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Abstract

The aim of the paper is to prove theorems about the existence and uniqueness of mild
and classical solutions of a nonlocal semilinear functional-differential evolution Cauchy
problem. The method of semigroups, the Banach fixed-point theorem and theorems (see [2])
about the existence and uniqueness of the classical solutions of the first-order differential
evolution problems in a not necessarily reflexive Banach space are used to prove the existence
and uniqueness of the solutions of the problems considered. The results obtained are based
on publications [1-6].
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Streszczenie

W artykule udowodniono twierdzenia o istnieniu i jednoznacznosci rozwigzan catkowych i kla-
sycznych nielokalnego semiliniowego funkcjonalno-rézniczkowego ewolucyjnego zagadnie-
nia Cauchy’ego. W tym celu zastosowano metodg potgrup, twierdzenie Banacha o punkcie
statym i twierdzenia ([2]) o istnieniu i jednoznacznos$ci klasycznych rozwigzan ewolucyjnych
zagadnien rozniczkowych pierwszego rzgdu w niekoniecznie refleksywnej przestrzeni Bana-
cha. Artykut bazuje na publikacjach [1-6].

Stowa kluczowe: ewolucyjne zagadnienie Cauchy ego, istnienie i jednoznacznosé¢ rozwiqgzan,
warunki nielokalne
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1. Introduction

Let £ be a Banach space with norm || - || and let 4 : £ — E be a closed densely defined
linear operator. For an operator 4, let D(A), p(4) and A" denote its domain, resolvent set
and adjoint, respectively.

For a Banach space E, C(E) denotes the set of closed linear operators from £ into itself.

We will need the class G(M,P) of operators A satisfying the conditions:
There exist constants A >0 and B € R such that
(C)) A€C(E), D(A)=E and (B, ) c p(~4),
() “(A +ey* “ <ME-B)* for each £>B and k=12,...
We will need the assumption:
Assumption (Z). The adjoint operator A* is densely defined in E*, i.c., D(4") = E*.

It is known (see: [4], p. 485 and [5], p. 20) that for 4 € G(M,B) there exists exactly

one strongly continuous semigroup 7(¢) : E — E for t > 0 such that — 4 is its infinitesimal
generator and

7)< M for > 0.

Throughout the paper we will assume (C)) and (C,), and assumption (Z).
Moreover throughout the paper we will use the notation

0<ty <y <..<t,<ty+a, a>0,
J =[ty,t, +al,
M= sup{||T(t)|| : te[O,a]}
and
X =C(J,E).

Throughout the paper we will also assume that there exists the operator 5 with D(B) = E
given by the formula

-1
p
B = [1+chT(tk —tO)J R

k=1

where / is the identity operator on E.

The aim of the paper is to study the existence and uniqueness of mild and classical
solutions to a nonlocal Cauchy problem for a functional-differential evolution equation.
The nonlocal Cauchy problem considered here is of the following form:

u'()+ Au(®) = f(t,u(®),u(b,@)),...,u(b. (1)), teJ\{}, (1.1)

P
U(’o)+zck”(’k) =1y, (1.2)

k=1
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where fand b, (i = 1, ..., r) are given functions satisfying some assumptions, u, € E, ¢, # 0
(k=1,2,...,p)and p,re N.
To study problem (1.1)—(1.2) we will need the following linear problem:
u'()+Au(t)=g(t), teJ\{t}, (1.3)
u(ty)=x (1.4)
and the following definition:
A function u : J — FE is said to be a classical solution to the problem (1.3)—(1.4) if
(i)  wuis continuous on.J and continuously differentiable on J \ {z},
(i) ' (t) + Au(t) = g(t) forte J\ {1},
(i) u(z) =x.
To study problem (1.1)—(1.2) we will need also the following theorem:
Theorem 1.1. (see [2]). Let g : J — E be Lipschitz continuous on J and x € D(A).

Then the Cauchy problem (1.3)—(1.4) has exactly one classical solution u given
by the formula

u(t) = T(t —1y)x+ f T(t—s)g(s)ds, tel. (1.5)

The results obtained in the paper, are based on publications [1-6].

2. On mild solution

A function u € X satisfying the integral equation
u(ty=T(—1t,)Bu, -

p
+ chT(t —t,)B [ T, —5)f(s,u(s),u(b(s)),...,u(d.(s))ds + 2.1)
k=1 0

+ J: T(t—s)f(s,u(s),u(b(s)),....u(b.(s))ds, teJ,

is said to be a mild solution of the functional-differential nonlocal evolution Cauchy problem
(1.1)—(1.2).
REMARK 2.1. 4 function u satisfying (2.1) satisfies condition (1.2) (For the proof of Remark
2.1 see [3]).
Theorem 2.1. Assume that:
(i)  f:JxXE™ — Eis continuous with respect to the first variable on J, b,: J = J (i=1, ..., 1)
are continuous on J and there is L > 0 such that

[CENERNER EICENE RS B A Y A (2.2)
i=0

for seJ, z,z,€eE (i=0,1,...,r),
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(ii) (r+1)MLa(1+M|| B ||Zf:l|ck|) <1,

(iii) u, € E.
Then the functional-differential nonlocal evolution Cauchy problem (1.1)—(1.2) has
a unique mild solution.

Proof. Introduce the operator F on the Banach space X given by the formula

(Fw)(t) =T (t —t,)Buy —

p
- chT(t —1,)B J:k T, =) f(s,w(s), w(b(s)),....,w(b.(s)))ds+
k=1 °

+JdT(t—s)f(s,w(s),w(bl(s)),...,w(br(s)))ds, welX, teld.

It is easy to see that /' is a mapping from X into X and we will show that F'is a contraction
on X. For this purpose, observe that

(Fw)(t) = (Fin)(r) =
S e T8 f Tty = )L (5, () w(By (5))s (b, () =
OGO, O]+ 23)
[ T =L 5wy (9 (57 -
— f(5,%W(8), w(b,(5)),...,w(b.(s))]ds, wwelX, tel.
From (2.3) and (2.2)

p
[(Fw)(@) = (Fw)(0)|| < (r + l)MLa[l +M|B|D e |J||w— W, wweX, rel. (24
k=1

Define

P
q:= (r+l)MLa{l+M||B||Z|ck|}. (2.5)

k=1
Then by (2.4), (2.5) and assumption (ii),

||Fw—FvT/||X <q||w—ﬂ)||X for wwelX (2.6)
with 0 <g < 1.

Consequently, by (2.6), operator F satisfies all the assumptions of the Banach contraction
theorem. Therefore, in space X there is only one fixed point of F and this point is the mild
solution of problem (1.1)—(1.2) So, the proof of Theorem 2.1 is complete. O
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3. Mild and classical solutions

A function u : J — E is said to be a classical solution of the functional-differential nonlocal
evolution Cauchy problem (1.1)—(1.2) if:
(i)  uis continuous on.J and continuously differentiable on J \ {z},

(i) u'(0) + Au(®) = f(t, w(t), (b (O)), ..., u(b, (D), for 1€ T\ {1},
(i) u(ty)+ Z;;lcku(tk) = u,.

Theorem 3.1. Assume that f: J x E™' — E is Lipschitz continuous on J X E™'. If u is
a classical solution to the problem (1.1)—~(1.2) then u is a mild solution of this problem.

Proof. Since u is a classical solution to the problem (1.1)—(1.2), u € X and u satisfies
the integral equation (see [2], Theorem 2)

u(t)=T(t—ty)u(ty)+ f T —s)f(s,u(s),u(d(s)),....,u(b.(s))ds, telJ.
The remaining part of the proof' of Theorem 3.1 is as in [3]. O

Theorem 3.2. Suppose that:
(i) frJXE™—Eb:J—>J(i=1,...,r)are continuous onJ and there is C> 0 such that

y
17(5s205 21552, )= F(§s Zgs Zpvees 2| < C[|s—§|+2"zi —zi||J
i=0

for s,sed, z,z;eE (i=0,...,r),

3.1

. P
(i) (r+1)MCa(1+M||B||zk:1|ck|)<l,
(iii) wu,€ E.
Then the functional-differential nonlocal evolution problem (1.1)—(1.2) has a unique mild

solution denoted by u. Moreover, if
(iv) Bu,e D(A) and

B J:k T(t, —8)f(s,u(s),u(b(s)),...,u(b.(s))ds e D(4) (k=1...,p)

and if there is ¥ > 0 such that
||u(bi (s)—u(b, (5))" < K"u(s) —u(§)|| for s,seJ
then u is the unique classical solution to problem (1.1)—(1.2).
Proof. Since all the assumptions of Theorem 2.1 are satisfied, problem (1.1)—(1.2)
possesses a unique mild solution u.

Now, we will show that u is the unique classical solution to the problem (1.1)—(1.2).
To this end, introduce

N = TeaJX ||f(s, u(s),u(b(s)),...,u(b, (s)))" 3.2)

! This remaining part of the proof shows why in the definition of a mild solution u to the problem
(1.1)—(1.2) we require that the function u satisfies the integral equation (2.1).
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and observe that

p
u(t+h)=u(t) =T(t~1)[T(h) ~ 11Bug = D ¢, T(t ~1,)[T(h)~ I]x

k=1

x BB J:k T(t, =) f(s,u(s),u(b (s)),...,u(b.(s)))ds +
+ .[lwh T(t+h—s)f(s,u(s),u(b(s)),...,u(b.(s)))ds+ (3.3)

+ f T(t=s)[f(s,u(s+h),u(b(s+h)),...,u(b.(s+h)))—
+ f(s,u(s),u(b(s)),...,u(b,(s)))]ds for t [ty,t, +a), h>0 and t+he (1,1, +al.
Consequently, by (3.3), (3.2), (3.1) and Assumption (iv),

||u(t +h)— u(t)” <

+

J
< Mh”ABuO || + Z|ck |MhHABJ: T, =) f(s,u(s),u(b(s)),....u(d,.(s))ds
k=1 0
+hMN + MCah + MC J: (||u(s +h)— u(s)|| + ||u(bl (s+h)—u(b (s))|| +.o.+ (3.4)

+ ||u(br (s+h)—u(b, (S))") ds =C.h+ MC(+rx) f ||u(s +h)— u(s)”ds
for telty,ty+a), h>0 and t+he(ty,t,+al,

where

p
C, = M[||A8u0||+ Z|ck|

AB ij T(t, —s)f(s,u(s),u(b(s)),...,u(d,(s)))ds

+N+ Ca}.
k=1

From (3.4) and Gronwall’s inequality
et + ) —u(®)| < Ce™ R

forte [t,t,+a),h>0andt+he (1,1, +al
Hence u is Lipschitz continuous on J.

The Lipschitz continuity of u on J combined with continuity of fon J X E™*! imply that
t = f(t, u(@®), u(b,(9), ..., u(b (1)) is Lipschitz continuous on J. This fact together with
assumptions of Theorem 3.2 imply, by Theorem 1.1, that the linear Cauchy problem

V(@) + Av(t) = ftu(t),u(b (1)),...,u(b. (1)), teJ\{t}, (3.5
p

cu(ty) (3.6)
k=1

v(ty) =uy —
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has a unique classical solution v such that

v(t) =T —ty)v(ty) + J: T —s)f(s,u(s),u(b(s)),...,u(b.(s)ds, telJ. (3.7)

Now, we will show that
u(t)y=v(t) for tel. (3.8)
To do it, observe that, by (3.6), by Remark 2.1 and by (2.1),

p
v(ty) = ulty) = Bug = ) e, B [ Tt =5) 1 (5,u(5) (B (5)),.... u(b, (5)) ds.

k=1
Consequently
T(1—1ty)v(ty) =

2 v (3.9)
=T(t—1t,)Bu, —chT(t—to)Bf T(t, —s)f(s,u(s),u(b(s)),...,u(b.(s)ds, tel.

k=1
Next from (3.7), (3.9) and (2.1),

v(t)=T(t—ty)v(ty)+ J: T(t—5)f(s,u(s),u(b(s)),....u(b.(s)))ds =

p
=T(t—1,)Bu, —chT(t —tO)BJ: T, —s)f(s,u(s),u(b (s)),...,u(d,(s)))ds +

k=l
+ f T(t—s)f(s,u(s),u(b(s)),....u(b.(s))ds =u(t), ted,

and, therefore, (3,8) holds.

The above argument implies that u is a classical solution of problem (1.1)—(1.2).

To prove that u is the unique classical solution of problem (1.1)—(1.2) suppose that there
is a classical solution u, of problem (1.1)—(1.2) such that u, #u onJ. Then, by Theorem 3.1,
u, is a mild solution of problem (1.1)—(1.2). Since, by Theorem 2.1, there exists the only
one mild solution of problem (1.1)~(1.2), u, =u on J. Thus, the proof of Theorem 3.2
is complete.
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