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VECTOR BUNDLES ON REAL ALGEBRAIC CURVES

BY LUKASZ MACIEJEWSKI

Abstract. We prove that any topological real line bundle on a compact
real algebraic curve X is isomorphic to an algebraic line bundle. The
result is then generalized to vector bundles of an arbitrary constant rank.
As a consequence we prove that any continuous map from X into a real
Grassmannian can be approximated by regular maps.

1. Introduction. Throughout this paper X denotes a compact real alge-
braic curve, that is, a compact 1-dimensional algebraic subset of R? for some
d € N. We refer to [1] for terminology and background material on real alge-
braic geometry. In this paper all vector bundles are real vector bundles. Recall
that algebraic vector bundles on X correspond to finitely generated projective
modules over the ring of real-valued regular functions on X, cf. [1} p. 302]. Our
main goal is the following:

THEOREM 1.1. Any topological line bundle on X is isomorphic to an alge-
braic line bundle.

Theorem [1.1]is proved in section [2| It can be easily generalized.

COROLLARY 1.2. Any topological constant rank vector bundle on X is iso-
morphic to an algebraic vector bundle.

PRrROOF. Any topological vector bundle on X of constant rank r > 1 splits
off a trivial vector bundle of rank r — 1, since dim(X) = 1. Hence it suffices to

apply Theorem O
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As a consequence of Corollary we obtain a counterpart of the classi-
cal Weierstrass approximation theorem for maps from X into the Grassmann
variety G, j of k-dimensional vector subspaces of R".

COROLLARY 1.3. Let f : X — Gy, 1, be a continuous map. Each neighbor-
hood of f in the compact-open topology contains a regular map.

Proor. It suffices to show that the pullback vector bundle f*v,; on X,
where v, 5, is the tautological vector bundle on G, x, is isomorphic to an al-
gebraic vector bundle, cf. |1, Theorem 13.3.1]. This however follows from

Corollary [1.2] O
Since the real variety Go ;1 is biregularly isomorphic to the unit circle
St = {(z,y) e R?: 22 + 2 =1},
we immediately get:

COROLLARY 1.4. Let f : X — S be a continuous map. Each neighborhood
of f in the compact-open topology contains a regular map.

All the results above are proved in |1] under the assumption that the curve

X is nonsingular. The arguments presented in |1] do not directly generalize to
yield Theorem [T.1]

COROLLARY 1.5. For every cohomology class u in HY(X;7Z/2), there exists
a reqular map f : X —S' such that f*(s1) = u, where sy is the unique
generator of the cohomology group H'(SY;Z/2) = Z./2.

PROOF. There is a one-to-one correspondence between the homotopy
classes of continuous maps from X into S' and the cohomology classes in
HY(X;7Z), cf., [2, p.300]. Since the reduction modulo 2 homomorphism
HY(X;Z)— H'(X;Z/2) is surjective, it follows that each cohomology class
in H'(X;7Z/2) is of the form f*(s;) for some continuous map f : X — S’
According to Corollary the map f can be assumed to be regular. O

Let us note that Corollary[I.5]implies Theorem[I.1] Indeed, let £ be a topo-
logical line bundle on X. The first Stiefel-Whitney class w1 (7y2,1) of the tauto-
logical line bundle 75,1 on Ga,1 generates the cohomology group H'(G21;7Z/2).
According to Corollaury@7 there exists a regular map f : X — Go 1 satisfying
w1 (&) = f*(w1(y2,1)) = wi(f*y2,1). Since topological line bundles are classified
by the first Stiefel-Whitney class (cf. [3, Proposition 3.10]), it follows that & is
isomorphic to the algebraic line bundle f*7, 1. However, we do not know how
to prove Corollary [I.5] without making use of Theorem
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2. Line bundles on real algebraic curves. We first recall a useful con-
struction of algebraic line bundles on an arbitrary affine real algebraic variety
V. Lemma [2.1] below is a special case of [1, Theorem 12.1.11].

LemmAa 2.1. Let {Uy,...,U,} be a Zariski open cover of V and let
hij + Uj—R be a regular function satisfying hi;(U; N U;) € R\{0} for
1 < i,j < r. Assume that hij - hj, = hg, on U; N Uy for all i,7,k, and
hii(z) =1 for all i and z in U;. Let

E={(z,(v1,...,v,) € VXR":v; = hjj(x)vj forx € Uj,1 <i,5 <r}

and let p: E—V be defined by p(z, (v1,...,v,)) =x. Then & = (E,p,V) is
an algebraic line subbundle of the product vector bundle on V with total space
V x R", and the map

Ui x R —>p71(Ui)7 (.Z', ’U) = (hli(x)vv ) hm(x)v))
is an algebraic trivialization of & over U; for 1 < i <r.

For any vector bundle n and any global section s of 7, let Z(s) denote the
zero locus of s.

The set Reg(X) of nonsingular points of X in dimension 1 is a Zariski
open subset of X, cf. |1, p.69]. Furthermore, Reg(X) is a 1-dimensional C'*°
manifold.

LEMMA 2.2. Let x¢ be a point in Reg(X). There exists an algebraic line
bundle £ = (E,p, X) on X which admits an algebraic section s : X — E such
that Z(s) = {xo} and the restriction of s to Reg(X) is transverse to the zero
section of &.

PRrROOF. Let Rx be the sheaf of real-valued regular functions on X. For
any point x on X, we identify the stalk Rx , with the localization of the ring
Rx(X) at the maximal ideal

m, = {f € Rx(X) : f(z) = 0},
cf. [1, Proposition 3.2.3]. Since the point z( is in Reg(X), the stalk Rx 4,
is a regular local ring of dimension 1 and thus a principal ideal domain. In
particular, the ideal m,, Rx 5, of the ring Rx s, is principal. Thus we can

find a regular function f; in my, and a Zariski open neighborhood U; of z( in
Reg(X) such that

my, Rx (U1) = (f1) Rx (Ur).

In particular, fi|y, : Uy — R is a C*° function for which 0 in R is a regular

value and (f1]r,)~(0) = {xo}.
Let fo be any regular function in m,, with f; '(0) = {xo}, e.g., a polyno-
mial given by the formula ||z — x¢]|?, where || - || denotes the euclidean metric
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in RY. We have
faloy = ha1filoy
for some regular function ho : Uy — R. If Uy = X \ {zo}, then

hlgzﬁ:UQ—ﬂR

f2
is a regular function on Us. By construction, the sets ho1 (U1 NUs2) and hi2(U1N
Us) are contained in R\{0}. Define hy; : Uy — R and hgy : U — R to be
constant functions identically equal to 1. Let £ = (F,p, X) be the algebraic
line bundle on X determined, as in Lemma [2.I] by the Zariski open cover
{U1,Us} of X and the regular functions h;;. Note that

s: X — B, s(z) = (z, (fi(2), f2(2)))
is an algebraic section of £ with Z(s) = {zo}. On the set U, the section s is
represented by the map

U1—>U1 XRa T (.’L',fl(.’E)),

and hence the restriction of s to Reg(X) is transverse to the zero section
of &. O

We will now give a convenient description of the first cohomology group
HY(X;7Z/2) of the curve X. The subset X \ Reg(X) of X is finite. If X has
nonsingular connected components, we choose one arbitrary point in each of
those and denote the set of such points by Z. The curve X can be regarded
as a graph (1-dimensional CW complex) with (X \ Reg(X)) U Z as the set of
vertices. This assertion is a straightforward consequence of the triangulation
theorem for semi-algebraic sets, cf. [1, Theorem 9.2.1].

LEMMA 2.3. There exist subgraphs Xi,..., X, of X such that each X; is
homeomorphic to the unit circle S, and the inclusion maps X; — X induce
an isomorphism

n
v H'(X;2/2) — @ H (X:;Z/2)
i=1
ProOOF. Let K be a connected 1-dimensional component of X and let T
be a maximal tree of the graph K. The quotient map ¢ : K — K/T is a
homotopy equivalence and the quotient space K/T is homeomorphic to the
wedge sum of a finite number of pointed circles, [2} p. 153]. Each such pointed
circle corresponds to a subset of K /T of the form ¢(C), where C'is a subgraph
of K homeomorphic to the unit circle. The inclusion maps ¢(C) — K/T
induce an isomorphism

Y HY(K/T;2/2) — @ H' (a(C); 2/2)
C
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If g : C — q(C) is the restriction of the map ¢, then the homomorphism
a=@a P H (4(C);Z/2) — P H'(C;Z/2)
C C C

is an isomorphism. The homomorphism
¢ - HY(K/T;Z/2) — HY(K;Z/2)

is an isomorphism, the quotient map being a homotopy equivalence. Finally,
the inclusion maps C' — K induce a homomorphism

pi  HY(K;Z/2) — P H'(C;2/2)
C
satisfying g o ¢* = a o 9. Consequently, ¢ is an isomorphism.
The assertion of the lemma follows, because X has finitely many connected
components. ]

ProoF oF THEOREM [LL1l. The isomorphism classes of topological line
bundles on X form a group, denoted Vect!(X), with tensor product as the
group operation. The first Stiefel-Whitney class gives a group isomorphism
between Vect! (X) and the first cohomology group H'(X;Z/2), cf. |3, Proposi-
tion 3.10]. Also, note that the isomorphism classes of algebraic vector bundles
form a subgroup of Vect!(X). Hence, in view of Lemma it remains to con-
struct for each ¢ = 1,...,n an algebraic line bundle & on X with w(&|x,) # 0
and w1 (&|x,) = 0 for all j # i (note that H'(X;;Z/2) = Z/2). Such a line
bundle &; can be obtained as follows.

Let x; be a point in

(Xi NReg(X))\ |J X,
J#i
and let £ = (E,p, X) be an algebraic line bundle on X as in Lemma with
xo = x;. There exists an algebraic section s : X — E such that Z(s) = {x;}
and the restriction of s to Reg(X) is transverse to the zero section of £. It
follows that the line bundle §|x; is trivial and w1 ({|x;) = 0 for j # .
Suppose for a moment that the line bundle &|x, is trivial, and let

6:p HX;) — X; xR

be a topological trivialization of {| x,. Then 0(s(x)) = (x, f(x)) for each x in X,
where f : X; — R is a continuous function. By construction, f~1(0) = {z;}.
The function f does not change sign on X; \ {x;}, the set X; \ {z;} being
homeomorphic to R. This however is impossible since s is transverse to the
zero section of £ in a neighborhood of z;. Consequently, the line bundle £|x;
is nontrivial and w;(¢|x,) # 0.

We complete the proof by setting & = €. O
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