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1.  Theoretical analysis of strains in clutch discs

Maximum ring stresses in the spring result from maximum hub rotation. Figure 1 shows 
a diagram of a deformed spring.

Fig.  1.  Disc deformation in the maximum hub rotation plane [1]

The proposed method for stress calculation helps determine stress in any section of the 
disc. Here, we are interested in the value of maximum stress in the sections of maximum hub 
rotation and therefore a simplified stress calculation procedure can be used. Fig. 1 shows 
a diagram of a deformed spring in the section of the maximum angle of rotation ϕ. From the 
diagram it follows that with the hub rotation by angle ϕ, the spring rotates by angle α with 
respect to point A, and at point B, the spring rotates with respect to the hub by angle α + ϕ. 
The relationships between angles α and ϕ are the following:

	 tg tgα ϕ=
R
l
2 , 	 (1)

where:
R2	 –	 is the inner radius of the spring,
l	 –	 is the length of the spring.
Thus, maximum stress in the spring of the clutch disc occurs in the section of maximum 

hub angle and therefore stress calculation can be conducted only for this section. At the 
opposite side of the spring, stress will also occur but opposite in sign. In the section 
perpendicular to that under consideration, the angle of hub rotation is equal to zero and 
respectively all stresses are equal to zero. With one rotation of the clutch hub, the stresses on 
one side of the spring change direction into opposite and on the opposite side of the spring 
they take the value of zero twice [4].
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2.  Computational load scheme for the disc with a rectangular cross-section

The differential equation of the elastic surface of an annular plate in polar coordinates can 
have the following form [5]:
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where:
W = W(r, α)	 –	 the deflection of the average plane of the plate,
r, α	 –	 polar coordinates defining the position of the design point on the 

average plane,
p	 –	 normal pressure on the plate surface,

D Eh
=

−

3

212 1( )µ
	‒	 cylindrical rigidity of the plate,

h	 –	 thickness of the disc,
E	 –	 the elastic modulus of the disc material
µ	 –	 Poisson’s ratio.
Deflection W and pressure p were assumed to be positive in the downward direction. 

Inner moments ‒ radial moment Mr and turning moment Mt as well as Mrt – the moment 
acting simultaneously in the radial and circumferential directions have the following forms:
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To define boundary conditions we take the condition that the plate is rigidly clamped 
on the boundary – then deflection W and the inclination angle of the average plane of the 
maximum angle ϕ is equal to zero.

	 W W
r

=
∂
∂

=0 0; . 	 (6)

The general solution to homogeneous equation (5) can be expressed as a sum of general 
W 0 and particular W ‒. The general solution of the homogeneous differential equation has the 
following form:

	 W F r F r m f r mm m
0

0
1 1

= + +∑ ∑( ) ( ) cos ( )sin ,α α
¥ ¥

	 (7)
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Functions will be determined in accordance with the equations analogous to (8). 
The particular solution W ‒ of equation (5) is determined in each specific case according to 
the set law of pressure distribution on the disc surface p.
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where:
R1	 –	 the outer radius of the plate.

3.  Equilibrium of the disc center of symmetry

To determine the relationship between the rotation angle of the center of symmetry, ϕ, and 
the magnitude of M, the equilibrium of the disc symmetry center is considered in accordance 
with Figure 2.

Fig.  2.  Moments and forces acting on the rigid center of symmetry [1]

The rigid center is affected by the external moment M, the bending moment Mr 
distributed  along the circumference of the radius R2, the torsional moment Mrt and the 
transverse force Qr. On this basis we can write the equation of the moment with respect to 
axis Y [3].
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Quantities Mr, Mrt = 0, Qr
 
are defined based on (3‒4). Substituting to equation (9) and 

taking into account that we obtain r = R2 in the following way:
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Substituting formulas (9) in equation (10), after integration we obtain the formula for 
the angle of rotation necessary to attain the moment M.
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The analysis indicated that the maximum value of the bending moment is (13) and occurs 
for coordinates α = 0 and r = R2.
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Respective maximum stresses occur at the same point of the plate and are equal to:
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To simplify the calculation, expressions (11), (12), (13) are written:
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In real service conditions, the coupling between the hub and the friction lining can 
have certain sensitivity and therefore expressions (11) and (13) must be supplemented with 
corrective factors, taking into account the sensitivity at those points. Hence, expressions (11) 
and (13) take the following forms [5]:
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where:
k3 = kout + kin, kout	‒	 the factor of decreased restraint of the disc on the outside  

boundary,
kin	 ‒	 the analogous factor on the inside boundary.
We define the value of radius r = r* at which the stress in the disc is 0. This radius value 

corresponds to the inflection point of W(r, ϕ), which can be attained using condition (15).
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Substituting (9) into condition (15) we obtain
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Hence, at a random angle α, condition (17) below should be satisfied:
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which can be converted into the form of the following biquadratic equation:
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By solving equation (18), we find the root x corresponding to condition (15):
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where the searched radius value of zero stress in the disc is equal to:
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4.  Evaluation of the dynamic stabilization results

Table 1 summarizes the basic parameters of clutch discs on which dynamic stabilization 
was performed and for which the following results were obtained.

T a b l e  1
Test results

Geometric parameters [mm]
Spring 

ring 
material

Accuracy of work surface [mm]

D D1 D2 b
Before modification After modification

Flatness 
deviations Runout Flatness 

deviations Runout

350 126 210 2 steel 45 up to 1.7 up to 2.5 0.4…0.5 0.6…0.8

340 136 210 2 steel 50 up to 1.7 up to 2.5 0.4…0.5 0.6…0.8

445 215 240 2.4 steel 45 up to 2.0 up to 3.2 0.4…0.6 0.6…0.9

316 137 156 2 steel 65H up to 1.7 up to 2.5 0.4…0.5 0.6…0.8
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5.  Summary

In order to improve the geometry of clutch discs in which after heat treatment and 
assembly with the hub and friction linings, the spring ring exhibited considerable flatness 
deviations and runout of the friction surfaces, measured on the working surface, normalization 
of the final assembly operation is proposed – dynamic stabilization. The results of the tests 
indicate that the runout is reduced from 3 mm to 1 mm, which results in the decrease in the 
friction moment from 10 Nm to 3.5 Nm, and which occurs despite complete disengagement 
of the disc linings from the flywheel. Operation tests at the Tractor Factory in Minsk (Belarus) 
confirm that the clutch discs subjected to dynamic stabilization yield 30% higher durability 
and consequently, smaller number of failures.
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