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The following paper presents possibilities for the application of selected time-frequency analysis methods in the fault detection 
of cage induction machines in transient states. The starting phase current of the machine was chosen as a diagnostic signal. Selected 
faults were eccentricities – static and dynamic. In order to increase the selectivity of the obtained signal transformations, a notch 
filter was used to remove the base harmonic of the phase current. Two approaches of fault detection were compared. In the first 
approach, the characteristic feature of fault was extracted using DWT analysis. Next, TMCSA methodology was applied in which 
characteristic harmonics related to faults were shown on a time-frequency plane. In  this case, applied methods were a Gabor 
transformation, STFT, CWT and Wigner–Ville’s transformation. In the analysis, a phase current signal approximated by DWT was 
used. DWT approximation was applied to filter higher harmonics which improves the resolution of the obtained transformations.

Keywords:  cage induction motor fault detection, TMCSA, time-frequency methods, Notch filter, transient phase current, dynamic 
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S t r e s z c z e n i e
W artykule przedstawiono możliwości zastosowania wybranych metod analizy czasowo-częstotliwościowej do diagnostyki uszko-
dzeń silników indukcyjnych klatkowych w przejściowych stanach pracy. Jako sygnał diagnostyczny wybrano prąd fazowy silnika 
podczas rozruchu. Wybranymi przypadkami uszkodzeń silnika są ekscentryczność statyczna i dynamiczna. W celu poprawienia 
selektywności otrzymanych transformat wykorzystano filtr Notcha do usunięcia harmonicznej podstawowej prądu. Porównano 
dwa podejścia diagnostyczne wykrywania uszkodzeń. Pierwsze za pomocą analiz wielorozdzielczych z użyciem DWT, polegające 
na wyróżnieniu charakterystycznego wzorca związanego z uszkodzeniem. Drugie podejście polegało na zastosowaniu metodologii 
TMCSA, czyli ekstrakcji charakterystycznych harmonicznych związanych z uszkodzeniami zależnych od poślizgu na płaszczy-
znach TF. W tym wypadku rozważanymi metodami analizy były transformacje Gabora, STFT, Wignera–Ville’a oraz CWT. Do tych 
analiz został wykorzystany sygnał prądu aproksymowany z użyciem DWT, w celu odfiltrowania widma czasowo-częstotliwościo-
wego o wyższych częstotliwościach, aby poprawić rozdzielczość otrzymywanych transformat.

Słowa  kluczowe:  silnik indukcyjny klatkowy, diagnostyka uszkodzeń, TMCSA, metody czasowo-częstotliwościowe, filtr notch, prąd 
fazowy w stanie przejściowym, ekscentryczność statyczna i dynamiczna, niesymetria napięć
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1.  Introduction

This paper presents possibilities for the application of selected time-frequency methods 
of signal analysis in fault detection of cage induction machines in transient states. Fault 
diagnosis of induction motors using Fourier transformation or FFT algorithms, can be used 
only in steady states because it is a frequency analysis method of signals. Because of that, this 
method is insufficient in the case of transient states when diagnostic signals related to faults 
vary in time. Applying time-frequency methods of signal analysis allows for analyzing time 
changing diagnostic signals related to faults of induction motors in transient states.

In this paper, methodology of static and dynamic eccentricity detection in transient states 
and with supply voltage asymmetry will be presented. Supply voltage asymmetry will be 
considered as distortion in eccentricity detection which has not yet been presented in literature. 
Two approaches of fault detection will be compared – using multi-resolution analysis with 
DWT and analysis on TF planes using Gabor transform, STFT, CWT and Wigner–Ville’s 
transform which use TMCSA (transient motor current signature analysis) methodology that 
is the extraction of characteristic slip dependent harmonics related to faults. The selected 
diagnostic signal is a stator phase start-up current. In order to improve selectivity of the 
obtained transforms, a notch filter was used to remove the base harmonic of the current 
of frequency  equal to that of the supply voltage.

2.  Measurement system and data capturing

For cage induction machine diagnosis using selected methodology, it is necessary to 
collect diagnostic signals of phase current and rotational speed. A waveform of rotational 
speed will be used to find the actual harmonics related to faults in the case of analysis on a TF 
plane – this makes it easier to localize these harmonics. The examined cage induction motor 
Sg112-M4 was supplied directly from the network and is connected with a DC generator. 
The schematics of the system for fault detection is shown in Fig. 1.

Parameters of examined motor are: PN = 4 kW; UN = 380 V; IN = 2.867 A; cosϕN = 0.84; 
nN = 1445 rpm; Number of rotor bars ‒ Nr = 28.

Fig.  1.  System of cage induction motor fault detection
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The dynamic eccentricity of the motor is realized by using a special replaceable rotor with 
steel sheets non-centrically placed on the shaft. Static eccentricity is realized by specially 
prepared bearing shields with a shifted center of symmetry axis.

Voltage asymmetry was realized by the connecting of additional resistor Rd to one 
phase of the stator. For the collecting of the current signal, current transducer LEM HY 15 
was used, and for rotational speed signal collecting, DATAFLEX® 22/5 transducer was  
used.

The following diagnostic data were collected for nominal load (I @ 3 A) of the machine:
–	 healthy motor (i_sym),
–	 dynamic eccentricity (i_de),
–	 static eccentricity (i_se),
–	 static eccentricity and supply voltage asymmetry (i_senn).

3.  Selected methods of signal analysis

In the case of non-stationary signals, their characteristic features vary in time. In this 
case, Fourier transform proves to be insufficient because the spectra of those signals vary 
in time and the Fourier analysis gives averaged results (in the analysis window). The solution 
for this inconvenience was proposed by Gabor as a short time Fourier transform STFT 
and next introduction and development of wavelet transform methods [4].

Frequency analysis of non-stationary signals should be performed using a base of 
decomposition contained of selective functions in time and frequency domain. The signal’s 
decomposition is made by shifting the analyzing function in the time domain and modulation 
in the frequency domain. Impulse waveforms are used for this because in the time domain, 
it decides the time range of the analysis and in the frequency domain, its spectrum decides 
the frequency range of the analysis [2].

Because each of the impulse waveforms covers a specified time and frequency range, 
some amount of signal for a certain time-frequency cell is selected. Areas of those cells should 
not intersect with each other, and when summed up, should be equal to the time-frequency 
plane  area. Two basic strategies for time-frequency plane division and corresponding 
chessboards are presented in Figure 4 [1].

Fig.  2.  Laboratory test bench Fig.  3.  Set of exchangeable rotos
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3.1.  Gabor’s transform

According to [1], in the time-frequency Gabor transform, the analyzed signal is 
introduced as a sum of the base functions which are derived from the prototype function 
i.e. the Gaussian window, by shifting it in the time and frequency domain. The TF atom of 
the prototype function is localized in the time-frequency space around point (t = 0, f = 0) 
and is of a random shape. As a result of the prototype function shifting, we obtain the TF 
decomposition structure analogous to that presented in Fig. 4a). In Gabor’s decomposition, 
the area and orientation of the TF atoms are constant.

The time-frequency Gabor decomposition of the continuous signalis defined as [1]:
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where gm,n(t) means time shifted by m · Δt and frequency shifted by n · Δf any base function 
(prototype) g(t) of energy equal to one (Δt, Δf – specified translation in time and frequency 
domain) [1]:
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and cm,n are decomposition coefficients, calculated from equation [1]:
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In equation (3), γ(t) is a prototype function (window) of analysis which has to be 
biorthogonal to the synthesis prototype function (window g(t) (2). Because the base function 
g(t) should have a large energy concentration both in the time and frequency domain, the 
most commonly used function is a Gaussian window. Equation (3) is an analysis equation 
(signal x(t) → decomposition coefficients cm,n), and (1) − synthesis equation (decomposition 
coefficient cm,n → signal x(t)). Because we use the same window g(t) area and shape of the TF 
atom related to functions gm,n(t) are constant. As a result of the window translation in the time 
and frequency domain, we obtain the chessboard of decomposition presented in Fig. 4a) [1].

Fig.  4.  Base chessboards of time-frequency decomposition of signals: Gabor’s 
transform–Short Time Fourier Transform (a);wavelet transform (b). Red 
shows non-zero coefficients of the example time-frequency decomposition 

of the signal with the frequency changing linearly [1]
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The time-frequency Gabor’s representation of continuous signal x(t) is defined as [1]:

	 S mT nF cx m n( , ) ,=
2
	 (4)

3.2.  STFT transform

In [13], the application of STFT(short time Fourier transformation) was described as 
a solution to the problem of localization of the feature occurring in the diagnostic signal 
in time. This transform, apart from frequency analysis, allows localizing the characteristic 
frequency components occurring in time, using time windows.

According to [1],the continuous, short time Fourier transform STFT can be considered 
as  non-discretized in time and frequency domain Gabor transform. High redundancy is 
typical for this transform. During analysis and synthesis, the same window is used.

The definition of this transform in time and frequency domain [1]:
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The spectrogram related to the STFT is defined as[1]:
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In [2] it is given, that the spectrogram is usually obtained using one of the basic 
windows: rectangular; Hamming; Hanning; and others.

In the STFT wide window, γ(t) increases the resolution in the frequency domain and 
decreases the resolution in the time domain. The narrow window does exactly the opposite. 
It is impossible to obtain a high resolution in both domains simultaneously [1].

3.3.  Wigner–Ville’s transform

In the transforms of Gabor and STFT presented so far, the problem of a proper size 
window  selection forced to compromise between the precision of the analysis and the 
analysis of the entire spectrum of components contained in the signal. This problem is 
a basic drawback of time-frequency analysis until the window of a varying length was used. 
An attempt of adapting the selection of the window size for the local features of the signals, 
is made in Wigner–Ville’s transform. In this transform, the signal also plays the role of 
the window [2].

The time-frequency transform of the Wigner–Ville (WV) perfectly shows the linear 
change of frequency in the TF space. The transform of the Wigner–Ville is defined as [1]:
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where x(t) is a real signal (Wigner’s definition) or analytical (Ville’s definition). The analytical 
signal (8), related to the real signal x(t), is a complex signal whose real part is signal x(t) and 
the imaginary part is a result of the Hilbert transform of x(t) of [1, 5]:
	 z t x t jH x t( ) ( ) [ ( )]= + 	 (8)
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The transform of Wigner–Ville solves the problem of the window size selection for 
analysis. All components contained in the signal are analyzed, each of them is localized 
with  optimal time precision as precisely as is possible due to Heisenberg’s uncertainty 
theorem [2]. In [4] it is proved that the resolution of the WV transform is twice as large as 
that of the STFT.

The basic drawback of the WV transform is the interference in the obtained time- 
-frequency spectral matrices.

3.4.  Wavelet transform

The wavelet transform is one of the most popular and most dynamically developed 
methods of time-frequency analysis of non-stationary signals and is a method with constant 
percentage bandwidth Δf / f0 = const [1].

The development of this transform is a result of the increased demand for time-frequency 
analysis of variable window size which could provide high frequency resolution for low-
frequency components and accurate time localization for high-frequency components 
of transient signals [4].

3.4.1.  Continuous wavelet transform CWT
Continuous wavelet transform of signal x(t) is defined in the time and frequency domain 

in the following way [1]:
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The division by │a│ keeps the wavelets’ energy constant after rescaling. The function 
γ(t) is an analyzing function [1].

Scalogram, related to the wavelet transform is defined in the following way [1]:

	 S t a t ax x
SCAL CWT( , ) ( , )= 2 	 (10)

In [3], the problem of interpretation scale-frequency relation, concerning the sampling 
frequency, was introduced. The dependence describing the central frequency of the base 
wavelet γ(t) is of the following form [3]:
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where:
Φ(ω)	 –	 Fourier transform of ϕ(t).

Furthermore, the bandwidth of the base wavelet, which can be related to the Heisenberg 
cube in the direction of frequency axis, is of the form [3]:
	 B0 = −ω ωmax min 	 (12)

For small scale coefficients, the wavelet transform extracts the high frequency 
components  of the analyzed signal and for larger scale coefficients, the effect is exactly 
the opposite. While the scale coefficient increases, the frequency bandwidth decreases, this 
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means that the resolution in the frequency domain is greater. The central frequency ω0 and 
bandwidth B0 depend on the chosen analyzing wavelet [3].

3.4.2.  Discrete wavelet transform DWT
The continuous wavelet transform gives a lot of redundant information. This is why its 

parameters such as time t and scale coefficient a are sampled obtaining the coefficient of 
the wavelet series analogically to the Fourier series [2, 4].The DWT has a constant TF atom 
and realizes the time-frequency signal decomposition scheme presented in Fig. 4b) [2].

The discrete wavelet transform is strictly related to the multi-resolution signal 
analysis  [2]. Example of three level discrete wavelet analysis with wavelet filters 
is presented in Fig. 5,where hd is a low-pass filter, corresponding to scaling function, hg is 
a high-pass filter corresponding to the wavelet function [4]. Since the calculation of wavelet 
coefficients  cm,n and  dm,n from their definition is very difficult, in practice, we use filters 
related to the wavelet and scaling functions [2, 4].

DWT allows writing signal x(t) as a sum of approximation an and details dj [10]:
	 x t a d dn n( ) = + + + 1 	 (13)

where [10]:
n	 ‒	 level of decomposition,
an	 –	 approximation of signal on level n,
dj	 –	 detail of signal on level j.

Equation(13) realizes Mallat’s algorithm which shows that each wavelet signal is related 
to a specified frequency bandwidth. If Fs (in samples per second) is sampling the frequency 
of the analyzed signal x(t), then the detail of signal dj contains information concerning 
the signal’s components of frequencies from interval [8, 10]:

	 f d F Fj
j

s
j
s( ) [ , ]( )Î 2 21− + − Hz 	 (14a)

approximation an contains low frequency components that belong to interval [8, 10]:

	 f a Fn
n

s( ) [ , ]( )Î 0 2 1− + Hz 	 (14b)

The DWT performs filtration process shown in Fig. 6.
Filtration is not ideal, which causes the adjacent bandwidths to interfere. This may 

become  an issue since some frequency components (base harmonic) might be partially 

Fig.  5.  Three level discrete wavelet analysis using wavelet filters [4]
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filtered  in an adjacent bandwidth covering other frequency components in this band- 
width [10].

4.  Methodology of induction machines’ diagnosis using time-frequency 
analysis methods

4.1.  Application of induction motors’ diagnosis methods  
in transient state based on TMCSA

The presented methodology of induction motors fault detection is based on the TMCSA 
method.

In recent years, methods of electrical machine diagnostics in transient states became 
of  more interest. A variety of methods based on transient stator current analysis were 
proposed.  Those methods are known as TMCSA (transient motor current signature 
analysis), and can be described as a generalization of traditional MCSA methods applied for 
diagnostics in steady states. The well-known MCSA methods are based on stator current’s 
Fourier spectrum analysis in steady states. Theoretical experiments prove that different types 
of faults in electrical machines generate or amplify some frequency components in stator 
currents related to particular faults of the machine [7].

TMCSA uses methods of non-stationary signals analysis. Signal forming can be 
performed with wavelet analysis or through using filters. Spectral analysis is performed 
on the time-frequency plane using linear transforms like STFT and wavelet transform or 
square transform such as Wigner–Ville’s transform [11].

In concluding, TMCSA is a technology which allows diagnosing the motor by analyzing 
the current during rotational speed change. Diagnostics with TMCSA are, in general, based 
upon the extraction of typical components on the TF plane related to particular types of 
faults. These methods replace traditional methods based of the Fourier transform which are 
not dedicated for the analysis of signals in transient states [6].

The presented method of diagnosis was based on performing the following analyses:
–	 First, the diagnostic signal of stator phase currentwas processed by notch filtering 

order to filter the base harmonic of the frequency equal to that of supply voltage.
Next, for such a prepared signal, two approaches of fault detection were compared:
–	 Multi-resolution signal analysis was performed with DWT in order to extract typical 

components related to faults.

Fig.  6.  Filtration process performed by DWT [8, 10]
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–	 Time-frequency analyses on the TF plane was performed using various transforms ‒ 
Gabor’s, STFT, Wigner–Ville’ sand CWT, in order to extract characteristic harmonics 
related to faults. Approximation signal obtained from DWT will be used for analysis.

4.2.  Application of notch filter

In the presented approach, a notch filter was used for the initial filtration of the measured 
current signal, to increase the selectivity of the transforms and better distinguishing of 
harmonics related to faults, by removing the base harmonic of the frequency equal to that 
of supply voltage.

The notch filter, which is of IIR type, designed for certain frequency, removes that 
harmonic of signal. Input parameters of this filter are cut-off frequencyF0, and frequency 
bandwidth 3-dB BW or quality factor Q. For these specifications, by increasing filter order 
N, one can obtain a filter closer to the ideal [14].

Fig.  7.  Frequency characteristic of designed Notch filter

Fig.  8.  Current waveform i_sym (top) and after filtration with  
the notch filter (bottom)
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For the applied notch filter, in order to remove the base harmonic, the following 
parameters were chosen:

–	 N = 10 ‒ filter order.
–	 F0 = 50 Hz ‒ cutoff frequency,
–	 BW = 5 Hz ‒ bandwidth 3-dB,
–	 Q = F0/BW ‒ obtained quality factor.
In the picture below, there is presented frequency characteristic of the designed notch 

filter. Obtained attenuation of base harmonic reaches 170 dB.
In the picture below, there is presented an example waveform of the motor’s current for 

healthy motor, and with filtered base harmonic using the designed notch filter. It is not an 
ideal filtration and base harmonic is partially present in analyzed signal.

4.3.  DWT based diagnostic approach

A diagnostic approach based on the DWT will be used in the case of a multi-resolution 
analysis perform. In [8] a general scheme of a DWT based method for eccentricity detection 
based on transient current analysis was presented. It allows for extraction in the transient 
state characteristic harmonics that are related to fault occurrence. These typical harmonics 
are reliable for fault detection because it is very less likely that a specific waveform of 
a  particular harmonic in transient state was caused by a different phenomenon unrelated 
to the fault. Moreover, those harmonics allow distinguishing particular faults based on 
waveforms contained in wavelet signals.

In this paper, this approach is used to detect previously mentioned faults. In Figure 9, 
a  scheme of DWT based methodology for fault detection in the induction machine is 
presented [8].

1.  Collecting current signal’s samples in transient state
Collected current signal in transient state is a basic signal for diagnosis. The standard 

sampling frequency of data acquisition device equal to 2 or 5 kS/s ensures a good 

Fig.  9.  Methodology scheme of DWT based diagnostic [8]



181

resolution  according to equations (14a and b), introducing different sets of frequency 
bandwidths [8].

In the performed analyses, the sampling frequency was equal to Fs = 5 kS/s.
2.  Application of DWT

Before using DWT, mother wavelet and the number of decomposition levels must be 
specified [8].

1)  Choice of mother wavelet
Daubechies wavelet of 45order (‘db45’) was chosen for the analysis. According to [8], 

this kind of wavelet of an order higher than 20 gives satisfying results.
2)  Specifying number of decomposition levels
The number of decomposition levels depends on the desired low frequency components. 

Waveforms of these components are represented by DWT signals of high level [8].
In the case of examined faults, low frequency components are not taken into account.
In order to find number of decomposition levels nf equation, that describes approximation 

anf level below supply frequency [8, 9]:

	 n
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f
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
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
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log ( / )
log ( )2
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For Fs = 5000 samples per second and fs = 50 Hz, we obtain a level of decomposition 
equal to nf = 6. Using equations (14a and b) bandwidths for specified sampling frequency 
for each DWT signal are presented in Table 1. [8].

T a b l e  1

Frequency bandwidths of DWT signals  
for Fs = 5000 S/s [8]

Level Bandwidth [Hz]

d1 1250–2500

d2 625–1250

d3 312.5–625

d4 156.25–312.5

d5 78.12–156.25

d6 39.06–78.12

a6 0–39.06

Using this distribution of wavelet signals allows following changes related to different 
faults.
3.  Analysis of wavelet signals

The next step is to perform qualitative and quantitative analysis in order to evaluate 
the obtained DWT decomposition signals [8].
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1)  Qualitative analysis
The purpose of qualitative analysis is to detect the presence of characteristic 

components  caused by slip dependent fault harmonics. It is obtained by analyzing 
oscillations that occur in wavelet signals [8].

2)  Quantitative analysis
When the machine’s condition is initially diagnosed, using qualitative identification 

of  characteristic components, it is possible calculate quantitative parameters of particular 
faults in order to evaluate the degree of damage to the machine [8].

For the performed analyses, the following quantitative factors were assumed:
–	 In the case of the multi-resolution DWT analysis, the percentage energy E of wavelet 

signals and percentage energy differences [13]:

	 W
E E
E
z u

z
=

−
100% 	 (16)

where:
Ez, Eu  ‒  energy of signal with and without fault.

In this case, detail d6 containing base harmonic is omitted.
–	 For time-frequency analyses – energy of the harmonic related to the fault obtained 

from transform E [dB] and absolute energy difference:

	 DE E Ez u= − [ ]dB 	 (17)

4. Diagnostic decision
When qualitative patterns related to faults are defined and the quantitative degree 

of damage is specified, it is possible to make a diagnostic decision [8].

4.4.  Detection of dynamic and static eccentricity

The problem of dynamic and static eccentricity detection using TMSCA method has 
not yet been fully examined. This paper presents attempts for the detection of these faults 
in transient states of the machine during start-up.

In [12], for monitoring of the stator winding condition and also the supply voltage 
asymmetry considered as distortion in static eccentricity detection, amplitude of frequency 
component was presented.
	 f fnn s= 3 	 (18)

Also, harmonics that prove the presence of dynamic and static eccentricity, respectively 
in low and medium frequency bandwidths were presented [12]:
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where:
k = 1, 2, 3, …,
m = 1, 3, 5, …,

In Figure 10, spectrum of stator current in phase A, for nominal load (I  @  3  A) 
supplied form voltage of frequency fs = 50 Hz, in steady state – MCSA method, for healthy 
motor Fig. 10a, dynamic eccentricity occurrence Fig. 10b, static eccentricity occurrence 
Fig.  10c and static eccentricity occurrence with voltage asymmetry Fig. 10d. Once can 
observe the increase of odd multiples of network frequency and increase of harmonics 
described by (19) for k = 1 and m = 3 and by (20) for k = 1 and m = 1[12].

These harmonics that are typical for eccentricity occurrence are also present in a healthy 
motor and are equal to frequency components caused by load variations. For that reason, 
eccentricity detection is more difficult [12].

The attempt of eccentricity detection is made using the TMCSA method, using the 
following harmonics (indexes mean different variants of the equation: 1 for „‒”, 2 for „+”):

Fig.  10.  Stator current spectrum of loaded machine (nominal load) with Fs = 50 Hz 
and  a) no fault, b) dynamic eccentricity, c) static eccentricity, d) static 

eccentricity with voltage asymmetry [12]
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–	 dynamic eccentricity: (19) for k = 1 and m = 3: fednn1,2,
–	 static eccentricity: (20) for k = 1 and m = 1: fesnn1,2,
–	 supply voltage asymmetry: (18) fnn; (19) for k = 1 and m = 3: fednn1,2; (20) for k = 1 and 

m = 1: fesnn1,2.
Characteristic patterns of harmonics are shown in the picture below on the slip- 

-frequency  plane (where the slip is replaced by a rotational speed for a motor with four 
poles p = 2):

Fig.  11.  Characteristic harmonics for dynamic eccentricity on slip-frequency plane

Fig.  12.  Characteristic harmonics for static eccentricity on slip-frequency plane
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In the case of using DWT for multi-resolution analysis, for sampling frequency set 
to Fs  =  5000 samples per second and decomposition level of the current signal equal 
to nf = 6,  according to equation (15) in obtained frequency bandwidths of DWT wavelet 
signals, presented in Table 1, characteristic components related to fault occurrence will 
be sought. Bandwidths of DWT with contained harmonics are presented in Table 2.

T a b l e  2
Frequency bandwidths of DWT signals for Fs = 5000 S/s for diagnosis of dynamic 

eccentricity (ED), static eccentricity (ES) and voltage asymmetry (NN)

Level Bandwidth [Hz]
Characteristic harmonics

ED ES NN

d1 1250–2500

d2 (a1) 625–1250 fesnn1,2 fesnn1,2

d3 (a2) 312.5–625 fesnn1,2 fesnn1,2

d4 (a3) 156.25–312.5 fednn2 fesnn1,2 fednn2, fesnn1,2

d5 (a4) 78.12–156.25 fednn1,2 fesnn1,2 fnn, fednn1,2, fesnn1,2

d6 (a5) 39.06–78.12 fesnn1,2 fesnn1,2

a6 0–39.06 fesnn1 fesnn1

*  approximations relating to upper frequency limits of particular details are given in parenthesis

One can notice that bandwidth containing harmonics related to faults in the case of 
dynamic eccentricity includes DWT signals d4 and d5, and for static eccentricity with voltage 
asymmetry, from d2 to a6. Analysis of detail d6 is omitted since it contains base harmonic.

Fig.  13.  Characteristic harmonics for voltage asymmetry on slip-frequency plane
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For particular fault cases, DWT approximations of the current signal for the analyses 
on the TF planes, are obtained from the following signals of wavelet transform performed 
using Daubechies wavelet of 45th order (‘db45’):

–	 dynamic eccentricity: a3,
–	 Static eccentricity: a1,
–	 Voltage asymmetry: a1.

5.  Results of analyses of particular fault cases

The following analyses were performed:
–	 Multi-resolution analysis with DWT

–	 Dynamic eccentricity detection (ED): analysis of wavelet signals d4 and d5 
(for wavelet filter: ‘db45’).

–	 Static eccentricity detection (ES) and voltage asymmetry (NN): analysis of wavelet 
signals d2 – a6 (for wavelet filter: ‘db45’).

–	 Time frequency analyses on TF planes
Energy of characteristic fault related harmonics:
–	 fednn1,2 ‒ for dynamic eccentricity,
–	 fesnn1,2 ‒ for static eccentricity,
–	  fnn, fednn1,2, fesnn1,2 ‒ for voltage asymmetry.
For time period: t = 0.9 s
–	 Signal of DWT approximation: a3 – for dynamic eccentricity (for wavelet filter: 

‘db45’).
–	 Signal of DWT approximation: a1 – for static eccentricity and voltage asymmetry 

(for wavelet filter: ‘db45’).
The following parameters of the time-frequency analysis were set:
A. Gabor’s transform
Base function g(t): Blackman’s window.
Parameters: ΔM = 4 – time step; ΔN = 4 – frequency step.
B. STFT transform
Analysis time window function γ(t): Hanning’s window.
Window length M : M = 512 samples ⇒ M @ 0.1 s, with Fs = 5000 samples per second
C. Wigner–Ville transform
Window length M : M = 512 samples ⇒ M @ 0.1 s, with Fs = 5000 samples per second
D. Continuous wavelet transform (CWT)
Morlet’s wavelet was selected.
In the case of time-frequency analyses performed with continuous wavelet transform 

(CWT) scale related to instantaneous frequency of characteristic fault harmonics for time t, 
obtained from the graph in Fig. 14.

For time-frequency analyses performed with CWT, a scale range from 1 to 64 with 
0.125 step was set.
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This scale range allows obtaining a better resolution of CWT transform for the middle 
frequencies range containing the examined harmonics as shown in figure below.

Programs for performing Gabor’s, STFT and Wigner–Ville’s transforms were based 
on algorithms given in [1]. For performing DWT and CWT and transforms and designing 
the notch filter, library functions of MATLAB were used.
–	 Multi-resolution analysis with DWT

T a b l e  3
Quantitative factors for ED detection: analysis of d4 and d5

Case
E (db45)

Case
W [%] (db45)

Decomposition signal Decomposition signal
d5 d4 d5 d4

i_sym 5.4724 0.3529 i_de 29.97 3.12
i_de 7.1124 0.3639

Fig.  14.  Frequency vs. Scale curve for Morlet wavelet for S = 1:0,125:64

Fig.  15.  Dynamic eccentricity detection: analysis of d4 and d5: a) i_sym, b) i_de
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Fig.  16.  Detection of static eccentricity and voltage asymmetry: analysis d2 – a6:  
a) i_sym, b) i_se, c) i_senn
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T a b l e  4
Quantitative factors for ES and NN detection: analysis d2 – a6

Case

E (db45)

Decomposition signal

a6 d5 d4 d3 d2

i_sym 83.8955 5.4724 0.3529 0.019 0.004

i_se 85.2914 5.118 0.2886 0.015 0.0037

i_senn 70.1393 0.2611 0.1306 0.0127 0.0029

Case

W [%] (db45)

Decomposition signal

a6 d5 d4 d3 d2

i_se 1.66 6.48 18.22 21.05 7.50

i_senn 16.40 95.23 62.99 33.16 27.50

–	 Time-frequency analysis on TF planes

Fig.  17.  Signal of DWT approximation: a3 – for ED: i_de:  
a) GT; b) STFT; c) WV; d) CWT
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Fig.  19.  Signal of DWT approximation: a1 – for ES and NN: i_senn:  
a) GT; b) STFT; c) WV; d) CWT

Fig.  18.  Signal of DWT approximation: a1 – for ES: i_se:  
a) GT; b) STFT; c) WV; d) CWT
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T a b l e  5
Quantitative factors for particular signals of DWT approximations for dynamic eccentricity 

occurrence case

Case

GT (a3: db45): E [dB]

Case

GT (a3: db45): ΔE [dB]

Harmonic Harmonic

fednn1 fednn2 fednn1 fednn2

i_sym ‒92.1 ‒97.21 i_de 8.48 12.27

i_de ‒83.62 ‒84.94

STFT (a3: db45): E [dB] STFT (a3: db45): ΔE [dB]

i_sym ‒2.531 ‒14.95 i_de 16.381 20.731

i_de 13.85 5.781

WV (a3: db45): E [dB] WV (a3: db45): ΔE [dB]

i_sym 8.798 ‒26.61 i_de 10.582 27.1472

i_de 19.38 0.5372

CWT (a3: db45): E [dB] CWT (a3: db45): ΔE [dB]

i_sym ‒19.91 ‒21.28 i_de 2.06 5.11

i_de ‒17.85 ‒16.17

T a b l e  6
Quantitative factors for particular signals of DWT approximations for static eccentricity 

and voltage asymmetry considered as distortion occurrence case

Case

GT (a1: db45): E [dB]

Harmonic

fednn1 fednn2 fesnn1 fesnn2 fnn

i_sym ‒92.67 ‒98.37 ‒87.53 ‒103.8 ‒85.06

i_se ‒75.68 ‒84.62

i_senn ‒83.44 ‒83.46 ‒82.38 ‒91.78 ‒61.8

STFT (a1: db45): E [dB]

i_sym ‒2.532 ‒14.97 21.62 ‒5.074 19.58

i_se 29.05 18.96

i_senn 7.854 1.825 24.9 9.473 41.37

WV (a1: db45): E [dB]

i_sym 8.809 -8.79 ‒5.753 ‒5.628 13.83

i_se 10.11 5.908

i_senn 20.58 10.09 13.03 10.43 35.27
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CWT (a1: db45): E [dB]

i_sym ‒19.58 ‒21.73 ‒19.36 ‒24.57 ‒17.58

i_se ‒10.21 ‒15.41

i_senn 0.2393 3.168 ‒5.843 ‒5.712 3.934

Case

GT (a1: db45): ΔE [dB]

Harmonic

fednn1 fednn2 fesnn1 fesnn2 fnn

i_se 11.85 19.18

i_senn 9.23 14.91 5.15 12.02 23.26

STFT (a1: db45): ΔE [dB]

i_se 7.43 24.034

i_senn 10.386 16.795 3.28 14.547 21.79

WV (a1: db45): ΔE [dB]

i_se 15.863 11.536

i_senn 11.771 18.88 18.783 16.058 21.44

CWT (a1: db45): ΔE [dB]

i_se 9.15 9.16

i_senn 19.8193 24.898 13.517 18.858 21.514

6.  Conclusion

The aim of performed analyses was the efficiency evaluation of the presented methodology 
of detecting dynamic and static eccentricity. Supply voltage asymmetry was considered 
as  distortion of harmonics based method of static eccentricity detection. The obtained 
results of the performed analyses are as follows:
–	 Multi-resolution analysis with DWT:

In the obtained DWT decompositions, one can notice changes showing the 
occurrence of particular faults. For slip dependent harmonics, these changes are details 
covering the highest ranges at the end of start-up– d4 for dynamic eccentricity, d2 and d3 
for static eccentricity and d2-d5 for static eccentricity with voltage asymmetry.

In the case of percentage energy of DWT signals, dynamic eccentricity occurrence 
causes the rise of the percentage energy of signals d4 and d5, however, when static 
eccentricity occurs, the percentage energy of details d2-d5 decreases. In the case 
of  the  simultaneous occurrence of static eccentricity and voltage asymmetry, the 
decrease of the percentage energy of details d2-d5 becomes significant.
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In the case of TF analyses, when analyzing energies of the examined harmonics one 
can notice their increase when a fault occurs. It happens for all transforms both for a3 
approximation for dynamic eccentricity and for a1 approximation for static eccentricity 
with voltage asymmetry.

In the obtained transforms, harmonics fednn1,2 are not clearly visible. The waveform 
of  fesnn1,2 harmonic is visible in all TF transforms except that in Wigner–Ville’s transform, 
one  can distinguish waveforms of two harmonics. Harmonic fnn waveform is also clearly 
visible.

It can be concluded that the proposed methodology is effective in the detection 
of  the examined faults both for multi-resolution analysis with DWT and time-frequency 
analyses on the TF plane.

General observations and conclusions can be formed:
–	 With TF analyses using Gabor transform, Wigner–Ville’s transform, STFT and CWT, 

all examined machine faults were successfully diagnosed, thanks to the localization 
of  typical slip dependent harmonics, which is a TMCSA method. In the current 
signal’s  decompositions obtained by DWT multi-resolution analysis, it is more 
difficult to observe characteristic features of faults. Also, analysis of wavelet signals 
percentage energy values, one cannot find any particular dependencies related to fault 
occurrence.

–	 Using the notch filter in order to remove the base harmonic of current signal 
of  frequency  equal to that of supply voltage, made it easier to distinguish 
characteristic  fault harmonics  in the time-frequency transforms. Although using 
the notch filter allowed the removal of a significant part of the base harmonic, the 
filtration is not ideal and a part of the base harmonic remained. This combined with 
the Gibbs effect, which is connected with filtration and signal processing, still causes 
the deterioration of the obtained transforms and decompositions’ quality.

–	 In conclusion, one can say that using the presented methodology of time-frequency 
analysis application in fault detection of cage induction machines and simple data 
acquisition system for collecting phase current and rotational speed signal, it was 
possible to detect the examined machine’s faults. Also, using a rotational speed 
signal allowed obtaining the actual harmonics’ waveforms and localize them of TF 
plane in specified moment, especially in cases where those harmonics were hard to 
observe which happened for dynamic eccentricity.
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