VECTOR BUNDLES ON REAL ALGEBRAIC CURVES

BY ŁUKASZ MACIEJEWSKI

Abstract. We prove that any topological real line bundle on a compact real algebraic curve X is isomorphic to an algebraic line bundle. The result is then generalized to vector bundles of an arbitrary constant rank. As a consequence we prove that any continuous map from X into a real Grassmannian can be approximated by regular maps.

1. Introduction. Throughout this paper X denotes a compact real algebraic curve, that is, a compact 1-dimensional algebraic subset of \mathbb{R}^d for some $d \in \mathbb{N}$. We refer to [1] for terminology and background material on real algebraic geometry. In this paper all vector bundles are real vector bundles. Recall that algebraic vector bundles on X correspond to finitely generated projective modules over the ring of real-valued regular functions on X, cf. [1, p. 302]. Our main goal is the following:

Theorem 1.1. Any topological line bundle on X is isomorphic to an algebraic line bundle.

Theorem 1.1 is proved in section 2. It can be easily generalized.

Corollary 1.2. Any topological constant rank vector bundle on X is isomorphic to an algebraic vector bundle.

PROOF. Any topological vector bundle on X of constant rank $r \ge 1$ splits off a trivial vector bundle of rank r-1, since $\dim(X)=1$. Hence it suffices to apply Theorem 1.1.

 $^{2000\} Mathematics\ Subject\ Classification.\ 14P05,\ 14P25.$

Key words and phrases. Real algebraic curve, algebraic vector bundle, approximation of continuous maps by regular maps.

As a consequence of Corollary 1.2, we obtain a counterpart of the classical Weierstrass approximation theorem for maps from X into the Grassmann variety $\mathbb{G}_{n,k}$ of k-dimensional vector subspaces of \mathbb{R}^n .

COROLLARY 1.3. Let $f: X \longrightarrow \mathbb{G}_{n,k}$ be a continuous map. Each neighborhood of f in the compact-open topology contains a regular map.

PROOF. It suffices to show that the pullback vector bundle $f^*\gamma_{n,k}$ on X, where $\gamma_{n,k}$ is the tautological vector bundle on $\mathbb{G}_{n,k}$, is isomorphic to an algebraic vector bundle, cf. [1, Theorem 13.3.1]. This however follows from Corollary 1.2.

Since the real variety $\mathbb{G}_{2,1}$ is biregularly isomorphic to the unit circle

$$\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\},\$$

we immediately get:

COROLLARY 1.4. Let $f: X \longrightarrow \mathbb{S}^1$ be a continuous map. Each neighborhood of f in the compact-open topology contains a regular map.

All the results above are proved in [1] under the assumption that the curve X is nonsingular. The arguments presented in [1] do not directly generalize to yield Theorem 1.1.

COROLLARY 1.5. For every cohomology class u in $H^1(X; \mathbb{Z}/2)$, there exists a regular map $f: X \longrightarrow \mathbb{S}^1$ such that $f^*(s_1) = u$, where s_1 is the unique generator of the cohomology group $H^1(\mathbb{S}^1; \mathbb{Z}/2) \cong \mathbb{Z}/2$.

PROOF. There is a one-to-one correspondence between the homotopy classes of continuous maps from X into \mathbb{S}^1 and the cohomology classes in $H^1(X;\mathbb{Z})$, cf., [2, p. 300]. Since the reduction modulo 2 homomorphism $H^1(X;\mathbb{Z}) \longrightarrow H^1(X;\mathbb{Z}/2)$ is surjective, it follows that each cohomology class in $H^1(X;\mathbb{Z}/2)$ is of the form $f^*(s_1)$ for some continuous map $f: X \longrightarrow \mathbb{S}^1$. According to Corollary 1.4, the map f can be assumed to be regular.

Let us note that Corollary 1.5 implies Theorem 1.1. Indeed, let ξ be a topological line bundle on X. The first Stiefel-Whitney class $w_1(\gamma_{2,1})$ of the tautological line bundle $\gamma_{2,1}$ on $\mathbb{G}_{2,1}$ generates the cohomology group $H^1(\mathbb{G}_{2,1}; \mathbb{Z}/2)$. According to Corollary 1.5, there exists a regular map $f: X \longrightarrow \mathbb{G}_{2,1}$ satisfying $w_1(\xi) = f^*(w_1(\gamma_{2,1})) = w_1(f^*\gamma_{2,1})$. Since topological line bundles are classified by the first Stiefel-Whitney class (cf. [3, Proposition 3.10]), it follows that ξ is isomorphic to the algebraic line bundle $f^*\gamma_{2,1}$. However, we do not know how to prove Corollary 1.5 without making use of Theorem 1.1.

2. Line bundles on real algebraic curves. We first recall a useful construction of algebraic line bundles on an arbitrary affine real algebraic variety V. Lemma 2.1 below is a special case of [1, Theorem 12.1.11].

LEMMA 2.1. Let $\{U_1, \ldots, U_r\}$ be a Zariski open cover of V and let $h_{ij}: U_j \longrightarrow \mathbb{R}$ be a regular function satisfying $h_{ij}(U_i \cap U_j) \subset \mathbb{R} \setminus \{0\}$ for $1 \leq i, j \leq r$. Assume that $h_{ij} \cdot h_{jk} = h_{ik}$ on $U_j \cap U_k$ for all i, j, k, and $h_{ii}(x) = 1$ for all i and x in U_i . Let

$$E = \{(x, (v_1, \dots, v_r)) \in V \times \mathbb{R}^r : v_i = h_{ij}(x)v_j \text{ for } x \in U_j, 1 \le i, j \le r\}$$

and let $p: E \longrightarrow V$ be defined by $p(x, (v_1, \ldots, v_r)) = x$. Then $\xi = (E, p, V)$ is an algebraic line subbundle of the product vector bundle on V with total space $V \times \mathbb{R}^r$, and the map

$$U_i \times \mathbb{R} \longrightarrow p^{-1}(U_i), (x, v) \mapsto (h_{1i}(x)v, \dots, h_{ri}(x)v))$$

is an algebraic trivialization of ξ over U_i for $1 \leq i \leq r$.

For any vector bundle η and any global section s of η , let Z(s) denote the zero locus of s.

The set $\operatorname{Reg}(X)$ of nonsingular points of X in dimension 1 is a Zariski open subset of X, cf. [1, p. 69]. Furthermore, $\operatorname{Reg}(X)$ is a 1-dimensional C^{∞} manifold.

LEMMA 2.2. Let x_0 be a point in $\operatorname{Reg}(X)$. There exists an algebraic line bundle $\xi = (E, p, X)$ on X which admits an algebraic section $s : X \longrightarrow E$ such that $Z(s) = \{x_0\}$ and the restriction of s to $\operatorname{Reg}(X)$ is transverse to the zero section of ξ .

PROOF. Let \mathcal{R}_X be the sheaf of real-valued regular functions on X. For any point x on X, we identify the stalk $\mathcal{R}_{X,x}$ with the localization of the ring $\mathcal{R}_X(X)$ at the maximal ideal

$$\mathfrak{m}_x = \{ f \in \mathcal{R}_X(X) : f(x) = 0 \},$$

cf. [1, Proposition 3.2.3]. Since the point x_0 is in $\operatorname{Reg}(X)$, the stalk \mathcal{R}_{X,x_0} is a regular local ring of dimension 1 and thus a principal ideal domain. In particular, the ideal $\mathfrak{m}_{x_0} \mathcal{R}_{X,x_0}$ of the ring \mathcal{R}_{X,x_0} is principal. Thus we can find a regular function f_1 in \mathfrak{m}_{x_0} and a Zariski open neighborhood U_1 of x_0 in $\operatorname{Reg}(X)$ such that

$$\mathfrak{m}_{x_0} \, \mathcal{R}_X(U_1) = (f_1) \, \mathcal{R}_X(U_1).$$

In particular, $f_1|_{U_1}: U_1 \longrightarrow \mathbb{R}$ is a C^{∞} function for which 0 in \mathbb{R} is a regular value and $(f_1|_{U_1})^{-1}(0) = \{x_0\}.$

Let f_2 be any regular function in \mathfrak{m}_{x_0} with $f_2^{-1}(0) = \{x_0\}$, e.g., a polynomial given by the formula $||x - x_0||^2$, where $||\cdot||$ denotes the euclidean metric

in \mathbb{R}^d . We have

$$f_2|_{U_1} = h_{21}f_1|_{U_1}$$

for some regular function $h_{21}: U_1 \longrightarrow \mathbb{R}$. If $U_2 = X \setminus \{x_0\}$, then

$$h_{12} = \frac{f_1}{f_2} : U_2 \longrightarrow \mathbb{R}$$

is a regular function on U_2 . By construction, the sets $h_{21}(U_1 \cap U_2)$ and $h_{12}(U_1 \cap U_2)$ are contained in $\mathbb{R} \setminus \{0\}$. Define $h_{11}: U_1 \longrightarrow \mathbb{R}$ and $h_{22}: U_2 \longrightarrow \mathbb{R}$ to be constant functions identically equal to 1. Let $\xi = (E, p, X)$ be the algebraic line bundle on X determined, as in Lemma 2.1, by the Zariski open cover $\{U_1, U_2\}$ of X and the regular functions h_{ij} . Note that

$$s: X \longrightarrow E, s(x) = (x, (f_1(x), f_2(x)))$$

is an algebraic section of ξ with $Z(s) = \{x_0\}$. On the set U_1 , the section s is represented by the map

$$U_1 \longrightarrow U_1 \times \mathbb{R}$$
, $x \mapsto (x, f_1(x))$,

and hence the restriction of s to Reg(X) is transverse to the zero section of ξ .

We will now give a convenient description of the first cohomology group $H^1(X; \mathbb{Z}/2)$ of the curve X. The subset $X \setminus \text{Reg}(X)$ of X is finite. If X has nonsingular connected components, we choose one arbitrary point in each of those and denote the set of such points by Z. The curve X can be regarded as a graph (1-dimensional CW complex) with $(X \setminus \text{Reg}(X)) \cup Z$ as the set of vertices. This assertion is a straightforward consequence of the triangulation theorem for semi-algebraic sets, cf. [1, Theorem 9.2.1].

LEMMA 2.3. There exist subgraphs X_1, \ldots, X_n of X such that each X_i is homeomorphic to the unit circle \mathbb{S}^1 , and the inclusion maps $X_i \hookrightarrow X$ induce an isomorphism

$$\varphi: H^1(X; \mathbb{Z}/2) \longrightarrow \bigoplus_{i=1}^n H^1(X_i; \mathbb{Z}/2)$$

PROOF. Let K be a connected 1-dimensional component of X and let T be a maximal tree of the graph K. The quotient map $q:K\longrightarrow K/T$ is a homotopy equivalence and the quotient space K/T is homeomorphic to the wedge sum of a finite number of pointed circles, $[\mathbf{2}, \mathbf{p}. 153]$. Each such pointed circle corresponds to a subset of K/T of the form q(C), where C is a subgraph of K homeomorphic to the unit circle. The inclusion maps $q(C)\hookrightarrow K/T$ induce an isomorphism

$$\psi: H^1(K/T; \mathbb{Z}/2) \longrightarrow \bigoplus_C H^1(q(C); \mathbb{Z}/2)$$

If $q_C: C \longrightarrow q(C)$ is the restriction of the map q, then the homomorphism

$$\alpha = \bigoplus_{C} q_{C}^{*}: \bigoplus_{C} H^{1}(q(C); \mathbb{Z}/2) \longrightarrow \bigoplus_{C} H^{1}(C; \mathbb{Z}/2)$$

is an isomorphism. The homomorphism

$$q^*: H^1(K/T; \mathbb{Z}/2) \longrightarrow H^1(K; \mathbb{Z}/2)$$

is an isomorphism, the quotient map being a homotopy equivalence. Finally, the inclusion maps $C \hookrightarrow K$ induce a homomorphism

$$\varphi_K: H^1(K; \mathbb{Z}/2) \longrightarrow \bigoplus_C H^1(C; \mathbb{Z}/2)$$

satisfying $\varphi_K \circ q^* = \alpha \circ \psi$. Consequently, φ_K is an isomorphism.

The assertion of the lemma follows, because X has finitely many connected components. \Box

PROOF OF THEOREM 1.1. The isomorphism classes of topological line bundles on X form a group, denoted $\operatorname{Vect}^1(X)$, with tensor product as the group operation. The first Stiefel–Whitney class gives a group isomorphism between $\operatorname{Vect}^1(X)$ and the first cohomology group $H^1(X; \mathbb{Z}/2)$, cf. [3, Proposition 3.10]. Also, note that the isomorphism classes of algebraic vector bundles form a subgroup of $\operatorname{Vect}^1(X)$. Hence, in view of Lemma 2.3, it remains to construct for each $i=1,\ldots,n$ an algebraic line bundle ξ_i on X with $w_1(\xi_i|_{X_i})\neq 0$ and $w_1(\xi_i|_{X_j})=0$ for all $j\neq i$ (note that $H^1(X_i;\mathbb{Z}/2)\cong\mathbb{Z}/2$). Such a line bundle ξ_i can be obtained as follows.

Let x_i be a point in

$$(X_i \cap \operatorname{Reg}(X)) \setminus \bigcup_{j \neq i} X_j$$

and let $\xi = (E, p, X)$ be an algebraic line bundle on X as in Lemma 2.2 with $x_0 = x_i$. There exists an algebraic section $s: X \longrightarrow E$ such that $Z(s) = \{x_i\}$ and the restriction of s to $\operatorname{Reg}(X)$ is transverse to the zero section of ξ . It follows that the line bundle $\xi|_{X_j}$ is trivial and $w_1(\xi|_{X_j}) = 0$ for $j \neq i$.

Suppose for a moment that the line bundle $\xi|_{X_i}$ is trivial, and let

$$\theta: p^{-1}(X_i) \longrightarrow X_i \times \mathbb{R}$$

be a topological trivialization of $\xi|_{X_i}$. Then $\theta(s(x)) = (x, f(x))$ for each x in X_i , where $f: X_i \longrightarrow \mathbb{R}$ is a continuous function. By construction, $f^{-1}(0) = \{x_i\}$. The function f does not change sign on $X_i \setminus \{x_i\}$, the set $X_i \setminus \{x_i\}$ being homeomorphic to \mathbb{R} . This however is impossible since s is transverse to the zero section of ξ in a neighborhood of x_i . Consequently, the line bundle $\xi|_{X_i}$ is nontrivial and $w_1(\xi|_{X_i}) \neq 0$.

We complete the proof by setting $\xi_i = \xi$.

References

- 1. Bochnak J., Coste M., Roy M.-F., Real Algebraic Geometry, Springer-Verlag, Berlin–Heidelberg–New York 1998.
- 2. Bredon G.E., Topology and geometry, Springer-Verlag, New York, 1993.
- 3. Hatcher A., Vector Bundles and K-theory
 http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html

Received August 7, 2012

Institute of Mathematics Jagiellonian University Lojasiewicza 6 30-348 Kraków, Poland