
*  Artur Niewiarowski (aniewiarowski@pk.edu.pl), Institute of Computer Science, Faculty of Physics,
Mathematics and Computer Science of Cracow University of Technology.

TECHNICAL TRANSACTIONS
FUNDAMENTAL SCIENCES

1-NP/2016

CZASOPISMO TECHNICZNE
NAUKI PODSTAWOWE

ARTUR NIEWIAROWSKI*

 SHORT TEXT SIMILARITY ALGORITHM BASED
ON THE EDIT DISTANCE AND THESAURUS

ALGORYTM PODOBIEŃSTWA KRÓTKICH FRAGMENTÓW
TEKSTÓW OPARTY NA ODLEGŁOŚCI EDYCYJNEJ

I SŁOWNIKU WYRAZÓW BLISKOZNACZNYCH
A b s t r a c t

This paper proposes a method of comparing the short texts using the Levenshtein distance algorithm
and thesaurus for analysing terms enclosed in texts instead of popular methods exploiting the grammatical
variations glossary. The tested texts contain a variety of nouns and verbs together with grammatical or
orthographical mistakes. Based on the proposed new algorithm the similarity of such texts will be estimated.
The described technique is compared with methods: Cosine distances, distance Dice and Jaccard distance
constructed on the term frequency method. The proposition is competitive against well-known algorithms
of stemming and lemmatization.

Keywords:  Levenshtein distance algorithm, the edit distance, thesaurus, the measure of texts similarity,
plagiarism detection, text mining, Natural Language Processing, Natural Language
Understanding, stemming, lemmatization

S t r e s z c z e n i e
Artykuł przedstawia propozycję metody porównywania krótkich fragmentów tekstów bazującą na algo-
rytmie odległości Levenshteina i słowniku wyrazów bliskoznacznych. Porównywane teksty zawierają od-
mienione terminy oraz celowe błędy ortograficzne i gramatyczne. Opisany mechanizm zestawiony został
z popularnymi metodami porównywania tekstów, takimi jak: odległości Kosinusowa, Dice’a i Jaccard’a,
dla których wartości wektorów obliczane są metodą częstości terminów. Zastosowanie w mechanizmie
słownika wyrazów bliskoznacznych jest alternatywą wobec znanych algorytmów określania rdzenia termi-
nu i lematyzacji w analizie danych tekstowych.

Słowa  kluczowe:  odległość Levenshteina, odległość edycyjna, słownik wyrazów bliskoznacznych, miara
podobieństwa tekstów, detekcja plagiatu, analiza danych tekstowych, przetwarzanie ję-
zyka naturalnego, stemming, lematyzacja

DOI: 10.4467/2353737XCT.16.149.5760

160

1.  Introduction

Most of the mechanisms estimating measures of similarity between text documents are
based on vector space models and weight methods [1, 2, 3] with compilation of other methods,
such as probability methods [4], semantic networks (e.g. WordNet) [5, 6] or genetic algorithms
[7], etc. The traditional text identification mechanisms usually use glossary of grammatical
variations which in some cases are difficult to implement. Most of the mechanisms are
composed of stemming algorithms [8], such as popular: Lovins stemming algorithm [9],
Porter stemming algorithm [10], Dawson stemming algorithm, Krovetz stemming algorithm,
etc. [11], causing increasing of time consumed by identification algorithm during the data
analysing process.

In our research we propose a model of effective mechanism for the calculation of similarity
between two short texts (e.g. sentences) mainly based on Levenshtein distance algorithm
(Lda) combined with the word coding technique. Our research indicates that the terms coding
technique with its implementation for measure of text similarity improves the results of text
identification significantly. The proposed technique seems to be easy for implementation
in most programming technologies and open to most European languages.

2.  Description of the problem

The main idea of the mechanism of measuring the similarity of texts consists of:
–	 implementation of function of terms coding based on Levenshtein distance [16] (presented

in subsection 2.2) and thesaurus (described in subsection 3.2),
–	 calculation of similarity measure between two sentences based on Levenshtein distance

between encoded terms.

2.1.  Levenshtein distance algorithm

The concept of the Levenshtein distance algorithm (Levenshtein Distance function) may
be depicted by the following pseudo-code:

Pseudo-code 1
input variables: char Text1[0..M-1], char Text2[0..N-1]
 declare: int d[0..M, 0..N]
 for i from 0 to M
 d[i, 0] := i
 for j from 0 to N
 d[0, j] := j

 for i from 1 to M
 for j from 1 to N

 if char of Text1 at (i – 1) = char of Text2 at (j – 1) then
 cost := 0 else cost := 1
 end if
 d[i, j] :=
 Minimum(d[i - 1, j] + 1,

161

 d[i, j - 1] + 1,
 d[i - 1, j - 1] + cost)
 end for (variable j)
 end for (variable i)

return d[M, N];

where:
d	 –	 Levenshtein matrix of the size N+1, M+1, formed for two terms: Text1

and Text2,
M, N	 –	 lengths of two terms respectively,
d [i, j] ‒ (i, j)	 –	 element of Levenshtein matrix d,
min	 –	 a function to calculate minimum of three variables,
cost	 –	 variable that gets values either 0 or 1
The Levenshtein distance K is the minimum number of operations (insertion, deletion,

substitution) required to change one term into the other

	 K d M N= (,) 	

2.2.  The measure of similarity between terms

Measure of similarity P is the quotient of number of Levenshtein operations (after
calculation of Lda) by the number of all Levenshtein operations in pessimistic case. This
means, before the calculations of Lda will be completed but with the maximum possible
number of Levenshtein operations well known.

The similarity measures P is calculated by the formula:

	 P K
K

K N M
K M N

P
= −









 =

∈
1

0 0 0
0 1max

max; max(,),
, ,

,
≥ > >

	 (1)

where:
Kmax	 –	 the length of the longest of analysed two terms/text strings (i.e. pessimistic case

where K is equal to the length of the longest term).

T a b l e 1
Examples of the Levenshtein distance and the measure

of similarity between two short texts

No. Text1 Text 2 K P

1. Car Cars 1 0.75

2. University Universities 3 0.75

3. Tom is writing a letter Tom is writin letters 4 0.82

2.3.  The algorithm to measure similarity between two sentences

The algorithm for measuring of similarity between two sentences, based on Lda, is
described by the formula (2) presented below:

162

	

Ι Ι
i

N

j

M

S S S S S S S S S S
S

S

S

S

d i , j d i j d i j d
= =

= − + − +
1 1

1 1 1 1() min ((,) , (,) , ((,))

: ((), ())
: ((), (

i j

a i b j q
a i b j

S S S

S S S S S

S S S S

− − +

= =

=

1 1

0
1

β

β

β

Λ

Λ

>

SS

S S S

S S S

S

q
d i i
d j j
d

))
(,)
(,)
(,)

<

0
0
0 0 0

=

=

=














	 (2)

where:
I	 –	 symbol for iteration (for loop presented in the pseudo-code 1)
NS+1, MS+1	 –	 matrix sizes made from two sentences,
dS	 –	 matrix made from two sentences,
dS(iS,jS) – (iS,jS)	 –	 element of matrix dS,
Λ	 –	 function which returns the measure of similarity between two terms P,

calculated based on Levenshtein distance algorithm (pseudo-code 1),
few terms creates sentence,

βS	 –	 variable: 0 or 1,
aS(iS)– iS	 –	 term of sentence aS,
bS(jS) – jS	 –	 term of sentence bS
q	 –	 acceptable boundary of value of similarity measure for two texts

(terms in this case). This value is set by the user and it depends on
data (e.g. texts from old books, texts from newspapers).

The asymptotic computational complexity of the algorithm is O(n4). This derives from
the construction of the algorithm which consists of four nested loops1.

The similarity measures PS between two sentences may be estimated in the rule:

	 P
K
K

K N M
K M N

PS
S

S
S S S

S S S

S
= −









 =

∈
1

0 0 0
0 1max

max; max(,),
, ,

,
≥ > >

	 (3)

T a b l e 2
Examples of the Levenshtein distance and the measure of similarity between two sentences

in whose terms are treated as chars

No. Sentence 1 Sentence 2 KS PS q
1. My car isn’t working My bicycle isn’t working 1 0,75 1; 0,75; 0,3
2. What did you do yesterday? What have you done? 3 0,40 1; 0,6
3. What did you do yesterday? What have you done? 3 0,60 0,5; 0,1
4. Tom is writing a letter Tom is writin letters 3 0,40 1; 0,9
5. Tom is writing a letter Tom is writin letters 3 0,80 0,85; 0,05

1	 Interesting research about parallelization of the Levenshtein distance algorithm (and Levenshtein-
-Damerau distance algorithm) for accelerate the calculations is described in [12].

163

3.  Procedure of Terms Coding based on thesaurus

On the figures and tables below concept of the coding process is described. Tables 3‒5
include sample data to be encoded. Formulas 4‒7 describe all steps of the coding process.

3.1.  The data model

The database model of thesaurus (τ) with tables of unique terms, groups of terms and
table of terms associations is presented below.

Example of use of the model above:

T a b l e 3 T a b l e 4 T a b l e 5
Terms Terms_association Groups

ID_terms Terms ID_terms ID_groups ID_groups Describe
1 Tom 1 1 1 names
2 Mary 2 1 2 my best friends
3 John 3 1 3 vehicles
4 car 1 2
5 auto 2 2
6 vehicle 4 4

5 5
6 6

It is easy to see that a term can belong to a few groups. The example shows that Tom
and Mary can belong to the groups: names and my best friends. It means that Tom, Mary and
John are the same terms (names) because they have the same meaning. Following terms: car,
auto, vehicle are the same terms ‒ vehicle.

3.2.  The coding process

The process of common group analysis proceeds with the following steps:
1.	 Get all codes of each terms of both texts (aS, bS) from thesaurus (e.g. array of codes for

cases where one term can has a multiple meanings).
	 Ψ Ψ(, ,) (,) and (,) (,)a q i t b j ts S i s S jS S

τ τ→ →C Ca bS S
	 (4)

Fig.  1.  The database model of thesaurus (τ)

164

where:
Ψ	 ‒	 function to get codes of terms,
τ	 ‒	 thesaurus,
tiS 	 –	 the number of term’s codes variants,

CaS 	–	 array of codes of terms of sentence aS.

2.	 Calculate number of occurrences of codes terms based on their frequency in texts
(i.e. matching process of common meanings).

	 Γ(,) ()C C Ca b abS S S
→ h 	 (5)

where:
Γ	 –	 function which calculates frequency of occurrences of codes,
CabS 	 –	 array of the best codes of terms,
h	 –	 ID of the term.

3.	 Replace each term in both texts with the most frequent code
	 Φ Φ(,) () and (,) ()C C NC C C NCab a a ab b bS S S S S S

→ →i jS S 	 (6)

where:
Φ	 –	 function which replaces the most frequent code,
NCbS 	–	 new sentence with encoded terms.

4.	 Function which calculates similarity KS between two sentences (short texts).
	 Ω (, , ,)NC NCa bS S

q q PSτ → 	 (7)

where:
Ω	 –	 function which calculates similarity KS measures between sentences,
qτ	 –	 acceptable border value of similarity measure for two terms – between term

includes in text and term derives from thesaurus.

4.  Verification of proposed similarity measures mechanism

The following tests show how term coding methods improve the mechanism of similarity
between two short texts. As a test of the proposed algorithms, 170 pars of correct and incorrect
sentences written in various tenses were checked. 10% of interesting sentences were chosen
and described below. Some examples based on the three popular languages of Eastern Europe
are provided in Appendix 1.

The terms and sentences used for the tests were presented in the tables below:
1.	 synonyms (thesaurus) (Table 6)
2.	 grammatically and spelling correct sentences written in various tenses (Table 7)
3.	 grammatically and spelling incorrect sentences written based on the correct sentences

(Table 7)
4.	 encoded texts based on the thesaurus (Table 8)
5.	 results of tests (Table 9)

165

For all tests and in all cases the acceptable boundaries of similarity P are: qτ = 0.80 for
thesaurus and q = 0.75 for similarity between terms in sentences (formula 2).

T a b l e 6
Example of the thesaurus schema with terms groups by common ID (code in text).

Similar term from column Describe in analysing text will be replaced by ID

ID of groups Describe
(e.g. name of the group) Terms

#1 names Tom, Mary, John, Jimmy, Jane, Derek, Gina
#2 cars car, auto, automobile, taxi, vehicle
#3 numbers one, two three, four, five, six, seven, eight, nine, ten
#4 seasons spring, summer, autumn, winter
#5 fruits apple, pear, cherry, mango, kiwi, watermelon
#6 cities Warsaw, Berlin, London
#7 phones phone, telephone, iPhone, mobile phone
#8 very very, extremely
#9 shortcuts1 is not, isn’t
#10 shortcuts2 are not, aren’t
#11 shortcuts3 don’t, do not
#12 fluid milk, water
#13 my_friends Tom, Jack, Ella, Olivia

T a b l e 7
Correct and incorrect sentences for the tests

No. Correct sentences Incorrect sentences with synonyms
s1 Tom is writing a letter Dere is writin a letters
s2 We are waiting for a taxi We are waitin for car
s3 Is Mary having breakfast? Is Jane hasing brekfest?
s4 Tom is not writing a letter Jimm isn’t writin leter
s5 He isn’t looking at the stars He is not look at the start
s6 He drinks milk twice a day He is drinks water twice a day
s7 We go to work six times a week We goes to works seven times a week
s8 I always feel great in spring I alway feel great in summer
s9 Do you like apples? Does you likes pear?
s10 I don’t like milk I do not likes water
s11 Tom was writing the letter all day yesterday Jimmy writting the leter all day yestaredy
s12 They met when they were studying in Berlin They met when they were studying in Warsaw
s13 I was working in London this time last year I was work in Berlin this times last years

166

s14 I have found his telephone number I have found his phone number
s15 I was shocked when I found out that Derek

and Gina had got divorced
I was shock when I found out that John and
Mary has gotten divorced

s16 I have been working for five hours I has been working for six hour
s17 It had been raining for days so when they

finally left, the roads were very muddy
It has been raining for days so when they
finaly left, the roads were extremly muddy

Table 7 shows the correct sentences with synonyms in the left column and incorrect
sentences with synonyms in the right column. Synonyms (not all) include mistakes, like for
example Dere instead of Derek in the first row.

T a b l e 8
Correct and incorrect sentences after terms coding (based on the thesaurus)

No. Correct sentences after terms coding Incorrect sentences with synonyms after terms
coding method

s1 #1 is writing a letter #1 is writin a letters
s2 we are waiting for a #2 we are waitin for #2
s3 is #1 having breakfast? is #1 hasing brekfest?
s4 #1 #9 writing a letter #1 #9 writin leter
s5 he #9 looking at the stars he #9 look at the start
s6 he drinks #12 twice a day he is drinks #12 twice a day
s7 we go to work #3 times a week we goes to works #3 times a week
s8 i always feel great in #4 i alway feel great in #4
s9 do you like #5? does you likes #5?
s10 i #11 like #12 i #11 likes #12
s11 #1 was writing the letter all day yesterday #1 writting the leter all day yestaredy
s12 they met when they were studying in #6 they met when they were studying in #6
s13 i was working in #6 this time last year i was work in #6 this times last years
s14 i have found his #7 number i have found his #7 number
s15 i was shocked when i found out that #1 and

#1 had got divorced
i was shock when i found out that #1 and #1
has gotten divorced

s16 i have been working for #3 hours i has been working for #3 hour
s17 it had been raining for days so when they

finally left, the roads were #8 muddy
it has been raining for days so when they finaly
left, the roads were #8 muddy

Table 8 includes sentences from table 7 after coding by the proposed algorithm.
The similarity of these sentences was calculated with (1)(2) and presented below.

167

T a b l e 9
Values of similarity of the sentences with and without the terms coding method based

on Levenshtein distance algorithm. Description of columns: Col. 1 – Similarity between
correct and incorrect sentences without methods of the: similarity measure between terms;

coding terms (based on Table 7 data); Col. 2 – Similarity between correct and incorrect
sentences (without using method of terms coding) based on Table 7 data; Col. 3 – Similarity

between correct and incorrect sentences (with using method of terms coding) based
on Table 8 data; No – number of sentence

No. Col. 1 Col. 2 Col. 3
s1 0.40 0.80 1.00
s2 0.50 0.67 0.83
s3 0.25 0.75 1.00
s4 0.00 0.33 0.80
s5 0.43 0.57 0.83
s6 0.71 0.71 0.86
s7 0.62 0.75 0.88
s8 0.67 0.83 1.00
s9 0.25 0.50 0.75
s10 0.20 0.40 1.00
s11 0.38 0.62 0.75
s12 0.88 0.88 1.00
s13 0.56 0.78 0.89
s14 0.83 0.83 1.00
s15 0.64 0.71 0.86
s16 0.57 0.71 0.86
s17 0.81 0.88 0.94

The obtained results show that the method of coding terms (column no. 3) increases
the precision of similarity estimation in some cases from 0‒20% even up to 75‒100%.

Fig.  2.  Graphical results of quality test of English sentences. For all tests in this case
acceptable boundaries of similarity P are: q = 0.75, qτ = 0.80

168

5.  Comparison quality of described method with popular methods

Results in table 10 (and in tables 11‒16 in Appendix 1) show that the similarity methods
based on Levenshtein distance algorithm (i.e. Lda without coding terms method and
Lda with coding terms method – Table 9/Col. 3) are more precise than popular methods
like: Dice distance, Jaccard distance or Cosine distance [17]. Formulas (8‒12) refer to these
distances.

Dice distance is described by the formula below:

	 Dice_dist(,)a b
a b

a b
i k

ij kjj

n

ij kjj

n

j

n= =

==

∑
∑∑

2 1

2 2
11

	 (8)

where:
ai	 –	 weight of the term in i position of the vector of text document a,
n	 –	 length of the two vectors created from two text documents a and b.
Jaccard distance is described by the formula below:

	 Jaccard_dist (,)a b
a b

a b a b
i k

ij kjj

n

ij kjj

n
ij kjj

n

j

=
+ −

=

= =

∑
∑ ∑

1

2 2
1 1==∑ 1

n 	 (9)

Cosine distance is described by the formula below:

	 Cosine_dist (,)a b
a b

a b
i k

ij kjj

n

ijj

n
kjj

n
= =

= =

∑
∑ ∑

1

2
1

2
1

	 (10)

Weights are calculated by special formulas, i.e. term frequency method (tf) or term
frequency – inversed document frequency method (tf ‒ idf) [18].

The idf method is described by the formula below:

	 idf N
dft
t

= log 	 (11)

where:
N	 –	 the number of analysed documents,
dft	 –	 the number of documents where term t occurs.
The tf ‒ idf method is described by the formula below:

	 tf idf N
df

tft,d
t

t d− = ×log , 	 (12)

where:
tft,d	 –	 the number of times that term t occurs in document d.

169

T a b l e 10
Values of similarity of the sentences using popular methods. Describe of columns (experiments):
Col. 1 – Similarity method based on Lda without coding terms method; Col. 2 – Cosine distance
based on term frequency weight method (tf); Col. 3 – Dice distance based on tf weight method;
Col. 4 – Jaccard distance based on tf weight method; No. – number of sentence. Experiments

2‒4 based on Table 8 data (i.e. method of coding synonym terms was used)

No. Col. 1 Col. 2 Col. 3 Col. 4
s1 0.80 0.40 0.08 0.25
s2 0.67 0.55 0.10 0.37
s3 0.75 0.25 0.06 0.14
s4 0.33 0.00 0.00 0.00
s5 0.57 0.46 0.07 0.30
s6 0.71 0.77 0.12 0.62
s7 0.75 0.63 0.07 0.45
s8 0.83 0.66 0.11 0.50
s9 0.50 0.25 0.62 0.14
s10 0.40 0.22 0.50 0.12
s11 0.62 0.40 0.53 0.25
s12 0.88 0.90 0.00 0.81
s13 0.78 0.56 0.06 0.38
s14 0.83 0.83 0.13 0.71
s15 0.71 0.69 0.04 0.52
s16 0.71 0.57 0.08 0.40
s17 0.88 0.81 0.05 0.68

Fig.  3.  Graphical results of similarity of the incorrect sentences using popular methods.
Description of experiments: Exp. 1 – Similarity method based on Lda without coding
terms method; Exp. 2 – Cosine distance based on term frequency weight method (tf);
Exp. 3 – Dice distance based on tf weight method; Exp. 4 – Jaccard distance based on
tf weight method; Exp. 5 ‒ Similarity between correct and incorrect sentences (with

using method of terms coding) based on Table 8 data

170

As can be seen, the described similarity methods (based on Lda) include a fully different
algorithm compared with the popular methods (based on terms weights and vector space
models) because of the identification of the distribution of terms. Described popular methods
based on the number of occurrences of terms in documents only. Methods based on Lda do
not need other documents instead of e.g. term frequency – inversed document frequency
method to estimate weight of terms (in case of two sentences impossible to apply). Graphical
interpretation includes all described methods is shown below (Figure 3). The best results
includes exp. no. 5.

6.  Summary

The method of coding terms described in this paper increases the precision of calculation
of the similarity measures based on Levenshtein distance significantly. This method is
characterized by the speed of data analysis and simplicity of implementation. The coding
method of terms in combination with the Levenshtein distance and the similarity measures
can be used in: detecting plagiarism (resignation of variety of nouns and verbs based on
standard thesaurus and stemming algorithms), finding phrases in text documents [8] (or
web documents [13], etc.), algorithms for correcting mistakes, mechanism of identification
and classification of content based on term weighted methods [1, 14, 15], etc.

The proposed solutions are applied and have been tested in the mechanism of topic
analysis and descriptions of selected written works (diploma thesis) to automatic selection
of supervisors and reviewers at the Faculty of Physics, Mathematics and Computer Science
of the Cracow University of Technology2. The solution also was included in Anti-plagiarism
System of Faculty of Physics, Mathematics and Computer Science3. Tests results show a high
quality of the text mining analysis.

R e f e r e n c e s

[1]	 Niewiarowski A., Term frequency optimization for the vector space model, “Technical
Transactions”, 9-M/2012, 155-165.

[2]	 Yih W., Meek Ch., Improving Similarity Measures for Short Segments of Text, Microsoft
Research, USA 2007.

[3]	 Long-Scheng Cz., Chia-Wei Ch., A New Term Weighting Method by Introducing Class
Information for Sentiment Classification of Textual Data, “Proceedings of the International
MultiConference of Engineers and Computer Scientists”, IMECS 2011, 394-397.

[4]	 Metzler D., Dumais S., Meek Ch., Similarity Measures for Short Segments of Text, Microsoft
Research, USA 2007.

[5]	 Piasecki M., Broda B., Semantic similarity measure of Polish nouns based on linguistic
features, “Business Information Systems 10th International Conference, Lecture Notes in
Computer Science, Springer”, BIS 2007, 381-390.

2	 Manager of Diploma Thesis web site: https://dyplomy.fmi.pk.edu.pl
3	 Screenshot of our .NET application (for MS Windows) for analyze plagiarism: www.pk.edu.

pl/~aniewiarowski/programy/antyplagius.png

171

[6]	 Novay L.G., Novay Ch. W., Brussee R., Thesaurus Based Term Ranking for Keyword Extraction,
“DEXA’10 Proceedings of the 2010 Workshops on Database and Expert Systems Applications,
Computer Society”, 2010.

[7]	 Castillo Sequera J.L., Fernandez del Castillo Diez J.R., Gonzales Sotos L., A clustering algorithm
based on a recursive function of distance and similarity, “IADIS European Conference Data
Mining” 2011, 43-50.

[8]	 Szwed P., Conecpts extraction from unstructered Polish texts: a rule based approach,
“Proceedings of the 2015 Federated Conference on Computer Science and Information Systems,
Springer”, 355-364.

[9]	 Lovins J.B., Development of a Stemming Algorithm, “Mechanical Translation and Computational
Linguistics” vol. 11, nos. 1 and 2 1968.

[10]	 Willett P., The Porter stemming algorithm: then and now, “Program”, Vol. 40, 219-223.
[11]	 Abramowicz W., Filipowska A., Małyszko J., Wagner T., Lemmatization of Multi-Word Entity

Names for Polish Language Using Rules Automatically Generated Based on the Corpus Analysis,
“Language and Technology Conference”, 2009, 540-544.

[12]	 Niewiarowski A., Stanuszek M., Parallelization of the Levenshtein distance algorithm,
“Technical Transactions”, 3-NP/2014, 109-122.

[13]	 Niewiarowski A., Działanie parsera Part-of-Speech Tagging w ujęciu mechanizmu Web Content
Mining, 6’th National Conference „Science and Industry”, 2011, 93-100.

[14]	 Niewiarowski A., Stanuszek M., The mechanism of identification and classification of content,
“Studia Informatica”, Volume 34, Number 2B (112), 2013, 205-222.

[15]	 Niewiarowski A., Mechanism of plagiarism detection based on the variation of the Levenshtein
distance algorithm, 5’th National Conference „Science and Industry”, 2010, 86-103.

[16]	 Левенштейн В.И., Двоичные коды с исправлением выпадений, вставок и замещений
символов, „Доклады Академий Наук СCCP”, 163 (4), 1965, 845-848.

[17]	 Singhal, Amit., Modern Information Retrieval: A Brief Overview, “Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering”, 24 (4), 2001, 35-43.

[18]	 Rajaraman, A., Ullman, J.D., Data Mining, “Mining of Massive Datasets”, Cambridge University
Press, 2014, 1-17.

172

Appendix 1

T a b l e 11
Example of Polish sentences. Stars define the same origin

(i.e. method of coding synonyms was used)

No. Correct sentence Incorrect sentence
s1 Jutro będzie nowy* dzień Jutro bedzie nowiutki* dzien
s2 Gdy** chcesz opisać prawdę, elegancję

pozostaw*** krawcom.
Kiedy** chcesz opisac prawde, elegancje
zostaw*** krawcom.

s3 Kto się lęka**** już przegrał Kto sie boi**** juz przegral

T a b l e 12
Values of similarity of the sentences using popular methods. Description of columns

(experiments): Col. 1 – Similarity method based on Lda without coding terms method;
Col. 2 – Similarity method based on Lda with coding terms method; Col. 3 – Cosine distance

based on term frequency weight method (tf); Col. 4 – Dice distance based on tf;
Col. 5 – Jaccard distance based on tf weight method; No. – number of sentence

No. Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
s1 0.75 1.00 0.25 0.06 0.14
s2 0.86 1.00 0.57 0.08 0.40
s3 0.40 0.60 0.40 0.08 0.25

Table 11 includes correct and incorrect Polish sentences. Sentences have similar meaning
but include different terms. Column no. 2 in table 12 includes the best values of the tests.

T a b l e 13
Example of Russian sentences. Stars define the same origin

(i.e. method of coding synonyms was used)

No. Correct sentence Incorrect sentence
s1 Завтра будет новый* день Завтра будетъ новенкий* день
s2 Если** вы хотите сказать*** правду,

оставьте элегантность портным
Когда** вы хатите рассказать***
правду,оставте элегантность портным

s3 Кто боится уже проиграл Кто баиться уже праиграл

173

T a b l e 14
Values of similarity of the sentences using popular methods. Description of columns

(experiments): Col. 1 – Similarity method based on Lda without coding terms method;
Col. 2 – Similarity method based on Lda with coding terms method; Col. 3 – Cosine distance

based on term frequency weight method (tf); Col. 4 – Dice distance based on tf;
Col. 5 – Jaccard distance based on tf weight method; No. – number of sentence

No. Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
s1 0.75 1.00 0.75 0.18 0.60
s2 0.75 1.00 0.75 0.09 0.60
s3 0.75 0.75 0.50 0.12 0.33

Table 13 includes correct and incorrect Russian sentences. Sentences have similar
meaning but include different terms. Column no. 2 in table 14 includes the best values
of the tests.

T a b l e 15
Example of Belarusian sentences. Stars define the same origin

(i.e. method of coding synonyms was used)

No. Correct sentence Incorrect sentence
s1 Заўтра* будзе новы дзень Заутра* будзіць новый дзень
s2 Калі вы хочаце сказаць праўду,

пакіньце** элегантнасць для краўцоў
Калі вы хочаце сказать правду, пазастаўце**
элегантнасць для краўцоў

s3 Хто баіцца ўжо прайграў Кто баіца ужо праіграў

T a b l e 16
Values of similarity of the sentences using popular methods. Description of columns

(experiments): Col. 1 – Similarity method based on Lda without coding terms method;
Col. 2 – Similarity method based on Lda with coding terms method; Col. 3 – Cosine distance

based on term frequency weight method (tf); Col. 4 – Dice distance based on tf;
Col. 5 – Jaccard distance based on tf weight method; No. – number of sentence

No. Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
s1 0.75 0.75 0.50 0.12 0.33
s2 0.89 1.00 0.77 0.08 0.63
s3 0.50 0.50 0 0 0

Table 15 includes correct and incorrect Belarusian sentences. Sentences have similar
meaning but include different terms. Column no. 2 in table 16 includes the best values
of the tests.

