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1. Introduction and prerequisites

In [1], the authors proved a deep result that is now considered fundamental in the theory 
of extensions of separately holomorphic functions with singularities.

Theorem 1.1. (Theorem 1 from [1]) Let f be a holomorphic function on the polydisk 
′×U Un  in C C Cn n= ×−1 ,  and for each fixed ′a  in some nonpluripolar set E UÌ ′,  the 

function f a zn( , )′  can be continued holomorphically to the whole plane with the exception 

of some polar set of singularities M a( ) ,′ ÌC  then f can be continued holomorphically to 

( ) ,′×U SC   where S is a closed pluripolar subset of ( ).′×U C

Theorem 1.1 remains true if ′U  is a domain of holomorphy in Cn−1  and Un is a domain 
in C. Moreover, a set S in the conclusion can be minimalised in the sense that for any 

′a EÎ ,  the fiber S z a z Sa n n( , ) : { : ( , ) }′ ⋅ = ′Î ÎC  is contained in M a( )′  and for any ′ ′z UÎ ,   
the fiber S z( , )′ ⋅  is polar (see, for instance, Theorem 9.2.24 in [5] for details).

Applications in mathematical tomography found by O. Öktem (see [7], [8]) revived an 
interest in the theory of extensions of separately holomorphic functions with singularities 
(see [2], [3], [4]) and possible generalisations of the theory to the general case of complex 
manifolds (see [6], [9]). However, one of the main problems in the development of the theory 
in the case of manifolds is the lack of analogs of many fundamental results. In this paper, 
Theorem 1.1 is generalised to the case of s-compact Josefson manifolds.

Recall that a manifold is called s-compact (or countable at infinity) if it is a union 
of countably many compact subsets. A complex manifold X is called a Josefson manifold 
if every locally pluripolar set in X is globally pluripolar.

2. Main Theorem

Theorem 2.1. Let D be a s-compact connected Josefson complex manifold of 
dimension n and let A Ì D not be pluripolar. Let D be a nonempty domain in C. For any 
a Î A, let M a( )ÌC  be a closed polar set such that ∆∩M a( ) .= ∅  Let S D⊂ ∆ ( )×  
be such that for any f Î S and a Î A, there exists a function f M aa

 ÎO \( ( ))C  such that 

f f aa
 ( ) ( , ) .⋅ = ⋅ on D

Then there exists a closed pluripolar set M D Ì ×C  such that:

(a) M D∩ ∆( ) ,× = ∅

(b) M M a a Aa( , ) ( ), ,⋅
 ⊂ ∈

(c) M z Dz( , ) is polar, ,⋅
 ⊂ ∈C

(d) any f Î S extends holomorphically to f D M� �ÎO \(( ) ).×C
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Proof of Theorem 2.1.
Step 1.

Let U be a domain in D such that there exists a biholomorphism Φ Ω: ,U U→  where 

WU is a domain in Cn. Assume that A A UU := Ç  is not pluripolar. Then B AU U: ( )= Φ ΩÌ  
is not pluripolar. For any b Î B, define M b M a( ) : ( ),=  where a b AU= −Φ 1( ) .Î  Thus M(b) 

is closed, polar and M b( ) .∩∆ = ∅  Define a family S f f SU U: : .= { }×∆ ∈  From the 

assumptions for any f Î SU and a Î AU there exists a function f f M aU a a, : ( ( ))=  ÎO \C  

such that f w f a w wU a, ( ) ( , ), . = ∈∆  Define a new family F : { ( , ) ( ( ), ) := = −g b w f b wΦ 1
 

f SUÎ }.  Then F O⊂ ∆( )ΩU ×  and for each g Î F and b Î B, a function g wb ( ) :=  
: ( ), ( )= −f wU bΦ 1

  is, from its definition, holomorphic on CM b( )  and g wb ( ) =  
= =−f b w g b w w( ( ), ) ( , ) .Φ 1 for ∈∆

Hence, from Theorem 1.1, there exists a relatively closed pluripolar set M U
 ÌΩ ×C  

such that:

‒ M M b b Bb( , ) ( ), ,⋅
 ⊂ ∈

‒ M bb U( , ) , ,⋅
 ⊂ ∈C is polar Ω

‒ M U
 ∩ ∆( ) ,Ω × = ∅

– for any g Î F, there exists a function g MU
� �ÎO \(( ) )Ω ×C  such that g g=   on  

ΩU ×D.

Define a set M b w b w M� �: {( ( ), ) : ( , ) }.= −Φ 1 Î  Fix a z Î U and let b = F(z). Then

M w z w M w b w M w b w Mz( , ) { : ( , ) } { : ( ( ), ) } { : ( , ) }⋅
−= = = =� � � �Î Î Î Î Î ÎC C CΦ 1 MM b( , )⋅

�

Hence, M M aa( , ) ( )⋅
 Ì  for each a Î AU and M z( , )⋅

  is polar for z Î U. Now, assume  

that there exists a point ( , )a w MÎ   such that ( , ) .a w U∈ ∆×  Let b a= Φ( ).  Then 

( , )b w U∈ ∆Ω ×  and, since ( , ) {( ( ), ) : ( , ) }, ( , ) .a w b w b w M b w MÎ Î ÎΦ−1    Thus, 

M U
∩ ∆ ≠( )Ω × ∅  ‒ a contradiction.

For fixed f Î SU, define f a w g a w

( , ) : ( ( ), ).= Φ  Because ( , )a w MÎ   if, and only  

if, ( ( ), ) , (( ) ).Φ a w M f U MÎ Î� � �O \×C  Moreover, f z w g z w g z w

( , ) ( ( ), ) ( ( ), )= = =Φ Φ  
= f z w( , )  for ( , ) ,z w U∈ ∆×  where last equality follows from the definition of the  
family F. Thus, any function f Î S has an extension
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f f U M

f D
U
�

� �

: ( ) ,= ×

×







on

on

C 

D

which is well defined and holomorphic on ( ) (( ) ).D U M× ×∆ ∪ C  

Step 2.
Let U denote a domain in D such that there exists a relatively closed pluripolar set 

M UU
 Ì ×C  with the following properties:

(1) ( ) ( ), ,( , )M M a a A UU a ⋅
 ⊂ ∈ ∩

(2) ( ) ,( , )M z UU z ⋅
 ⊂ ∈C is polar,

(3) M UU
 ∩ ∆( ) ,× = ∅

(4) for any f Î S, there exists an extension f D U MU U
� �∈ ∆ ∪O \(( ) (( ) ))× ×C  such  

that f f DU= × on D.
Let V be a domain in D, biholomorphic to a domain in Cn, such that V U∩ ≠∅.  

Define a family S f f SV V= { }×∆ ∈: .  For any a U V∈ ∩ ,  define M a MU a( ) : ( ) .( , )= ⋅
  If 

the set ( )V A UÇ   is not empty, for a V A U∈ ∩( )  let M a( )  be as in the assumptions 

of Theorem 2.1. For any f S a U VV∈ ∈ ∩for  define f f aV a U, ( ) : ( , )⋅ = ⋅� �  and for 

a V A U∈ ∩( )  (if not empty) let f fV a a, :
 =  from the assumptions. From Step 1, with V 

playing the role of U and AU replaced by ( ) ( )V U A V∩ ∪ ∩ 1 there exists a relatively closed, 

pluripolar set M VV
 Ì ×C  such that:

‒ ( ) ( ) ( ), ,( , ) ( , )M M M a a A V UV a U a
 

⋅ ⋅⊂ ⊂ ∈ ∩ ∩

‒ ( ) ( ), ( ) ,( , )M M a a A V UV a


⋅ ⊂ ∈ ∩ 

‒ ( ) , ,( , )M z VV z


⋅ ⊂ ∈C is polar

‒ M VV
 ∩ ∆( ) ,× = ∅

‒ for any f Î S, there exists f D V MV V
� �∈ ∆ ∪O \(( ) (( ) ))× ×C  such that f fV=   on D ×D.

Then a set M M M U VU V
  : ( )= ×∪ ⊂ ∪ C  is relatively closed and pluripolar, 

M D ∩ ∆( ) ,× = ∅  for each a Î A, the fiber M M M M aa U a V a( , ) ( , ) ( , )( ) ( ) ( )⋅ ⋅ ⋅=  ∪ ⊂  
and for any z D M z∈ ⋅, ( , )

  is polar. Fix f SÎ .  The function f has two extensions: 

1 V Ç U is necessary, because A Ç V alone could be pluripolar.
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f D U MU U
� �∈ ∆ ∪O \(( ) (( ) ))× ×C  and f D V MV V

� �∈ ∆ ∪O \(( ) (( ) ))× ×C  such that on 

D × D the equality f f fU V
 = =  holds. Define a function

f

f U M

f V M

f D

U

V
�

� �

� �:

( )

( ) .=

×

×

×














on

on

on

C

C





D

Observe that any connected component of (( ) )U V MÇ ×C    is a domain  

intersecting D ×D.  Thus, from the identity principle, the functions f fU V
 and  agree 

also on (( ) ) .U V MÇ ×C    Hence, f  is well defined and holomorphic on ( )D ×∆ ∪  

∪ ∩((( ) ) ).U V M×C  

Step 3.

Since D is s-compact, there exists a countable covering { }U j j=1
¥  such that each Uj  

is biholomorphic to a domain in Cn. Because A is not pluripolar, there exists j0 such that 
A U jÇ

0
 is not pluripolar. From Step 1, we obtain a relatively closed pluripolar set 

M UU jj0 0

 Ì ×C  having properties (1) to (4). From Step 2, for any U Uj j¹
0

 such that 

U Uj j∩ ≠
0

∅  there exists a relatively closed pluripolar set M UU jj

 Ì ×C  having same 

properties. Define D U U Uj j j1 0
: { : },= ∅


∩ ≠  a set M M U DD U jj1 1
 : { : }=


Î  and 

a function

f

f U M j j

f U M

f D

D

U j D

U j D

j

j1

1

0 0 1

0

�

� �

� �:

( ) ,

( )=

×

×

×









on

on

on

C

C





≠

∆






From Step 2, fD1

  is well defined and holomorphic on ( ) (( ) )D D MD× ×∆ ∪ 1 1
C    and 

f f DD1
 = ×on D.  Thus, MD1

  has properties (1) to (4). Now, for any U Dj Ï 1  such that 

U Dj ∩ ≠1 ∅  from Step 2 there exists a relatively closed pluripolar set M UU jj

 Ì ×C  having 

properties (1) to (4). Define D U U Dj j2 1: { : },= ∅∩ ≠
  M M U DD U jj2 2

 : { : }= Î


 and
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f

f U M U D

f D M

f D

D

U j D j

D D
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2
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1

1
�

� �

� �:

( ) ,

( )=

×
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on
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on
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∉
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Once again, fD2

  is well defined and holomorphic on ( ) ( ) ),D D MD× ×∆ ∪ 2 2
C  

 
f fD2

 =  on D ×D  and MD2

  has all properties (1) to (4).

We obtain an open covering { }Dk k=1
¥  of D such that for each k =1 2, ,  there exists 

a relatively closed pluripolar set MDk
 having properties (1) to (4). Define M MDk k

 :=
=1

¥

  

and a function f f D MD kk

� � �: ( ) .= ×on C   Thus, f  is well defined and holomorphic on 

( ) .D M f f D× = ×C  � �and on D  Hence, the set M̂ has all properties (a) to (d) and proof 
of Theorem 2.1 is finished.

¨
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