Qk
kQ qA Aα α= … and obtain the equation by algebra. Thus, a quantity’s dimension depends on the choice of 

the system of units. 
Base quantities have a transparently physical origin, which gives rise to the fact that the 

ratio of any two samples of a base quantity remains constant when the base unit size is changed. 
Bridgman [4] postulated that this is in fact a defining attribute of all physical quantities, both 
base and derived quantities. This is Bridgman’s principle of absolute significance of relative 
magnitude: A number Q, obtained by inserting the numerical values of base quantities into 
a formula, is a physical quantity if the ratio of any two samples of it remains constant when 
base unit sizes are changed. 

Bridgman went on to show [4] (see also the proof by Barenblatt [1] and others [32, 38]) that 
a monomial formula satisfies the principle of absolute significance of relative magnitude. 

Some important points about derived quantities can be listed as follows [35]:
1.	T he dimension of any derived physical quantity is a product of powers of the base quan-

tity dimensions.
2.	S ums of derived quantities with the same dimension are derived quantities of the same 

dimension. Products and ratios of derived quantities are also derived quantities with di-
mensions which are usually different from the original quantities.

3.	A ll derived quantities with the same dimension change their values by the same factor 
when the sizes of the base units are changed.

4.	A  derived quantity is dimensionless if its numerical value remains invariant when the 
base units are changed. An example is Vt/L, where V = dx/dt is a velocity, t is a time and 
L is a length. The dimension of a dimensionless quantity is unity, the factor by which the 
quantity’s numerical value changes when base unit sizes are changed.

5.	S pecial functions (logarithmic, exponential, trigonometric, etc.) of dimensional derived 
quantities are in general not derived quantities because their values do not in general 
transform like derived quantities when base unit size changes. Only when the arguments 
of these functions are dimensionless are the values of the functions remain invariant when 
units changed. Special functions with dimensionless arguments are therefore derived 
quantities with dimension unity.

2.6. System of units

A system of units is defined by:
1.	A  complete set of base quantities with their defining comparison and addition operations;
2.	T he base units;
3.	A ll relevant derived quantities, expressed in terms of their defining equations.

The set of derived quantities is open-ended; new ones may be introduced in some new 
problems and analyses.
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Systems of units are said to be of the same type if they differ only in the magnitudes 
of the base units. In the SI system (Système International) there are six base quantities 
(Tab.  1): length, time, mass, temperature, current, number of elementary particles, and 
luminous intensity. The units of length, time and mass are the metre (m), the second (s) and 
the kilogram (kg), respectively. Force is considered a derived quantity by writing Newton’s 
law as F = ma.

Also sometimes included among the base quantities are two dimensionless quantities, 
plane angle and solid angle, which are measured in radians and steradians, respectively. We 
consider them derived quantities because, though dimensionless, they are defined in terms of 
operations involving length, much like area is defined in terms of length operations. The SI 
system of units – derived quantities (incomplete set) is given in Tab. 2.

T a b l e  1

 The SI system of units – base quantities (complete set)

Quantity SI name SI Symbol
length, L metre M
time, t second S
mass, M kilogram kg
temperature, T Kelvin K
current, I ampere A
number of elementary particles Mole mol
luminous intensity candela cd

T a b l e  2

 The SI system of units – derived quantities (incomplete set)

Quantity Defining equation/law Dimension Dimensional Symbol Name
area A = ∫dxdy L2 m2 ---
volume V = ∫dxdydz L3 m3 ---
frequency f = 1/τ t-1 s-1 hertz (Hz)
velocity v = dx/dt Lt-1 ms-1 ---
acceleration a = d2x/dt2 Lt-2 ms-2 ---
density ρ = M/V ML-3 kgm-3 ---
force F = Ma MLt-2 kgms-2 newton (N)
stress/pressure p = F/A ML-1t-2 Nm-2=kgm-1s-2 pascal (Pa)
work/energy W = ∫Fdx ML2t-2 Nm=kgm2s-2 joule (J)
torque T = Fl ML2t-2 Nm=kgm2s-2 ---
power dW/dt ML2t-3 Js-1=kgm2s-3 watt (W)
charge Q = ∫1dt It As coulomb (C)
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It is important to point out that the dimension of a derived quantity depends on the choice 
of system of units, which is under the control of the observer and has nothing to do with the 
quantity’s intrinsic nature. Indeed, quantities with quite different physical meaning, like work 
and torque, can have the same dimension.

2.7. Physical quantities dimensionally dependent and independent.  
Derived dimensional base

All physical quantities have dimensions which can be expressed as products of powers 
of the set of base dimensions. Alternatively, it is possible to express the dimension of one 
quantity as a product of powers of the dimensions of other quantities which are not necessarily 
base quantities.

Let us consider a set of physically independent dimensional variables {Q1,…,Qi,…,Qn}; 
i = 1,2,…,n. The variables Qi are independent if the numerical value of each member can 
be adjusted arbitrarily without affecting the numerical value of any other member. This set 
is put in order in such a way that it is possible to pick out from the physically independent 
variables Q1,…,Qn a dimensionally independent and complete subset {Q1,…,Qk}, i.e. one 
which satisfies the following features:
1.	T he dimensions of this subset contain dimensions of the fundamental units base  

{A1,…,Ak}.
2.	T he size (k) of the subset {Q1,…,Qk} is the same as the size of the fundamental base 

{A1,…,Ak}.
3.	N one of its members has a dimension that can be expressed as product of powers of di-

mensions of the remaining members.
4.	D imensions of all the remaining members i.e. Qk+1,…,Qn can be expressed as product of 

powers of dimensions of the subset members i.e. Q1,…,Qk. Such a subset {Q1,…,Qk} will 
be called the derived dimensional base of the set {Q1,…,Qn}.
It can be proven that for the set {Q1,…,Qn} such a derived dimensional base exists and in 

general there is more than one derived dimensional base for the initial set {Q1,…,Qn}. 

2.8. Physical relationships. Dimensional homogeneity

Science is concerned only with expressing physical relationships between quantities 
characterizing different phenomena. In quantitative analysis of physical phenomena (objects, 
events, processes) one seeks mathematical relationships (expressions, functions, equations, 
inequalities) between the numerical values of the physical quantities that describe the 
phenomenon. 

Nature is indifferent to the arbitrary choices of base units. So, we are interested only in 
numerical relationships that remain true independent of base unit size.

This puts certain constraints on the allowable form of physical relationships. In other words, 
a physical relationships must be dimensionally homogeneous. Dimensional homogeneity 
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imposes the following constraints on any mathematical representation of a relationship:
1.	B oth sides of the relationship must have the same dimension;
2.	W herever a sum of quantities appears in relationship, all the terms in the sum must have 

the same dimension;
3.	A ll arguments of any exponential, logarithmic, trigonometric or other special functions 

that appear in functions must be dimensionless.
For example, if physical equation is represented by:

	 ( ) ( )1 2
10sin log ,C D D HA Be F t G

E J
− +  = − + Ω +ϕ +  

 
	 (2.9)

C must be dimensionless, D1 and D2 must have the same dimension, A, B, D/E ,F and G 
must have the same dimension, (Ωt+φ) and H/J must be dimensionless.

An important consequence of dimensional homogeneity is that the forms of a physical 
relationships are independent of the size of the base units.

Every correct physical function, equation, inequality – that is, every relationship that 
expresses a physically significant dependence between numerical values of physical quantities 
– must be dimensionally homogeneous. 

2.9. Recapitulation

The most important inferences, conclusions and statements of the considerations presented 
in p. 2 can be formulated as follows [35]:
1.	A  base quantity is a property that is defined in physical terms by two operations: a com-

parison operation, and an addition operation.
2.	B ase quantities are properties for which the following concepts are defined in terms of 

physical operations: equality, addition, subtraction, multiplication by a pure number, and 
division by a pure number. Not defined in terms of physical operations are: product, ratio, 
power, and logarithmic, exponential, trigonometric and other special functions of physi-
cal quantities.

3.	A  base quantity can be measured in terms of an arbitrarily chosen unit of its own kind and 
a numerical value.

4.	A  derived quantity is defined in terms of numerical value (which depends on base unit 
size) and dimension. Both are defined by power-law formula (2.7) and (2.8).

5.	T he same quantity (e.g. force) may have different dimensions in different systems of 
units, and quantities that are clearly physically different (e.g. work and torque) may have 
the same dimension.

6.	R elationships between physical quantities may be represented by mathematical relation-
ships between their numerical values. A mathematical expression, function, equation, in-
equality etc. that correctly describes a physical relationship between quantities is dimen-
sionally homogeneous.

7.	A  system of units is defined by (a) the base quantities, (b) their units, and (c) the derived 
quantities. Both the type and the number of base quantities are open to choice.
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3. Fundamental principles of dimensional analysis and model similarity  
of physical phenomena

These fundamental principles are listed below:
1.	R eal or postulated physical laws which are used in descriptions of physical phenomena 

should be objective, i.e. independent of the system of units adopted. It must be possible 
to transform a dimensional set of physical dependencies and then mathematical relation-
ships (functions, formulas, expressions, equations, inequalities, etc.) which describe any 
physical phenomenon (more precisely – physical model and then mathematical model of 
that phenomenon) into a dimensionless form, in which the form does not depend on the 
system of units. Among all dimensional quantities characterizing some physical phenom-
enon it must be possible to create dimensionless quantities which appear in such relation-
ships. This also concerns all mathematical operators which appear in these relationships. 
Moreover, dimensionless relationships describing some physical phenomenon must sat-
isfy the principle of dimensional homogeneity too – as was pointed out previously. 

2.	T wo physical phenomena are similar if:
●	T he structure of the relationships and mathematical operators used that describe these 

phenomena are similar;
●	D imensionless form of relationships describing these phenomena is similar.
3.	T wo types of similarity phenomena are distinguished:
●	S imilarity of analogy type similarity, where two phenomena have different physical na-

tures (e.g. mechanical and electrical oscillations one degree of freedom systems presented 
in Fig. 1.)

●	S imilarity of model type similarity, where two physical phenomena have a similar physi-
cal nature but they are different with respect to the scale of this phenomenon (e.g. phe-
nomenon in the natural scale and a phenomenon model in a smaller scale, but scales of 
particular physical quantities characterizing this phenomena can be different). In further 
considerations the second case will be considered, i.e. model similarity. 

a) b)

Fig. 1. One degree of freedom mechanical system (a) and its electrical analogy (b)
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4.	I n dimensionless form relationships describing a given physical phenomenon at the natu-
ral scale (N) and the model scale (smaller) (M) appear dimensionless numbers dependent 
on the particular physical quantities characterizing that phenomenon and its scale. In 
general, the values of these numbers at the natural scale and the model scale are different. 
To make the phenomena similar, these numbers at the natural and model scales should 
be equal to each other. These are the model similarity criteria of both phenomena. The 
numbers are called similarity numbers. Their quotient – respectively at the natural and 
model scales should be equal to one. Hence, similarity criteria (or relationships) can be 
determined for the scales of different physical quantities characterizing a given physical 
phenomenon.

5.	T here is usually a cause and effect nature of physical phenomena. In this case, among all 
the dimensional and dimensionless physical quantities, characterizing a given cause and 
effect physical phenomenon, it is always possible to separate physical quantities con-
nected with input – IN (action on system), system – O (material object), and output – OU 
(response of system, reaction of system). Then, physical phenomena can be described and 
analysed using terminology, notions, concepts and block diagrams of systems analysis 
treating physical phenomena as input/output physical systems. In the case of compound 
systems, there are in general several inputs, objects and outputs.
The essence of model investigations is to determine from the measurements dimensionless 

quantities of output (OU) at given quantities of input (IN) and system (O) and with criteria 
satisfying total or partial similarity. The numerical values of dimensionless output quantities 
obtained can then be transferred to the real system (natural scale) as the resulting similarity 
criteria numbers. 

4. Buckingham’s Π-theorem of dimensional analysis and theory of similarity

4.1. The steps of dimensional analysis and Buckingham’s Π-theorem

The form of any physically significant function, equation, or inequality must be such 
that the relationship between the actual physical quantities remains valid independent of 
the magnitudes of the base units. Dimensional analysis derives the logical consequences of 
this premise. Buckingham’s Π-theorem, which follows from dimensional analysis, can be 
performed using the four steps of dimensional analysis presented below [35].

Suppose we are interested in some particular physical quantity Q0 that is a “dependent 
variable” in a well-defined physical process or event. By this we mean that, once all the 
quantities that define the particular process or event are specified, the value of Q0 follows 
uniquely.

Step 1: The independent variables
The first and most important step in dimensional analysis is to identify a complete set of 

independent quantities Q1...Qn that determine the value of Q0:

	 ( )0 1, 2, , nQ f Q Q Q= … 	 (4.1)
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Starting with the correct set Q1...Qn is as important in dimensional analysis as it is 
in mathematical physics to start with the correct fundamental equations and boundary 
conditions.

The relationship expressed symbolically in equation (4.1) is the result of the physical 
laws that govern the phenomenon of interest.

Step 2: Dimensional considerations
Next we list the dimensions of the dependent variable Q0 and the independent variables 

Q1...Qn. We must specify at least the type of the system of units before we do this. For example, 
in a purely mechanical problem, all quantities have dimensions of the form:

	 [ ] [ ] [ ] [ ] ;  0,1, 2, , ,i i il m t
iQ L M T i n= = … 	 (4.2)

where the exponents li, mi and ti are dimensionless numbers that follow from each quantity’s 
definition.

We now pick from the complete set of physically independent variables Q1...Qn a complete, 
dimensionally independent subset Q1...Qk (k ≤ n), and express the dimension of each of the 
remaining independent variables Qk+1...Qn and the dependent variable Q0 as a product of the 
powers of Q1...Qk. 

Since equation (4.1) is dimensionally homogeneous, the dimension of the dependent 
variable Q0 is also expressible in terms of the dimensions of Q1...Qk.

The dimensionally independent subset Q1...Qk may be selected in different ways, but the 
number k of dimensionally independent quantities in the full set Q1...Qn is unique to the set 
and cannot exceed the number of base dimensions which appear in the dimensions of the 
quantities in that set. For example, if the dimensions of Q1...Qn involve only length, mass, 
and time, then k ≤ 3.

Having chosen a complete, dimensionally independent subset Q1...Qk, we express the 
dimensions of Q0 and the remaining quantities Qk+1...Qn in terms of the dimensions of Q1...Qk. 
These will have the form:

	 [ ] [ ] [ ]1 2

1 2 ,j j jk

j kQ Q Q Qα α α  = …  	 (4.3)

if j > k or j = 0. The exponents are dimensionless real numbers and l = 1,2,…,k.
Let us take Q1, Q2, and Q3 as the complete dimensionally independent subset. Equating the 

dimension given by equation (4.2) with that of equation (4.3), we obtain three equations:

	
3 3 3

1 1 1

 j jl l j jl l j jl l
l l l

l l m m t t
= = =

= α = α = α∑ ∑ ∑ 	 (4.4)

which can be solved for the three unknowns αj1, αj2, and αj3. 
Step 3: Dimensionless variables
We now define dimensionless forms of the n-k remaining independent variables by 

dividing each one with the product of the powers of Q1...Qk which has the same dimension:

	
1 2

1 2
j j jk

j
j

k

Q

Q Q Qα α α=
+ …

Π


	 (4.5)

where j = k+1,…,n, and a dimensionless form of the dependent variable Q0:
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01 02 0

0
0

1 2
k

k

Q
Q Q Qα α α=

+ …
Π


	 (4.6)

Step 4: The end game and Buckingham’s Π–theorem
An alternative form of equation (4.1) is: 

	 ( )*
0 1 2 1 2, , , ; , , , k k k nf Q Q Q + += …Π Π Π…Π
   

	 (4.7)

in which all quantities are dimensionless except Q1...Qk. The values of the dimensionless 
quantities are independent of the sizes of the base units. The values of Q1...Qk, on the other 
hand, do depend on base unit size. They cannot be put in dimensionless form since they are (by 
definition) dimensionally independent of each other. From the principle that any physically 
meaningful relationships (i.e. the function in the case analysed) must be dimensionally 
homogeneous, that is, valid independent of the sizes of the base units, it follows that Q1...Qk 
must in fact be absent from equation (4.7), that is:

	 ( ) ( )0 1 2 1 21,1 , ,1 ; , , , , , , k k n k k nf f+ + + +=Π Π Π … = …Π Π Π… Π
      

 

	 (4.8)

This equation is the final result of the dimensional analysis, and is the base of Buckingham’s 
Π-theorem:

When a complete relationship between dimensional physical quantities is expressed in 
dimensionless form, the number of independent quantities that appear in it is reduced from the 
original n to n-k, where k is the number of the dimensional base size, which reduces the number 
of independent quantities in the problem by k and simplifies the problem enormously.

The Π-theorem itself merely tells us the number of dimensionless quantities that affect 
the value of a particular dimensionless dependent variable. It does not tell us the forms of the 
dimensionless variables. That form has to be discovered by experimentation or by solving the 
problem theoretically knowing the mathematical model of the problem. 

Dimensionless numbers jΠ


; j=k+1, k+2,…,n are independent of the system of units 
and constitute specified similarity criteria (similarity criteria numbers) of a given physical 
phenomenon with other similar to its physical phenomenon. In the case of two phenomena I 
and II of different physical nature but similar in terms of analogy type similarity: I II

j j=Π Π
 

. 
In the case of two physical phenomena of the same physical nature but of two scales: real (N) 
and model (M), similar in terms of model similarity: N M

j jΠ = Π
 

.
In the case when an initial functional relationship is performed in a form of implicit 

function, i.e.:

	 F(Q0, Q1,...,Qn) = 0	 (4.9)

where respective dimension quantities Q0, Q1,…,QN are quantities dependent or independent 
of each other, the successive steps of dimensional analysis leading to the theorem Π are 
similar as before and final result is as follows:

	 ( )0 1, , 0n kF −… =Π Π Π
  

	 (4.10)
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4.2. The second method of reaching Buckingham’s Π-theorem

There are n dimensional physical quantities: Q1, Q2, …, Qn; some of these may be dependent 
on others. Furthermore, there is a functional relationship between these quantities:

	 F(Q1, Q2,...,Qn) = 0	 (4.11)

Moreover, one may consider the basic dimensional base of the physical phenomenon 
described by relationship (4.11) i.e. {A1,A2,…,Ak). Dimension of any dimensional quantity Qi; 
i = 1,2,…,n can be performed as a product of the powers of base quantities Al, l = 1,2,…,k as: 

	 [ ] [ ] [ ] [ ]11 21 1

1 1 2
k

kQ A A A= ¼  

	 [ ] [ ] [ ] [ ]12 22 2

2 1 2
k

kQ A A A= ¼  		
	 ...

	 [ ] [ ] [ ] [ ]1 2

1 2
n n kn

n kQ A A A= ¼  	 (4.12)

The basic issue can be formulated as follows: are there any dimensionless expressions in 
the form:

	 1 2
1 2 ,kqq q

kQ Q QΠ = …


	 (4.13)

where q1, q2, …, qk – real numbers, and how many such numbers Π


 are there in the particular 
case? Since: 

      [ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ]( )1
11 21 1 1 20 0 0

1 2 1 2 1 2

n
k n n kn

q q

k k kA A A A A A A A Aα α α α α α Π = … == … … … 


	(4.14)

hence, by comparing the exponents of base quantities, it can be obtained: 

	

11 1 12 2 1

21 2 22 2 2

1 1 2 2

0
0

0

n n

n n

k k kn n

q q q
q q q

q q q

α +α +…+α =
α +α +…+α =

α +α +…+α =


	 (4.15)

This is a homogeneous system of linear equations consisting of k equations of n 
unknowns.

The question of the system’s solvability comes down thereby to the question of rank of 
the following dimensional matrix:

Q1 Q2 … Qn

A1 α11 α12 … α1n

A2 α21 α22 … α2n

… … … … …
Ak αk1 αk2 … αkn
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As we know, the rank of a matrix is expressed as r if it consists of one determinant 
different from zero of the rank r at least, while the other determinants of higher order are 
zeros. So, it is correct to use the theorem from linear algebra to the relationships (4.15): 
homogeneous, linear set of equations with n unknowns, whose matrix has coefficient of rank 
r, have exactly n-r independent solutions. With respect to our basic problem of dimensional 
analysis it looks as follows (Buckingham’s Π-theorem): There are n quantities Q1, Q2, …, Qn 
and a dependence (4.11) between them. Thus, there exist exactly n-r dimensionless quantities 
Π


, wherein the rank of dimensional matrix is r ≤ m ≤ n. Dependence: ( )1 2, , , 0n rF −Π =Π Π…
  

 
is the solution of this issue.

4.3. The third (original) method of reaching Buckingham’s Π-theorem

For dependent and independent dimensional quantities Q1,Q2,…Qn appearing in the 
functional relationship F(Q1,Q2,…Qn) = 0 it dimensionless quantities Qref,1, Qref,2,…,Qref,n can 
be created, assuming for each of these quantities Qi, i = 1,2…n some reference quantities Qref,i 
in the following way:

	 ,
,

i
ref i

ref i

Q
Q

Q =


	 (4.16)

And then the starting functional relationship can be performed in such a form: 

	 ( ),1 ,1 ,2 ,2 , ,, , , 0ref ref ref ref ref n ref nF Q Q QQ Q Q… =
  

	 (4.17)

where , ,ref i ref iQQ


quantities are ordered in such a way that among the first few k quantities 
Qref,l, l=1,2,…,k it is possible to create the complete dimensional base of the problem. Thus, 
the dimensions of the other quantities Qrej,j, j=k+1, k+2, …, n (there is number n-k of them) 
can be performed in such a form:

	
,1 ,2 ,

, ,1 ,2 ,
ref j ref j ref kj

ref j ref ref ref kQ Q Q Q
α α α

       = …        	 (4.18)

Hence, the following dimensionless quantities (numbers) 
,

*
ref jQΠ



 and 
,

:
ref jQΠ



can be defined: 

	
, ,1 ,2 ,

,*

,1 ,2 ,
ref j ref j ref j ref kj

ref j
Q

ref ref ref k

Q

Q Q Qα α α=Π
…



	 (4.19)

	 	 (4.20)

Then function (4.17) can also be written in another form, namely:

	 { }{ }{ }( )*
, , ,, , ; , , ; , , 0ref l ref l Qref jF Q Q… … … … … Π … =



 

	 1, 2, , ; 1, ,l k j k n= … = + … 	 (4.21)
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Since the physical laws and all the other relationships connected with them should be 
objective, they must be able to be written in dimensionless form in which dimensional 
quantities ,ref lQ do not exist as they are dependent on a choice of measure unit system. This 
form is presented below:

	 { }{ }{ }( ), , ,, , ; ,1 , ; , , 0ref l ref l Qref jF Q… … … … … Π … =
 

	 (4.22)

If we change the scale of quantities: Qi, i.e.:

	 , , ,

, , ,

M M MM
ref i ref i ref ii

QiN N N N
i ref i ref i ref i

QQ QQ
k

Q Q QQ
= = =






	 (4.23)

dimensionless quantities ,ref iQ


 do not change (i.e. , , M N
ref i ref iQ Q=
 

). Dimensionless quantities 
,Qref jΠ



 are or may be changed. And actually they represent model similarity criteria of two 
phenomena of similar nature but in two different scales. 

Relationship (4.22) can be written shorter:

	 { }{ }( ), ,, , ; , , 0ref l Qref jF Q… … … Π … =
 

	 (4.24)

Numbers ,ref lQ


 are in a specific case known numbers (constants) whereas variable 
dimensionless quantities (dependent or independent) of a specific case (physical phenomenon, 
process) are dimensionless numbers ,Qref jΠ



.
In some special case, when ,ref l lQ Q= , , 1ref lQ =



, the form of the relationship (4.24) takes 
an analogous form as in first case of deriving the theorem Π.

5. Model similarity scales of physical phenomena

From dimensional analysis one can also derived certain general relationships, which 
can be compiled in the case of scales of physical quantities characterizing some physical 
phenomenon. Therefore, if a set of these physical quantities is denoted as (Qp, Qq, Qr; 
Q1,Q2,…,Qn), where (Qp,Qq,Qr) form dimensional base of phenomenon, i.e. dimensionally 
independent quantities, which contain dimensions of basic base M, Land T (e.g. in mechanical 
problems), the following relationships can be written:

	 [ ] [ ]1 1 1

1 p q rQ Q Q Q
α β γ   =           [ ] [ ]n n n

n p q rQ Q Q Q
α β γ   =     	 (5.1)

	
1 1 1

1 1
1 1 n n nM N

p q r p q rM N

Q Q
Q Q Q Q Q Qα β γ α β γ

  
= Π = Π =      

   

 

	
n n n n n n

n n
nM nN

p q r p q rM N

Q Q
Q Q Q Q Q Qα β γ α β γ

   
= Π = Π =      

   

 

	 (5.2)



257

or

( )
( )

1 1 1

1 1 1

1 1 1 1

1

1
p q r

p q rM M
Q Q Q Q

N p q r N

Q Q QQ k k k k
Q Q Q Q

α β γ

α β γ

α β γ
= = =
   

   
( )
( )

n n n

n n n

n p q rn n n

p q rnM M
Q Q Q Q

nN p q r N

Q Q QQ
k k k k

Q Q Q Q

α β γ

α β γ
α β γ

= = =
   

	 (5.3)

where: , ,  Qp Qq Qrk k k
  

- scales of dimensional base quantities; 1,Q Qnk k…
 

– scales of the other 
dimensional dependent quantities.

Therefore, it is assumed that the dimensional base of some issue represent the following 
quantities: velocity v, length L and density ρ (or also reference quantities vo, Lo, ρo), then, 
transferring the results of measurements obtained from the model to the object in the natural 
scale, the following relations between scales of dimensional base , ,Lvk k kρ

  

 and the scales of 
the other physical quantities characterizing that phenomenon should be used:
●	 the scale of actions pk



:

	 [P]=[v]2[L]2[ρ]1; 2 2
p v Lk k k kρ=
   

	 (5.4)

●	 the scale of pressures (stresses) 2
p vk k kρ=
  

:

	 [p]=[P]1[L]-2; 2
p vk k kρ=
  

	 (5.5)

●	 the scale of time tk


:

	 [t]=[v]-1[L]1; 1
vt Lkkk −=

 

	 (5.6)

●	 the scale of frequency fk


:

	 [f]=[v]1[L]-1; 11 /f t v Lk k k k −= =
   

	 (5.7)

●	 the scale of mass density per unit length of element 2
m Lk k kρ=
  

:

	 [m]=[L]2[ρ]1; 2
m Lk k kρ=
  

	 (5.8)

●	 the scale of moment of mass inertia density per unit length of element mbk


:

	 [mb]=[L]4[ρ]1; 4
Lmbk k kρ=

  

	 (5.9)

●	 the scale of longitudinal rigidity 2 2
EA v Lk k k kρ=
   

, flexural rigidity 2 4
EI v Lk k k kρ=
   

 and torsional rigidity 2 4
GIs v L EIk k k k kρ= =
    

: 

	 [EA]=[v]2[L]2[ρ];  2 2
EA v Lk k k kρ=
   

	 (5.10)

	 [EI]=[v]2[L]4[ρ];  2 4
EI v Lk k k kρ=
   

	 (5.11)

	 [GIs]=[v]2[L]4[ρ];  2 4
GIs v L EIk k k k kρ= =
    

	 (5.12)
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6. Original generalized theorems Π of dimensional analysis and model similarity  
of physical phenomena

Let a given physical phenomenon (process, event) describe different physical/ 
mathematical relationships, and these relationships contain the following set of all physical 
quantities characteristic of this phenomenon:

	 { } { } { }{ }{ }{ },, , ; , , ; , , ; , ,i QS Q C Cα β γ= … … … Π … … … … …




	 (6.1)

where the subscripts: i = 1,2,…n; α = 1,2,…,Nα; β = 1,2,…Nβ; γ = 1,2,…Nγ

The set {S} contains the following subsets:
●	 {…,Qi,…} – subset of dimensional quantities, which can be independent variables, de-

pendent variables or parameters;
●	 {…,ΠQ,α,…} – subset of dimensionless quantities, which can also be independent vari-

ables, dependent variables or parameters;
●	 {…,Cβ,…} – subset of constant dimensional quantities;
●	 {… , }Cγ …



, – subset of constant dimensionless quantities (i.e. subset containing constant 
numbers).
Quantities Qi, Π



Q,α and Cβ depend on the physical phenomenon scale (may take different 
values at the natural scale and at the model scale).

For all of dimensional quantities Qi and Cβ of the problem analysed some reference 
quantities are assumed:

	 , ,i ref i ref iQ QQ=


    , ,ref refC C Cβ β β=


	 (6.2)

Further we may assume that Cβ = Cref,β, so , ,ref refC C Cβ β β=


 = 1. Let the physical/mathematical model 
of the physical phenomenon analysed describe a set of relationships comprising the functional 
operators F(…), equation operators E(…) and inequality operators I(…) of the form:

	 { } { } { } { }( ),, , ; , , ; , , ; , , ;  1, 2,p i Q p pp pp p
F Q C O p NCα β γ… … … … … … … = =Π … …




	(6.3)

	 { } { } { } { }( ),, , ; , , ; , , ; , , ;  1, 2,q i Q q qq qq q
E Q C O q NCα β γ… … … … … … … = =Π … …




	 (6.4)

   { } { } { } { }( ),, , ; , , ; , , ; , ,  or ;  1, 2,r i Q r r rr rr r
I Q C O O rC Nα β γ… … … … … … … … ≤ ≥ =Π …




	(6.5)

where {S}p, {S}q,{S}r denote respective p, q, r subsets of the initial set {S}.
Assuming for dimensional quantities Qi and Cβ a dimensional base {Qref,1, Qref,2, …, Qref,k} = 

= {…, Qref,l,…}; l = 1,2,…,k which is made from chosen dimensional quantities Qref,i of the set 
{…, Qref,i, …}, the following dimensionless quantities can be defined (com. p. 4.3):

	 ,
, , ,1 ,2 ,

,1 ,2 ,

; ref j
Qref j ref j ref j ref j ref kj

ref ref ref k

Q
Q

Q Q Qα α α=
…

Π




	 (6.6)

	  1, 2, , ; j k k n n k j= + + … = +
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	 , ,1 ,2 ,
,1 ,2 ,

Cref ref ref ref k
ref ref ref k

C
Q Q Q

β
β α β α β α β=

…
Π


	 (6.7)

Taking into account the basic principles of dimensional analysis and theory of similarity of 
physical phenomena presented previously (i.e. the principle of dimensional homogeneity and 
the objectivity of physical phenomena, that is, independence from mathematical relationships 
describing these phenomena in the unit system), the dimensional dependences (6.3), (6.4) 
and (6.5) constituting the physical/mathematical model of the given physical phenomenon, 
can be brought into the following dimensionless form:

  { } { } { } { } { }( ), , , ,, , ; , , , , ; , , ; , , 0;p ref l Qref j Q Cref pp p pp p
QF Cα β γΠ Π… … … … … … … … …Π … =

  




	(6.8)

  { } { } { } { } { }( ), , , ,, , ; , , , , ; , , ; , , 0;q ref l Qref j Q Cref qq q qq q
Q CE α β γΠ Π… … … … … … … … …Π … =


 

 

	(6.9)

  { } { } { } { } { }( ), , , ,, , ; , , ; , , ; , , ; , , 0r ref l Qref j Q Cref rr r rr r
Q CI α β γΠ Π… … … … … … … … …Π … =

   

	 (6.10)

Changing the scale of the physical phenomenon, the values of numerical quantities ,  ref lQ


and Cγ



do not change. All the other dimensionless quantities Π, i.e. ,Qref jΠ


, ,Q αΠ


 and ,Cref βΠ


depend on the scale of the given physical phenomenon. 
Taking into account the above considerations, generalized Π-theorems of dimensional 

analysis and physical phenomena model similarity can be formulated as follows:
1.	 A physical/mathematical model of some physical phenomenon can be described by 

a  system of independent mathematical relationships in dimensionless form containing 
dimensionless mathematical operators of functions: ( )pF …



, equations ( )qE …


, in-
equalities ( )rI …



and dimensionless quantities characterizing this phenomenon: ,  ref lQ


, 
,Qref jΠ



, , Q αΠ


, ,Cref βΠ


, Cγ



: l = 1,2,…,k; j = k+1, k+2,…n; α = 1,2,…,Nα; β = 1,2,…,Nβ;  
γ = 1,2,…,Nγ. Dimensionless quantities ,  ref lQ



, Cγ



are numbers independent on a scale 
of some physical phenomenon, whereas dimensionless quantities ,Qref jΠ



, ,Q αΠ


, ,Cref βΠ


are numbers dependent on the scale of this phenomenon. The dimensionless quantities 
,Qref jΠ



 and ,Cref βΠ


 connected with the dimensional quantities of physical phenomenon 
Qj and Cβ are k less than all the dimensional quantities Qi and Cβ, where k is the number 
of elements of the dimensional base of the physical phenomenon.

2.	T wo phenomena with similar physical nature performed on different scales (e.g. natural 
scale N and model scale M) are similar if the set of relationships describing the physical/
mathematical model of this phenomenon in dimensionless form (6.8), (6.9), (6.10) is the 
same. The numbers ,Qref jΠ



, , Q αΠ


, , Cref βΠ


 dependent on the scale of the phenomenon are 
similarity numbers (criteria) of the model similarity of this phenomenon. These numbers, 
for phenomena executed on two scales, should be equal. At partial model similarity, this 
satisfies only the equality of the most important criterial numbers, which have the great-
est impact on the results of the studied phenomenon. This case is the most common in 
practice. 

3.	I n the case of cause end effect phenomena, among all dimensionless quantities occurring 
in relationships (6.8), (6.9), (6.10),we can distinguish quantities connected with input 
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IN, system (object) O and output OU (or several inputs, subsystems and outputs). The 
essence of model investigations is to measure in model tests the values of output OU of 
dimensionless quantities at fulfilment equalities of the greatest number as possible of 
the other criterial numbers, and at assuming that the physical nature of the phenomenon 
executed in two scales is similar. Dimensionless quantities of output can be transferred 
from the model scale to the natural scale (or other) since they represent similarity criteria 
of the investigated physical phenomenon. 

7. The nature of physical phenomena occurring in mechanics of continuous  
or discrete material mediums

7.1. Concept of an input/output physical system and its physical/mathematical model. 
Block diagram of a system

Material mediums in mechanics usually are divided into solid body (stiff or deformable) 
and fluids (liquids and gases). Physical phenomena in mechanics have a cause and effect 
character. 

If for the processes or phenomena related to some material system (object) there is a cause 
and effect relationship (or relationships), then the block of data related to the cause is called 
the input (IN), the block of data related to the material system (object), which is the subject of 
input influence is called the system, characteristic object, or simply object (O), and the third 
block of data related to the effect of that influence is called the output (OU). In mechanics 
of material mediums is often called the input action, load or force acting on the system; the 
system (object) may be called the system, structure, construction, etc. and the output is called 
response or reaction of the system. Every set of these three blocks of data with one input, one 
object and one output we will call a simple system (comp. Fig. 2)

If several inputs IN act on the system O and there are also several outputs OU, we call 
such a system a complex system with several inputs and several outputs. Likewise, each 
of the series connections, parallel connections, or series-parallel connections of the simple 
systems create complex series, parallel or series-parallel systems. It is also possible to make 
complex mixed systems (e.g. a series system including subsystems with a large number of 
inputs and outputs). Issues of mechanics of material mediums can be classified just as input/
output complex mixed systems. 

Input and output quantities are sometimes dependent on each other. When system output 
quantities can influence system input quantities, then that system is called a system with 
feedback. The aerodynamic feedback which occurs between building vibrations and wind 
actions on a building is an example of such feedback. Building vibrations change the character 
of the air flow around the building, and thereby change the distribution of wind pressures on 
the walls of the building. 

Examples of different complex input/output systems are shown schematically in Fig. 3.
For example, the system shown in Fig. 3c can be interpreted as follows: subset O1 is 

the domain of ground foundations adjacent to building foundations; input IN1 represents 
vibrations of ground foundations on the part of the outer surface of this domain from the 
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vibration source direction, which can be seismic or para-seismic excitations; output OU1 
represents accelerations (displacements, velocities) of building foundations, which in turn 
represent cinematic excitation of the building itself, i.e. object O; input IN2 is for example the 
wind velocity field in front of the building, in the part of the outer surface of the air domain 
which is adjacent to the building, so subset O2; output OU2 represents the wind pressure field 
on the walls of the building, which in turn is wind action on the building itself. 

The description of the relationships occurring in subsystems of the whole input/output 
system in mathematical formal “language” we call the mathematical model of that system. 

The presentation of a system, actions (loads) on this system, and relationships occurring 
between them, using a set of some conventional graphic symbols in structural mechanics is 
called the static scheme of the system (if time is not significant) or the dynamic scheme of 
the system (if time is significant). If in consideration it is possible to omit the feature of the 
system called inertia, the dynamic scheme of the system is called the rheology scheme. 

Fig. 2. Block diagram of a simple system (with one input and one output)

a) b)

c)               

d)      

Fig. 3. Examples of block diagrams of complex input/output systems: a) simple system with feedback, 
b) system with several inputs and outputs, c) parallel system with several inputs and outputs,  

d) series-parallel system with feedback and several inputs and outputs

7.2. Initial and temporary (final) state of the system.  
Space-time variables used to describe the object’s movement

The position of particular points of an object in the initial state (to) and a temporary 
state (t) is described by coordinates of radius vectors of these points: ( )otoir  and ( )tir , i.e. 
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{…, xoi, …} and {…, xi(t), …}, where i – is the subscript which identifies any i-th point of 
the system. These coordinates can be defined in the global coordinate system for the whole 
system OXYZ and/or in local coordinate systems Oexeyeze of the various parts of the system, 
where e – the subscript which identify any e-th element of the system. All of the geometrical 
quantities characterizing the transition from the system’s initial state to a temporary state 
(displacements, deformations, velocities, accelerations, etc.) can be determined as a function 
of the initial coordinates {…,xoi,…} or of temporary coordinates {…, xi(t), …} and time t. 
In the first case we talk about a material description (Lagrange’s substantial description) of 
the system movement, and in the second case we talk about a spatial description (Euler’s 
description). It is similar with the other variables or parameters of particular inputs INα of 
objects Oβ and outputs OUγ, where α, β, γ – subscripts identifying particular inputs, objects 
and outputs of the whole system.

7.3. Types of relationships describing some mechanical phenomenon

In descriptions of some mechanical phenomenon we can distinguish the following groups 
of geometrical and physical relationships, which we express as mathematical relationships:
●	 Geometrical relationships describing initial geometry (configuration) of a single system 

or particular subsystems of the whole system (e.g. boundary surface equations of solid 
body, axle geometry equations of particular bars of bar system);

●	R elationships for quantities related to the restrictions imposed on the system/subsystems, 
which result from the existence of different type of external/internal constraints of the 
system/subsystems, which restrain their movement/deformations. These can be kinematic 
constraints, mechanical constraints or out of mechanical constraints;

●	R elationships resulting from initial conditions with respect to excitations (actions) kin-
ematic, mechanical, out of mechanical acting on the system/subsystems;

●	R elationships arising from geometry and mechanical laws, connecting quantities which 
describe the transition of system/subsystems from the initial state (initial configuration) 
to a temporary/final state (temporary/final configuration);

●	R elationships related to imposing different types of restrictions on the system/subsystems 
connected with their serviceability (serviceability conditions) and safety (limit condi-
tions).
These groups of relationships are associated with specific groups of geometrical and 

physical quantities (dimensional or dimensionless variables/parameters) dependent on the 
scale of the phenomenon, dimensional or dimensionless constants independent of the scale 
of the phenomenon), which in turn represent different subsets {S}s of the initial set {S} of all 
the quantities characterizing this mechanical phenomenon. 

The essence of model investigations of mechanical phenomena consists of performing 
respective investigations (tests) of that phenomenon at a smaller scale, on the fulfilment of 
model similarity criteria of that phenomenon, and on measurement of dimensionless output 
quantities of particular subsystems or the system as the whole and the transition of the same 
values of these quantities to the mechanical phenomenon at the natural scale (or another 
scale). 
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8. Example – vibration of a system with one degree of freedom  
with mechanical and kinematic excitation 

The scheme of the system is shown in the Fig. 4.

Fig. 4. Scheme of a system with one degree of freedom with kinematic yk(t) and mechanical excitation F(t)

8.1. Basic denotations and relationships

●	T he system parameters: m – mass; c - damping, k– rigidity
●	 Kinematic excitation:

	 ( ) ( ); ,k yk k yky t f t Y= σ 	 (8.1)

Kinematic excitation is a stochastic process of parameters: Yk (amplitude of excitation) 
and σyk (standard deviation or root-mean-square value of excitation).
●	M echanical excitation (action):

	 ( ) ( )0 sinF t mg P t= + θ + ϕ 	 (8.2)

where: mg –gravity force (g – acceleration of gravity); P0 – amplitude of harmonic excitation;
22 f
T
π

θ = π =  – circular frequency of excitation (f – frequency of excitation, T – period of 

excitation);φ – shift angle in radians.
●	S tatic displacement of the system:

	
2

0
2 24st

gTmg gy
k

= = =
ω π

	 (8.3)
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●	A bsolute displacement y(t), dynamic displacement ydyn(t) and relative displacement yrel(t) 
of the system:

	 ( ) st dyny t y y= + 	 (8.4)

	 ( ) ( ) ( )rel dyn ky t y t y t= − 	 (8.5)

	 ( ) ( ) ( )st rel ky t y y t y t= + + 	 (8.6)

●	S ystem movement equation resulting from the laws of mechanics:

	 ( ) ( ) ( ) ( ) ( )( ) ( )
2

2

d d d
sin

d dd
k

k o

y t y t y t
m k y t y t mg P t

t tt
 

+ − + − = + θ + ϕ 
 

	 (8.7)

●	A dditional denotations:
1.	 Circular frequency of free vibration ω (fo – frequency of free vibration, To – period of free 

vibration)

	 22 o
o

k f
m T

π
ω = = π = 	 (8.8)

2.	D imensionless parameter of damping (damping ratio) γ: 

	
12 2 ;  
2

c k c
m m mk
= γω = γ γ = 	 (8.9)

●	D ifferent form of system motion equation:

	
( ) ( ) ( ) ( ) ( )

2 2
2

2 2

d d d
2 sin

dd d
rel rel k o

rel

y t y t y t P
y t g t

t mt t
+ γω +ω = − + + θ + ϕ 	 (8.10)

●	I nitial conditions in time instant to=0

	 ( ) ( )
0

d 0d
0 ; 

d d
o

relrel
rel o o

t

yy
y y v

t t=

= = = 	 (8.11)

●	L imits imposed on the system arising from serviceability and safety conditions: 

	
2

,24
o

st st lim
gT

y y= ≤
π

	 (8.12)

	 , ,dyn dyn max dyn limY y y= ≤ 	 (8.13)

	 ( ) ( ) ( )2d
2

d
rel

rel lim

y t
R t y t R

t
= γω +ω ≤ 	 (8.14)
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8.2. Main set and subsets of dimensional and dimensionless  
quantities characterizing the problem analysed 

●	P rimary set:

{ } , ,
2 2, , 2, , , , , , , , , , , , , , , ,rel k k yk o o o st lim dyn dyn lim lim

o

S y t y Y g P m y v y Y y R
T T

 π π
= γ ω = σ θ = ϕ 
 

	(8.15)

●	S ubset of variables (dependent and independent) and the dimensional parameters depend-
ent on a phenomenon scale:

        { } , ,1

2 2, , , , , , , , , , , , , ,rel k k yk o o o st lim dyn dyn lim lim
o

S y t y Y P m y v y Y y R
T T

 π π
= ω = σ θ = 
 

	 (8.16)

●	S ubset of dimensionless parameters dependent on a phenomenon scale:

	 { } { }2
S = γ = γ 	 (8.17)

●	S ubset of dimensionless parameters independent on a phenomenon scale

	 { } { }3
S = ϕ = ϕ 	 (8.18)

●	S ubset of constant dimensional quantities:

	 { } { }4
S g= 	 (8.19)

●	S ubset of dimensionless (numerical) constants: 

	 { } { }5
2S =  or { } { }25

2, 2 , 4S = π π 	 (8.20)

dependent on the type of parameters that are used: ω and θ or To and T.

8.3. Dimensional analysis of the issue and the dimensionless forms  
of the relationships describing the physical/mathematical model of this issue

8.3.1. The basic reference base

Let the reference base of this issue represent the set of the following dimensional reference 
quantities:

	 { } ,{ ; ; }ref rel ref ref refB Y T M= 	 (8.21)

where: , , ,rel ref ref refY T M  – reference quantities connected with length, time and mass.
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The dimensionless reference quantities and mathematical operators (functional, 
differential) corresponding to this base are as follows:

, ,rel rel ref rel refy y Y=  (8.22) ref reftt T=


(8.23)

	 ( )
( ) ( ), , ,

,

rel ref ref
rel rel ref rel ref rel ref ref

rel ref

y T
y t Y Y y

Y
t

t= =





 	 (8.24)

	 ( )( ) ( )( ) ( )( ), , , ,d d drel rel ref rel ref ref rel ref rel ref refy t Y y Y yt t= =


 



	 (8.25)

( )d d dref ref ref reft T Tt t= =
 

(8.26)
( )( ) ( )( ),,

dd
d d

rel ref refrel rel ref

ref ref

yy t Y
tt

t

T
=







(8.27)

	
( )( ) ( )( ) ( )( )22

,,
2 2 2

dd dd
d dd d

rel ref refrel rel rel ref

ref ref

t

t

yy t y t Y
t tt T

 
= =  

 







	 (8.28)

	
,

2 2

o o ref refTT T
π π

ω = =  	 (8.29)

( ) ( ), , , ,
, , , , ,

,

( ; ;
; , ; ;k ref ref k ref rel ref yk ref rel ref

k k yk rel ref rel ref k ref ref k ref yk ref
rel ref

y T Y Y Y
y t Y Y Y y Y

Y
t

t
σ

σ = = σ


 









	(8.30)

	
( )( ) ( )22

, ,,
2 2 2

d ( ; ;d ; ,

d d
k ref ref k ref ykrefk k yk rel ref

ref ref

yy t Y Y
t t

t

T

Y σσ
=



 



	 (8.31)

,
2

rel ref
ref

ref

Y
g g

T
=  (8.32)

,
, 2

rel ref ref
o o ref

ref

Y M
P P

T
=


(8.33)

ref refmm M=  (8.34)
2 2

ref refTTT
π π

θ = =  (8.35)

( ) ( ), ,0 0o rel rel ref rel refy y y Y= =  (8.36)
( ) ( ), ,d 0d 0

d d
rel ref rel refrel

o
ref ref

Y yy
v

t T t
= =





(8.37)

, , , ,st lim st lim ref rel refy y Y=  (8.38) , ,dyn dyn ref rel refYYY =


(8.39)
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, , , ,dyn lim dyn lim ref ref refy y Y=  (8.40)
,

, 2
rel ref

lim lim ref
ref

Y
R R

T
= (8.41)

The relationships which describe the physical/mathematical model of the mechanical 
phenomenon analysed are written in dimensionless form as follows:

	

( )
( )

( )
2 2

, ,
,2 2 2

, ,

2 42rel ref refref ref rel ref
ref rel ref ref

ref refref ref o ref ref o ref ref

d yY Y dy
Y y

T dT d T T

t
t

tt T T

π π
+ γ + =















 

    
( )2 , 2

, , ,

2 2 2

; , 2sin

ref ref
o ref

k ref ref k ref yk refref ref ref
ref ref ref

ref refref ref ref ref ref

M Y
P

d y tY Y T
T

MT d T T

Y
g t

mt T
 π

= − + + + ϕ  


σ























	 (8.42)

or after dividing the equation by 
2

ref

ref

Y
T

:

	

( ) ( ) ( )22 2
, , ,,, ,

,2 22
, ,

; ;( 2 4 22 sin(
)

)k ref ref k ref yk refrel ref refrel ref ref o ref
rel ref ref ref ref

ref refref refo ref o ref ref

d y t Ydy td y t P
y t g t

dtdt d mT TtT

σπ π π
+ γ + = − + + + ϕ





  



 

  



  





	( ) ( ) ( )22 2
, , ,,, ,

,2 22
, ,

; ;( 2 4 22 sin(
)

)k ref ref k ref yk refrel ref refrel ref ref o ref
rel ref ref ref ref

ref refref refo ref o ref ref

d y t Ydy td y t P
y t g t

dtdt d mT TtT

σπ π π
+ γ + = − + + + ϕ





  



 

  



  





	 (8.43)

( ), 0 o
rel ref

ref

y
y

Y
=

(8.44)
( ), 0ref ref o ref

ref ref

dy v T
dt Y

=


 (8.45)

2 2
,

,lim,2 24
ref o ref ref

ref st ref ref
ref

Y T
Y

T
T

g y≤
π







(8.46) or:
2
,

,lim,24
o ref

ref st refy
T

g ≤
π





 (8.47)

, ,lim,dyn ref ref dyn ref refY yY Y≤


 (8.48) or: , ,lim,dyn ref dyn refyY ≤


 (8.49)

	
( ) ( )

2
,

, lim,2 2 2
,,

2 42 rel ref refref ref
ref rel ref ref ref

ref ref o ref ref refo ref ref

dy tY Y
Y y t

T dt TT T
R

T T
π π

γ + ≤












 

	 (8.50)

or	

	
( ) ( )

2
,

, lim,
, ,

2 42 rel ref ref
rel ref ref ref

refo ref o ref

dy t
y t R

T t Td
π π

+ ≤γ



 













	 (8.51)

When the scale of the mechanical phenomenon is changed, i.e. when the corresponding 
scales are: 
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	 , ; ; yrel Yrel ref t Tref m Mrefk k k k k k= = =
     

	 (8.52)

dimensionless quantities: , , ,  rel ref ref refy t m


   are the same at the natural scale (N) as well as at the 
model scale (M), so that they are not dependent on the scale of the phenomenon. 

Moreover, in the above relationships the following dimensionless quantities Π


ref,j, 
j = 1,2,…,15 occur dependent on the scale of the mechanical phenomenon, which constitute 
the model similarity criteria (conditions, numbers) of that phenomenon:

,12 ref
c
km

= =γ Π




(8.53) , ,2
2

o ref ref

ref

T
k T
m

Π
π

= =


(8.54)

, ,3
,

k
k ref ref

rel refY
y

y
Π= =




(8.55) ,4
,

k
k ref

rel refY
Y

Y
= = Π

 

(8.56)

, ,5
,

yk
yk ref ref

rel refY
σ Π

σ
= =





(8.57)
2

,6
,

ref
ref ref

rel ref

T
Y

g
g

= = Π




(8.58)

2

, ,7
,

o ref
o ref ref

ref ref ref

P T
M

P
Y

Π= =
 

(8.59) ,8
2

ref

ref ref
T

T π
= = Π
θ

 

(8.60)

,9ref=ϕ Π




(8.61) ( ), ,10
,

0 o
rel ref ref

rel ref

y
Y

y = = Π




(8.62)

( ),
,11

,

d 0
d

rel ref o ref
ref

ref rel ref

v T
t T

y
= Π=





(8.63) ,
, , ,12

,

st lim
st lim ref ref

rel ref

y
Y

y Π= =




(8.64)

, ,13
,

dyn
dyn ref ref

rel refY
Y

Y
Π= =

 

(8.65)
,

, , ,14
,

dyn lim
dyn lim ref ref

rel ref

y
Y

y Π= =




(8.66)

	
2

, ,15
,

dop ref
lim ref ref

rel refY
R

R T
Π= =

 

	 (8.67)

Thus, there are fifteen dimensionless numbers in total. 
Moreover, in relationships describing the mechanical issue analysed, constant numbers 

appear, e.g. 2, 2Π, 4Π2.
Generally, with the exception of constant numbers, the number of dimensional and 

dimensionless output quantities characterizing the mechanical phenomenon is eighteen, so 
three more than numbers ,ref jΠ



, i.e. about as much as the size of the dimensional base of 
this issue. 
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8.3.2. Other reference base

One may consider now the case of another reference base of the issue which consists of 
the following three dimensional reference parameters:

	 { } { } { }* , ,refB B g m= = ω 	 (8.68)

The respective relationships in this case are as follows:

2rel rel
gy y=
ω

 (8.69)
1t t=
ω


(8.70)

( ) ( )relrel dydy t g
dt d

t
t

=
ω







(8.71) ( ) ( )22

2 2
relrel d yd y t t
t

g
dt d

=






(8.72)

γ = γ (8.73) ( ) ( )2; , ; ,k k yk k k yk
g ty t Y y Yσ = σ
ω



 



(8.74)

2k k
gY Y=
ω



(8.75) 2yk yk
g

σ = σ
ω

 (8.76)

( ) ( )22

2 2

; ,; , k k ykk k yk d y Yd y t Y
g

d d

t

tt

σσ
=











(8.77) o oP P mg=


(8.78)

θ = θω


(8.79) ϕ = ϕ (8.80)

2o o
gy y=
ω

 (8.81) o o
gv v=
ω

 (8.82)

, , 2st lim st lim
gy y=
ω

 (8.83) 2dyn dyn
gY Y=
ω



(8.84)

, , 2dyn lim dyn lim
gy y=
ω

 (8.85) lim limR R g=


(8.86)

	

( ) ( ) ( ) ( )22
2

2 2 2

, , 12 sink k ykrel rel o
rel

d tt t
t t

tt

y Yd y dy P mgg gg y g g
d md td

σ  + γω +ω = − + + θω +ϕ ω ωω  



 

 

 



  

 



 

	( ) ( ) ( ) ( )22
2

2 2 2

, , 12 sink k ykrel rel o
rel

d tt t
t t

tt

y Yd y dy P mgg gg y g g
d md td

σ  + γω +ω = − + + θω +ϕ ω ωω  



 

 

 



  

 



  	 (8.87)
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or after dividing equation by g: 

	
( ) ( ) ( ) ( ) ( )

22

2 2

, ,
2 1 sink k ykrel rel

rel o

d y Yd y dy
y P

dd d

tt t
t t

tt t

σ
+ γ + = − + + θ + ϕ



 

 



 

 













 	 (8.88)

2
o

o
y

y
g
ω

= (8.89) o
o

v
v

g
ω

= (8.90)

2
,

,1 st lim
st lim

y
y

g
ω

≤ = (8.91)
2 2

,
,

dyn dyn lim
dyn dyn lim

Y y
Y y

g g
ω ω

= ≤ =


 (8.92)

	 ( ) ( )2 rel lim
rel lim

t
t

dy R
y R

dt g
≤ =γ +













	 (8.93)

In relationships (8.88) and (8.93) j = 15 occurs following the dimensionless numbers jΠ


, 
which constitute the similarity criteria of the case analysed at another dimensional base:

2

1
rel

rel
y

y
g
ω

Π= =



(8.94) 2tt = ω = Π




(8.95)

,1 32 ref
c
km

γ Π= Π= =
 



(8.96)
2

4
k

k
y

y
g
ω

Π= =



(8.97)

2

5
k

kY
Y

g
ω

Π= =
 

(8.98)
2

6
yk

yk g
σ

σ ω
= = Π



 (8.99)

7
o

o
P
mg

P = Π=
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(8.100) 8
θ

= =
ω

θ Π




(8.101)

,9 9refϕ = Πϕ = Π =



(8.102)
2
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o

o
y

y
g
ω

= = Π



(8.103)

11
o

o g
v

v ω
= = Π





(8.104)
2

,
, 12

st lim
st lim

y
y

g
ω

= = Π


 (8.105)

2

13
dyn

dyn

Y
g

Y
ω

= = Π
 

(8.106)
2

,
, 14

dyn lim
dyn lim

y
y

g
ω

= = Π


 (8.107)
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	 15
lim

lim
R
g

R = = Π
 

	 (8.108)

They are, as can be seen, similarity criteria numbers different from the ones in the first 
case. Moreover, in the dimensionless relationships of the physical/mathematical model of 
that issue another set of numerical constants {2,1} appear. The form of these relationships is 
simpler in the second case.

9. Conclusions

The basic principles and theorems of dimensional analysis and theory of model similarity 
of physical phenomena presented in this paper can be used in different branches of knowledge 
and science. The procedure is the same in all applications. These principles and theorems can 
be applied both in the case when all the equations and boundary conditions of the problem 
are known and in the case when only the general functional relationships of the problem are 
known or postulated. Similarity criteria numbers can be derived in general from the original 
generalized theorems Π of dimensional analysis and model similarity of physical phenomena. 
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