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Optymalne kształtowanie elementów konstrukcyjnych 
jako problem optymalnego sterowania

Abstract
In the paper an application of the maximum principle to designing a cross section of a still frame under 
several loading schemes is presented. The optimal height of the web under minimum volume of still as a cost 
function is determined. In particular the implicit and explicit conditions of state variables at characteristic 
points of axis of symmetry under different loading schemes are presented.
Keywords: optimal control, maximum principle

Streszczenie
W artykule przedstawiono zastosowanie zasady maksimum w wymiarowaniu przekroju poprzecznego 
stalowej ramy poddanej wielu stanom obciążenia, polegającego na wyznaczeniu optymalnej, ze względu 
na minimum objętości stali, wysokości środnika. Szczegółowo przedstawiono jawne i uwikłane warunki 
zmiennych stanu w punktach charakterystycznych oraz w osi symetrii, a także sformułowania prowadzące 
do uwzględnienia kombinacji obciążeń.
Słowa kluczowe: sterowanie optymalne, zasada maksimum



120

1.  Introduction

Optimisation of complex structural systems, which until recently remained in the domain 
of basic research, has now become a practical fact owing to the development of numerical 
methods on the one hand and computer software on the other. Optimal control theory 
has become an extremely valuable theory that can be used effectively as a tool for solving 
important problems of various scientific disciplines, including structural engineering. Some 
of the results obtained are presented in this paper. 

Optimal control theory has been applied to the field of optimal design of structures 
with the use of the maximum principle. The principle is related to the onerous character 
(which until recently had been an unsurmountable obstacle) of the so-called multi-point 
boundary value problem formulated with reference to sets of ordinary differential equations. 
The specific nature of tasks faced by structural engineering manifests itself in the need to 
formulate not only the initial-boundary conditions, but also to take into account the internal 
point conditions. 

At present, owing to effective numerical algorithms, complemented by the authors’ own 
suggestions, particularly those referring to non-analytical objective functions and restricting 
the number of characteristic intervals as well as taking account of the secondary conditions of 
the maximum type listed in the Dircol-2.1 computer software, it is possible to undertake new 
and unconventional tasks related to optimisation – significant both from the perspective of 
the expansion of knowledge and the possible applications. 

2.  The subject of optimisation

The article presents the formulation of the problem of finding the optimal design of a steel 
I-frame subjected to various loads and the subsequent solution to this problem. The frame 
to be optimised is a load-bearing element of a hall. The static diagram of the frame (Fig. 1) 
results from the structure of the building and the manner of support. 

Fig. 1.	 The static diagram of the frame
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The optimisation process will determine the course of variability of web height, whereas 
the dimensions of the remaining parts of the I-frame will remain constant (Fig. 2).
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Fig. 2.	 Cross-section of the frame
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3.  Loads

In the process of designing a frame cross-section all the relevant computational situations 
that may occur during the service of the structure in which it is to be used should be taken 
into account. The computational situation should be understood as a specific combination of 
individual load systems – hereinafter called elementary loads. The number of elementary loads 
determines the number of state equations describing the structure and affects considerably 
the scope of the optimisation task. In the problem under consideration here the following 
elementary loads have been taken into account: 

Load 1. frame dead load (maximum),
Load 2. roofing dead load (maximum),
Load 3. frame dead load (minimum),
Load 4. roofing dead load (minimum),
Load 5. snow load,
Load 6. wind load – wind from the left,
Load 7. wind load – wind from the right. 
Symbols of the above elementary loads in the normal (perpendicular) and tangential 

direction to the frame axis have been listed in Table 1. 
The static and kinematic values describing the structure are linearly dependant on the loads, 

which is why the corresponding values in the considered combinations may be aggregated. Unlike 
the number of elementary loads, the number of combinations does not affect significantly the 
scope of the optimisation task. This problem will be discussed further on in the paper. Twelve 
loads combinations have been considered, which are presented in Table 2. 

Table 1.	 Elementary loads in the characteristic interspaces

Load Left pillar Left lintel Right lintel Right pillar

1 2 3 4 5

Load 1
q1t 0 γmax A γs cosα γmax A γs cosα 0

q1n – γmax A γs – γmax A γs sinα γmax A γs cosα γmax A γs

Load 2
q2t 0 qp.max cosα qp.max cosα 0

q2n – qp.max – qp.max sinα qp.max sinα qp.max
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1 2 3 4 5

Load 3
q3t 0 γmin A γs cosα γmin A γs cosα 0

q3n – γmin A γs – γmin A γs sinα γmin A γs cosα γmin A γs

Load 4
q4t 0 qp.min cosα qp.min cosα 0

q4n – qp.min – qp.min sinα qp.min sinα qp.min

Load 5
q5t 0 qs cos2α qs cos2α 0

q5n 0 – qs cosα sinα qs cosα sinα 0

Load 6
q6t qw.sn – qw.pn – qw.pz – qw.sz

q6n 0 0 0 0

Load 7
q7t – qw.sz – qw.pz – qw.pn qw.sn

q7n 0 0 0 0

qit – load in the normal (perpendicular) direction towards the axis.
qin – load in the tangential direction towards the axis.

Table 2.	List of loads combinations

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Load 1 + + + + + +

Load 2 + + + + + +

Load 3 + + + + + +

Load 4 + + + + + +

Load 5 + + + + + +

Load 6 + + + +

Load 7 + + + +

4.  Formulation of the optimisation task

The essence of the optimisation task presented in this article is finding the optimal design 
of the frame cross-section with the variable web height. The task comprises determination of 
the course of variability of web height so that the serviceability and the load bearing capacity 
limits are not exceeded. There are an infinite number of solutions fulfilling this requirement, 
yet of all the possible designs only the one which is characterised by the lowest objective 
function value may be considered optimal. The objective function in this task is the volume 
of steel needed for the frame, which in the optimal solution should be possibly the smallest. 

The maximum principle allows formulation of the problem which makes it possible to 
obtain the only solution meeting the necessary conditions of the optimisation. The selection 

cd. Tab. 1
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of the solution of all the obtained ones which is the best from the perspective of the adopted 
objective function does not guarantee that it is optimal because the set of obtained solutions 
may not include the optimal solution at all. The tasks of optimal cross-section design in 
structural engineering are characterised by so many constraints resulting from technical, 
design and standard requirements that the set of the solutions meeting the optimisation 
necessary conditions is not large and often contains only one solution with the lowest 
objective function value, i.e. optimal. 

The frame to be optimised is symmetrical both in the aspect of its geometry and the loads 
to which it is subjected. However, experience shows – and the problem in question here is 
no exception – that the solutions obtained may be symmetrical or not. In this task the non-
symmetrical solution proved to be “better” in terms of the objective function value than the 
symmetrical one. However, due to the fact that that the presented problem is of practical 
character and that the non-symmetrical solution is not very likely to be accepted by an investor, 
it has been decided that the formulation of the problem should include the condition for the 
solution to be symmetrical. In fact, the condition boils down to the adoption of the half-frame 
model with state variables in the axis of symmetry corresponding to the subsequent loads.

The formal structure of optimisation problems with the application of the maximum 
principle has been discussed in the cited publications on the subject. This article will only 
present the detailed formulations related to the problem under consideration, in compliance 
with the formalism of the minimum principle, which encompasses: equations of state, 
conjugate equations, objective function, Hamilton’s function and functions of constraint.

5.  Equations of state

As discussed above, it has been decided to adopt the half-frame model (Fig. 3). The 
independent variable x is measured from the bottom of the left pillar up to joint 2 and next 
horizontally to the axis of symmetry. The equations of state are formulated in two characteristic 
interspaces (Table 3), taking into account the state variables at the support, joint 2 and at the 
roof ridge (Tables 4 and 5). 

Fig. 3.	The half-frame model 

In the case of symmetrical loads, the conditions for static and kinematic values at the 
ridge (point 3) are formulated similarly to a vertically sliding fixed joint. If the elementary 
load is not symmetrical, as is the case of loads 6 and 7, a corresponding load of the “mirror 
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reflection” type is introduced. The left half of the frame bearing load 6 is a mirror reflection of 
the right half of the frame bearing load 7 and vice versa. The corresponding conditions for state 
variables at a point in the frame’s axis of symmetry result from the above.

Table 3.	Equations of state in the characteristic interspaces

State variables
Equations of state

Pillar Lintel

Lo
ad

 i 
, (

i =
 1

 –
7)

vi
′ =vi iϕ ′ =vi iϕ α/cos

φi
′ =ϕi iM EI/ ′ =ϕ αi iM EI/( cos )

Mi
′ =M Qi i ′ =M Qi i /cosα

Qi
′ = −Q qi it ′ = −Q qi it /cosα

Ni
′ = −N qi in ′ = −N qi in /cosα

wi
′ =w N EAi i / ′ =w N EAi i /( cos )α

V ′ =V A ′ =V A /cosα

v 	– 	 normal displacement	 N	 –	 longitudinal force
φ – deflection angle	 w	 –	 tangential displacement
M – bending moment	 q	 –	 load
Q – transverse force	 α 	 – 	 the lintel inclination angle	

The frame to be optimised is described by the total of 43 equations of state – 6 for each 
of the 7 loads plus one equation describing the volume, introduced because of the adopted 
objective function. 

6.  Boundary conditions and internal point conditions of the state variables

If the frame retains the same static diagram when subjected to several load conditions, 
the state variables conditions in each of these loads are the same. Therefore it is only 
necessary to present the state variables conditions for one symmetrical load and for two 
“mirror reflection” non-symmetrical loads, and they are presented below. In both cases the 
state variables conditions may be divided into two groups: explicit conditions and implicit 
conditions.

The number of the necessary state variables conditions is equal to the number of equations 
multiplied by the number of characteristic intervals. Thus, for one load condition described 
with six equations in two characteristic intervals, the number of conditions that should be 
formulated amounts to 12.
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The explicit conditions for the symmetrical loads have been listed in Table 4, whereas the 
implicit conditions result from Figures 4, 5, 6 and 7. 

Table 4.	Explicit conditions for state variables at characteristic points for symmetrical loads

1
2

3
2– 2+

vi 0

φi C 0

Mi 0 C

Qi

Ni

wi 0

Symbols: 	 C – condition of continuity, 0 – predefined value

The conditions of equilibrium at joint 2:

2–

2–
Q 2–

X Q Q N

Y N Q N

= − + + =

= − − + =
∑
∑

− + +

− + +

0 0

0 0

2 2 2

2 2 2

: sin cos

: cos sin

α α

α α

Fig. 4.	Sectional forces at joint 2

The conditions of displacements compatibility at joint 2:

δ δ α α

δ δ α
X X

Y Y

v v w

w v w

2 2 2 2 2

2 2 2 2 2

− + − + +

− + − + +

= − =− +

= = +

: sin cos

: cos sinnα

�–2

–2

Fig. 5.	Displacements at joint 2

Y Q N= − =∑ 0 03 3: cos sinα α

Fig. 6.	Sectional forces at joint 3

The condition of forces equilibrium at joint 3:
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The condition of displacements compatibility at joint 3:

Fig. 7.	Displacements at joint 3

δ α αX v w3 3 30 0= − + =: sin cos

The following conditions have been formulated for each symmetrical load: 
▶▶ 6 explicit conditions (Table 4), 
▶▶ 2 implicit conditions of forces equilibrium at point 2, 
▶▶ 2 implicit conditions of displacements compatibility at point 2, 
▶▶ 1 implicit condition of forces equilibrium at point 3, 
▶▶ 1 implicit condition of displacements compatibility at point 3. 

The total of 12 conditions have been formulated for each symmetrical load. 
As regards the non-symmetrical loads (loads 6 and 7), the total number of 24 conditions 

must be formulated. The explicit conditions have been listed in Table 5. The implicit conditions 
at joint 2 are in this case the same as the ones related to the symmetrical loads, whereas the 
conditions at point 3 require discussion in greater detail. 

Table 5.	Explicit conditions for state variables at characteristic points for non-symmetrical loads 6 and 7

1
2

3
2– 2+

v6 0

φ6 C  

M6 0 C

Q6

N6

w6 0

v7 0

φ7 C

M7 0 C

Q7

N7

w7 0

The roof ridge joint equilibrium condition is to have the total forces and total moments 
acting on both sides of the joint neutralise each other to zero. 
The following occurs in direction X:

		  S SX X6
3

6
3 0− ++ =

If we adopt the half-frame model, the component in direction X on the left side of the joint 
is subject to the following relations: 
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		  S Q N Q N Q NX X X6
3

6
3

6
3

6
3

6
3

6
3

6
3− − − − −= + = + = +sin cos sin cosα α α α .

The following relations occur between sectional forces operating under load 6 and also 
under load 7, which is the mirror reflection of load 6 (Fig. 8):

		  S Q N Q N Q NX X X6
3

6
3

6
3

6
3

6
3

7
3

7
3+ + + + += + = − =− −sin cos sin cosα α α α

Fig. 8.	Sectional forces at the roof ridge: a) in the real diagram for load 6, b) in the mirror reflection of the right 
part of fig. a), c) in the left part of the frame subjected to load 7, which is a mirror reflection of load 6
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Hence, the relation between the transverse and longitudinal forces operating under load 6 
and 7 may be written in the following form: 

		  S S Q N Q NX X6
3

6
3

6
3

6
3

7
3

7
30 0− ++ = → + − − =sin cos sin cosα α α α .

The following relations occur in the vertical direction: 

		

S S

S Q N Q N Q
Y Y

Y Y Y

6
3

6
3

6
3

6
3

6
3

6
3

6
3

6
3

0− +

− − − − −

+ =

= + =− + =−cos sin cosα α α++

= + = + =− ++ + + + +

N

S Q N Q N Q NY Y Y

6
3

6
3

6
3

6
3

6
3

6
3

7
3

7
3

sin

cos sin cos s

α

α α α iinα

Hence, the next joint equilibrium condition under load 6 and 7 takes the following form: 

		  S S Q N Q NY Y6
3

6
3

6
3

6
3

7
3

7
30 0− ++ = → − + − + =cos sin cos sinα α α α

From Fig. 8 also stems the condition that the moments must be equal to each other: 

a)

b)

c)
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		  M M6
3

7
3=

The next three conditions are formulated for the kinematic values (Fig. 9). 

Fig. 9.	Kinematic values at the roof ridge: a) in the real diagram for load 6, b) in the mirror reflection of the right 
part of fig. a), c) in the left part of the frame subjected to load 7, which is a mirror reflection of load 6
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The conditions of displacements compatibility hold in this case (Fig. 9). 
The following occurs in horizontal direction:

		

u u

u v w v w v w
X X

X X X

6
3

6
3

6
3

6
3

6
3

6
3

6
3

6
3

− +

− − − − −

=

= + =− + =− +sin cos sinα α α 66
3

6
3

6
3

6
3

6
3

6
3

7
3

7
3

cos

sin cos sin cos

α

α α α αu v w v w v wX X X
+ + + + += + = + = − ,,

which gives rise to the following condition:

		  u u v w v wX X6
3

6
3

6
3

6
3

7
3

7
3− += → − + = −sin cos sin cosα α α α

The following occurs in the vertical direction:

u u

u v w v w v w
Y Y

Y Y Y

6
3

6
3

6
3

6
3

6
3

6
3

6
3

6
3

6
3

− +

− − − − −

=

= + = + = +cos sin cosα α α ssin

cos sin cos sin ,

α

α α α αu v w v w v wY Y Y6
3

6
3

6
3

6
3

6
3

7
3

7
3+ + + + += + = − = +

which gives rise to the following condition:

u u v w v wY Y6
3

6
3

6
3

6
3

7
3

7
3− += → + = +cos sin cos sinα α α α

As regards the angle of rotation, the following relations occur:
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ϕ ϕ ϕ ϕ ϕ ϕ6
3

6
3

6
3

6
3

6
3

7
3− + − += = =−, , ,

hence the condition:
ϕ ϕ ϕ ϕ6

3
6
3

6
3

7
3− += → =−

As regards loads 6 and 7, the following conditions have been formulated: 
▶▶ 10 explicit conditions (Table 5), 
▶▶ 4 implicit conditions of forces equilibrium at point 2, 
▶▶ 4 implicit conditions of displacements compatibility at point 2, 
▶▶ 3 implicit conditions of forces equilibrium at point 3, 
▶▶ 3 implicit conditions of displacements compatibility at point 3. 

A total of 24 conditions have been formulated as regards loads 6 and 7.
The suggested formulation of conditions in the axis of symmetry referring to the “mirror 

reflection” loads, with the prior adoption of the half-frame static diagrams, significantly 
reduces the scope of the optimal design tasks and extends the range of control theory 
applications in structural computations. 

7.  Constraints

At the stage of state variables and decision variables constraints formulation, certain 
dependencies specified in the technical provisions and related to the load bearing capacity 
and serviceability limits must be taken into account. Provided that the static diagram has been 
predefined and the cross-section geometric characteristics remain constant, the values which 
depend linearly on the load may be aggregated. The said values include static and kinematic 
state variables. It is therefore possible to introduce – at the stage of formulating the constraints 
– the combinations of stresses which were identified in the preliminary analysis, e.g. the 
normal stress in a given combination is the sum of the stresses exerted by the elementary 
loads which are components of this combination. In the problem under consideration here, 
the introduced constraints refer solely to normal stresses and deflections. It is a certain 
simplification of the constraints related to the load bearing capacity and serviceability limits 
as they are defined in the requirements of the standards, yet it does not obscure the problem 
of constraints discussed in this paper and enables a clear presentation of how the functions of 
the maximum or minimum type could be applied in structural optimisation for the purpose 
of reducing the number of constraints. It must be emphasised simultaneously that taking into 
account the constraints functions compliant with the requirements of the standards now in 
effect does not pose any problem in the optimisation process. 

Normal stress in a given combination of loads may be determined on the basis of the 
following relations: 

σKi

j Ki
j Ki

j Ki
j Ki

M z

I

N

A
=

⋅

+
∑ ∑( )
( )

( )
( )

,
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where j Ki j Ki
j Ki j Ki

M N( ) ( )
( ) ( )

,   are sums in the sets of axial moments and forces exerted by the 

elementary loads in combination Ki. For example, in combination K3, j(K3) = {1, 2, 5, 6}. 
In this way an expression has been formulated for the maximum edge stress for each of the 
twelve combinations. However, all of them should be lower than the highest permissible 
stress level. The above approach leads, without any special operations, to the formulation of 
12 constraint functions, which complicates solving the optimisation problem. Application of 
the maximum function of the form: σ σ σmax max , ...= { }( )K K1 12  makes it possible to reduce 
the number of the constraints functions to one function g1 in the form: σ σperm max .− ≥0  This 
operation, however simple it may seem, is an original achievement in the field of engineering 
structures optimisation with the use of optimal control theory. 

Similarly, in order to accommodate the serviceability limit, another constraint function 
has been formulated referring to the maximum normal displacement: 

		  y vKi j Ki
j Ki

= ∑ ( )
( )

		  y y yK Kmax max , ...= { }( )1 12

		  g y y2 0: perm max− ≥

8.  Formulation of the optimisation necessary conditions

The maximum principle formalism has been applied with regard to the frame to be 
optimised, and in particular: 

1.	 The structure to be optimised has been described with the use of equations of state of 
the following type: 

		  ′ =y f y x U x xi i[ ( ), ( ), ]    i = 1 … 43	 (Table 3)

2.	 State variables constraints have been formulated: 

		
jg y x U x( ( ), ( )) 0

   j = 1, 2

3.	 Hamilton’s function has been formulated: 

i i j j
i j

H f y x U x x g y x U x
43 2

1 1

[ ( ), ( ), ] [ ( ), ( )]
 

       

4.	 Hamilton’s function has been used as the basis for writing the set of differential 
equations with conjugate variables: 
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′ = −
∂
∂

λi
i

H
y

   i = 1 … 43

If the formal requirements specified in points 1–4 have been fulfilled, the maximum 
principle enables formulation of the optimisation necessary condition, namely: of all the 
possible solutions, which are the decision variables functions and their corresponding 
state variables and conjugate variables functions, the optimal solution is the maximum of 
Hamilton’s function. The necessary condition of the optimisation, expressed in words above, 
may be written in the following form: 

opt opt opt opt
U

H x x y x U x H x x y x U x[ ( ), ( ), ( ), ( )] max [ ( ), ( ), ( ), ( )]     

 
 

,

from which stems the following equation: ∂
∂

=
H
U

0.  allowing determination of decision 

variable U, provided that no constraints are active. Otherwise, the decision variable is 
determined from the active constraint. 

9.  Numerical solution

Application of the maximum principle has allowed formulation of a differential-algebraic 
set of equations in categories used in control theory, complete with boundary conditions 
and internal point conditions. The set constitutes the so-called multi-point boundary value 
problem, which has been solved with the use of the Dircol-2.1. computer software. Of all the 
values occurring in the formalism of the maximum principle, determination of the decision 
variable is particularly important from the point of view of the constructor, which is in this 
case the height of the I-frame web as well as the 43 state variables yi , in which the frame 
remains within the limits of the load bearing capacity and serviceability. It has appeared that 
of all the possible options only the constraint resulting from the serviceability limit is active 
at a point (Fig. 10). Hence, it follows that, apart from the intervals in which the web height 

Fig. 10. The course of constraint g1 in characteristic interspaces [kPa]
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reaches extreme values, the solution has been derived from equation ∂
∂

=
H
U

0.. The diagrams 

presenting constraints g1 and g2 (Fig. 10 and 11) are to be found below, and so are: the optimal 
course of the decision variable (Fig. 12), the Hamilton function (Fig. 13) and the course of 
state variables in the optimal solution for load 1 (Fig. 14). 

Fig. 11. The course of constraint g2 in characteristic interspaces [m]

Fig. 12. Optimal course of the decision variable

Fig. 13. The Hamilton function

U x

U x
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Fig. 14. State variables and conjugate variables in the situation of subjecting the frame to the first elementary load
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Additionally, all the remaining values occurring in the formulated multi-point boundary 
value problem have also been determined. 

10.  Conclusions

Within the framework of the research on application of theory of optimal control based 
on the maximum principle in the practical design of engineering structures, a number of 
problems have been solved, making it possible to tackle several important design problems in 
the process of structure optimisation. 

One of such problems is the modelling – in terms of control theory – of structures which 
are symmetrical in the aspects of their geometry and systems of loads yielding acceptable 
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in practice, symmetrical distributions of decision variables. A particular emphasis has been 
placed in the paper on the problem of formulating the conditions for state variables at 
characteristic points, including at the structure’s axis of symmetry. Modelling the structure 
with the use of the half-frame model reduces the number of characteristic interspaces by 
half, which considerably facilitates, or even in certain cases enables, solving the optimisation 
problem, which would be difficult or impossible to solve if the real model were to be used. 

Another important problem solved with the use of optimal control theory in structure 
optimisation is the introduction of the combination of loads into the mathematic model, 
which has been presented in this paper. The proposed approach, consisting in the application 
of the maximum/minimum functions, enables taking account in the mathematic model of any 
number of load combinations, without expanding the scope of the optimisation task. 

The paper presents only those computational results which may be of interest for 
a constructor. Due to the character of the journal, numerous details related to very specialist 
problems from the field of control theory have been disregarded. For the same reason not all 
the results obtained in the solution of the multi-point boundary value problem formulated in 
the task have been presented. 
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