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A b s t r a c t

The classical inexact Newton method was presented as a tool for solving nonlinear differential-algebraic 
equations (DAEs) in a fully implicit form F(y, y, t) = 0. This is especially in chemical engineering where 
describing the DAE system in a different form can be difficult or even impossible to realize. The appropriate 
rewriting of the DAEs using the backward Euler method makes it possible to present the differential-
algebraic system as a large-scale system of nonlinear equations. To solve the obtained system of nonlinear 
equations, the inexact Newton backtracking method was proposed. Because the convergence of the inexact 
Newton algorithm is strongly affected by the choice of the forcing terms, new variants of the inexact 
Newton method were presented and tested on the catalyst mixing problem.
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S t r e s z c z e n i e

Klasyczna niedokładna metoda Newtona została przedstawiona jako narzędzie do rozwiązywania 
równań różniczkowo-algebraicznych zapisanych w formie niejawnej F(y, y, t) = 0. Zapisanie układu 
równań różniczkowo-algebraicznych w innej postaci w różnych zastosowaniach może być trudne lub 
niewskazane. Odpowiednie przekształcenie układów różniczkowo-algebraicznych z wykorzystaniem 
wstecznej metody Eulera umożliwia przedstawienie układu równań różniczkowo-algebraicznych jako 
układu równań nieliniowych dużej skali. W celu rozwiązania otrzymanego układu równań zaproponowano 
niedokładną metodę Newtona z nawrotami. Na zbieżność niedokładnej metody Newtona znacząco wpływa 
wybór czynnika wymuszającego. Nowe warianty niedokładnej metody Newtona zostały zastosowane do 
rozwiązania układu opisującego proces mieszania w obecności katalizatora.
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Symbols

G, E, F – definition of functions, 
h – length of the interval, 
k – number of a current iteration, 
n – number of mesh points, 
p1, p2, p3 – parameters used in the new algorithm,
r – variable in the algorithm, 
s – step of the algorithm, 
t – independent variable, for example time,
u – control variable, 
x – vector of decision variables, 
y – differential variables, 
z – algebraic variables, 
β, ε, θ, ν – constants used in theorem, 
α, γ, ϑ, ω – parameters used in classical algorithms, 
η – forcing term, 
R – set of real numbers. 

1. Introduction

Solving the differential-algebraic equations (DAEs) stands out as an important task in 
the scientific computing. Thus, methods for solving systems described by both differential 
and algebraic relations have gained increasing commercial importance over the last 30 years 
[19, 20]. With the increased academic research, potential applications of DAE systems 
have also been identified. Chemical engineering stands out as one of the most important 
application fields for these equations. In particular the control, modeling and identification 
of the chemical processes, which can take place in reactors, especially in the presence of 
a catalyst [3, 8].

These equations constitute the proper way to describe dynamic systems with slowly 
variable dynamics, as well as dynamic systems with conservation laws. The additional 
algebraic relations can model connections between the considered model and both the 
environment and the internal elements of the system. In this way, large-scale complex 
systems with dynamics and conservation laws can be designed and controlled [2]. 

In the article, attention was focused on the situation when the chemical process was 
described by the general differential-algebraic equations. It is important because in some cases, 
describing the system in a different form can be difficult or even impossible to realize [17].

The paper is constructed as follows. In the next section, the backward differentiation 
formula (BDF) is presented as an approach for discretization of the DAE systems. New 
aspects of the inexact Newton method were presented the in 3rd and 4th sections. The 
presented algorithms were tested on the catalyst mixing problem. The results are discussed in  
5th section.
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2. The backward Euler method

The backward differentiation formula was the first general technique for solving the 
differential-algebraic equations. The algorithm presented in [14] was the beginning of the 
specialized solvers for DAE systems.

The idea of this technique was that the derivative 
dy t
dt
( )

 can be approximated by
a linear combination of the solution y(t) at the current mesh point and at several previous 
mesh points.

At the beginning, the backward differentiation formula was defined for the systems of  
the differential equations coupled to algebraic equations. Then, this method was extended to 
apply any fully-implicit differential-algebraic systems:

  (1)

where G(·) is the vector-valued DAE system.
The first order backward differentiation formula, known as the backward Euler method, 

is the simplest method for solving differential-algebraic systems. It consists of replacing the 
derivative in (1) by a backward difference:

  (2)

where h = tn – tn–1 and E(·) is a large-scale vector-valued system of nonlinear algebraic 
equations.

The simultaneous approach for solving algebraic systems is one of the main direction in 
modern optimization algorithms [3]. The system (2) can be solved by the Newton or inexact 
Newton methods [4]. Additionally, it was assumed, that y(t0) is known and t (for example 
time) is the independent variable. In the practical applications in chemical engineering, the 
length of the reactor can be used as the independent variable. If the time interval, in which 
the systems has to be considered is known, for numerical purposes, it can be scaled to the 
interval [0, 1].

3. The inexact Newton method

The approach given in the previous section and presented in eq. (2) can be expressed as:

 F(x) = 0 (3)

System of algebraic equations presented in eq. (3) is often found in the scientific computing 
and stands a common point of a lot of the real-life engineering problems. One was assumed, 
that a nonlinear mapping F: Rn → Rn has the following properties:
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(i) there exists an x* ∈ R, for which F(x*) = 0,
(ii)  F is continuously differentiable in a neighborhood of x*,
(iii)  detF′(x*) ≠ 0.

The Newton method is one of the best known methods for solving system of nonlinear 
algebraic equations (3). This method converges quadratically from any sufficiently good 
initial solution. It can be computationally very expensive, especially, when the size of the 
problem is very large. Then, in each iteration of the algorithm, the Newton equation (4) 
should be solved:

  (4)

where xk is a solution at a current iterate and F′(xk) denotes the Jacobian matrix of F(xk) at 
point xk.

The solution of the Newton equation (4) computed as sk = (F′(xk))
–1F(xk) is the Newton 

step and denoted sk
N. In this way, the next iterate can be obtained by:

 xk+1 = xk + sk
N (5)

The system (4) can be solved by the inexact Newton method. This inexact method is 
any method which for given an initial guess x0, generates a sequence xk as presented in the 
Algorithm 1.

Algorithm 1. The inexact Newton method [10]
Begin
1. Given x0 ∈ Rn

2. For k = 1, 2, ..., until xk convergence
2.1. Choose some ηk ∈ [0, 1)

2.2. Inexactly solve the Newton equation (4) and obtain a step sk such that:

  (6)

2.3. Let xk+1 = xk + sk.
End

One can see, that ηk in the Algorithm 1 is the forcing term in the k-th iteration. Depending 
on the forcing term, the inexact Newton step sk, which satisfies the inexact Newton condition 
(6), should be obtained.

The role of the forcing terms is to control the degree of accuracy of solving the Newton 
equation (4). Therefore, at each iteration step of the inexact Newton method, a value of  
ηk ∈ [0, 1) has to be chosen. Then, the inexact Newton step sk can be obtained by solving the 
Newton equation approximately.

The inexact Newton condition (6) reflects two important features of the iteration process: 
(i) reflects the reduction in the norm of the local linear model,
(ii) accuracy in solving the Newton equation (4).

F x F x sk k k( ) + ( ) =′ 0

F x F x s F xk k k k k( ) + ( ) ≤ ( )′ η
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Theorem 1 ([10]). Assume that F: Rn → Rn is continuously differentiable, x* ∈ Rn such 
that F’(x*) is nonsingular. Let 0 < ηmax < β < 1 be the given constants. If the forcing terms {ηk} 
in the inexact Newton method satisfy ηk < ηmax < β < 1 for all k, then there exists ε > 0, such 
that for any x0 ∈ Nε(x

*) ≡ {x: ||x – x*|| < ε, the sequence {xk} generated by the inexact Newton 
method is converged to x*, and:

 ||xk+1 – x*||
*
 ≤ β||xk – x*||

*
 (7)

where ||υ||
* ≤ ||F′(x*)υ||

*
.

By Theorem 1 the inexact Newton method is locally convergent, if the forcing terms {ηk} 
are uniformly less than 1. The convergence rate is stated by the following theorem.

Theorem 2 ([10]). Assume that F: Rn → Rn is continuously differentiable, x* ∈ Rn such 
that F′(x*) is nonsingular. If the sequence {xk} generated by the inexact Newton method is 
converged to x*, then {xk} is converged to x*, superlinearly if ηk → 0, or quadratically if  
ηk = 0(||F(xk)||).

From Theorem 2 one can see, that the convergence rate of the Algorithm 1 is determined 
by the appropriate choice of the sequence of the forcing terms.

Since the initial point for the inexact Newton method cannot be guaranteed to be near 
a solution of the nonlinear system, the inexact Newton method was globalized by backtracking 
strategy [12]. Inexact Newton backtracking method was presented as Algorithm 2.

Algorithm 2. The inexact Newton backtracking method [12]
Begin
1. Given x0 ∈ Rn, ηmax ∈ [0, 1), α ∈ (0, 1), and 0 < θmin < θmax < 1
2. For k = 0, 1, 2, ..., until {xk} convergence
2.1. Choose some η ηk ∈[ ]0, max

2.2. Inexactly solve Newton equation (4) and obtain a step sk , such that:

  (8)

2.3. Backtracking loop:
2.3.1. Let s sk k=  , η ηk k= 
2.3.2. While ||F(xk + sk)|| > [1 – α(1 – ηk)]||F(xk)||
(i) Choose θ ∈ [θmin, θmax]
(ii) Update sk ← θsk and ηk ← 1 – θ(1 – ηk)
2.4. Let xk+1 = xk + sk
End

In each iteration of the inexact Newton backtracking method, the backtracking loop along 
sk  is implemented until the condition: 

 ||F(xk + sk)|| > [1 – α(1 – ηk)]||F(xk)|| (9)

F x F x s F xk k k k k( ) + ( ) ≤ ( )′  η
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is satisfied [12]. Equation (9) has been called the sufficient decrease condition. It has 
been used to guarantee that ||F(xk+1)|| has a certain decrease in each iteration. In practical 
applications a positive integer has been given in advance to control the maximal backtracking 
loop number along sk .

4. A choice of forcing terms 

There are some strategies to determine preferable and effective sequences for forcing 
terms. Four of them were selected and presented. The first strategy was proposed  
in [11].

1st Given η0 ∈ [0, 1), then:

  (10)

Two others strategies presented in [13] can be expressed as.

2nd For given η0 ∈ [0, 1), then:

  (11)

where ϑk
k k k k

k
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F x

=
( ) − ( ) − ( )

( )
− − −

−
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1

'
, k = 1, 2, ...

3rd Given γ ∈ (0, 1], ω ∈ (1, 2], η0 ∈ [0, 1), choose:

  (12)

4th The last presented strategy was introduced in [1]. Let us denote:

 Aredk(sk) = ||F(xk)|| – ||F(xk + sk)|| (13)

 Predk(sk) = ||F(xk)|| – ||F(xk) + F’(xk)sk) (14)
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then

  (15)

In the 4th approach, the forcing term ηk is adjusted depending on the value of rk. One can 
distinguish four situations which might take a place in practical applications. If rk ≈ 1, then 
the local linear model and nonlinear model will agree well on their scale and ||F(x)|| will 
usually be reduced. If rk nears 0, but rk > 0, then the local linear model and nonlinear model 
disagree and ||F(x)|| can be reduced very little. If rk < 0, then the local linear model and 
nonlinear model disagree and ||F(x)|| will be enlarged. In the last situation, if rk >> 0, then 
the local linear model and nonlinear model also disagree, but ||F(x)|| will be reduced greatly. 
If Predk(sk) = 0, then the solution is achieved and computations are stopped. One can choose 
forcing terms according to the value of rk:

  (16)

where 0 < p1 < p2 < p3 < 1 are prescribed at first and p1 0 1
2

∈





, .

The choice of forcing terms is to determine ηk by the magnitude rk–1.
The 2nd strategy reflects the agreement between F(x) and its local linear model at the 

previous step. The 3rd choice reflects the reduction rate of ||F(x)|| from xk–1 to xk.

5. Case study: Catalyst mixing problem

The main goal is to determine the optimal mixing policy of two catalysts along the length 
of a tubular reactor [15]. The mixing ratio of the catalysts represents the control variable. The 
formulation of the dynamic optimization problem was described by the system of differential-
algebraic equations:

 maxu z3(1.0) (17)

subject to:

  (18)

  (19)

 z3 + y1 + y2 – 1 = 0 (20)
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 x(0) = [y1(0), y2(0), z3(0)]T = [1.0; 0.0; 0.0]T (21)

 u(t) ∈ [0.0; 1.0] (22)

There are some reasons to describe the process using the DAE model. Depending on 
the application, it may be difficult to reformulate the problem as an ODE especially, when 
nonlinearities are present. The algebraic equations typically describe conservation laws or 
explicit equality constraints and they should be kept invariant. Furthermore, it is easier to 
vary design parameters in an implicit model. In the presented application, the main advantage 
of a such formulation is that the implicit model does not require the modeling simplifications 
often necessary to get an ODE and the variables keep their original physical interpretation.

In our research we concentrated upon how to solve the DAE system (18)-(20) with known 
feasible initial conditions (21) and assumed control function u(t) = t. The DAE system was 
considered in the time domain t ∈ [0.0; 1.0]. Then, the equations were discretized into 
equidistant points with a distance of 0.001. It resulted in 2000 differential and 1000 algebraic 
state variables. Afterwards, 3000 equality constraints from the backward Euler method 
were imposed. The Jacobian matrix was obtained analytically and stored as a 1000 × 1000 
sparse matrix. This large-scale system of the algebraic equations was solved using GMRES 
algorithm [5, 18]. The inexact Newton method was used with the forcing terms adjusted by 
four presented approaches.

The simulations were executed in the Matlab environment using Wroclaw Centre for 
Networking and Supercomputing for a vector of initial conditions.

Let us denote the initial conditions vector as follows:

 x(0) = [x1,1, ..., x1,1000, x2,1, ..., x2,1000, x3,1, ..., x3,1000]
T (23)

In this case the vector x(0) =  [1.0, ..., 1.0, 0.0, ..., 0.0, 0.0, ..., 0.0]T, and ||F(x0)|| = 0.0258. 
The initial conditions like presented in eq. (23) are feasible for the discretized DAE model 
only at the mesh points.

The simulations were executed with the parameters γ = 0.5, ω = 1.5, for proposition 3 and 
p1 = 0.25, p2 = 0.6 and p3 = 0.8 for the 4th proposition.

The results after 6 iterations for proposition 1 and initial conditions as presented in (23) 
were plotted on Fig.1.

Results presented in Table 1 indicate, that the solution obtained by the inexact 
Newton algorithm with forcing terms adjusted as in proposition 1, have a high accuracy 
in 6 iterations. A similar situation can be observed in Table 2 for proposition 2, but the 
convergence is slower. The forcing terms adjusted as in 4th proposition give progress, 
which is slower than the previous two, but comparable with results for the 3rd proposition.

Using the Modellica DASSL solver, the derivatives y t( )  are approximated by backward 
differentiation formulae (BDF), and the resulting nonlinear system at each time-step is solved 
by the Newton method. The implemented in Matlab procedure ode15s, utilizes the same 
algorithms as Modellica. These approaches are definitely different to the one presented in our 
researches. They belongs to the sequential methods. In the article, a simultaneous approach 
to solving differential-algebraic systems was investigated. In solving the catalyst mixing 
problem described as the DAE model, the differences are unnoticeable.
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T a b l e  1

Results for proposition 1

Iteration k
Proposition 1

ηk ||F(x)||
1 0.0258 0.0012
2 0.0012 6.7233e-4
3 6.7233e-4 2.0389e-4
4 2.0389e-4 2.2336e-5
5 2.2336e-5 1.1930e-8
6 1.1930e-8 2.4685e-13

T a b l e  2

Results for propositions 2 and 3

Iteration k
Proposition 2 Proposition 3

ηk ||F(x)|| ηk ||F(x)||
1 0.9000 0.0039 0.9000 0.0256
2 0.8433 0.0033 0.4917 0.0253
3 0.7589 0.0025 0.4917 0.0250
4 0.6400 0.0016 0.4917 0.0247
5 0.4857 7.6601e-4 0.4917 0.0244
6 0.3108 2.3772e-4 0.4917 0.0242
7 0.1510 3.5672e-5 0.4917 0.0239
8 1.2772e-11 6.6590e-9 0.4917 0.0236

T a b l e  3

Results for proposition 4

Iteration k
Proposition 4

ηk rk ||F(x)||
1 0.5000 0.0145 0.0256
2 0.4000 0.0145 0.0253
3 0.4000 0.0145 0.0250
4 0.4000 0.0145 0.0247
5 0.4000 0.0145 0.0244
6 0.4000 0.0145 0.0242
7 0.4000 0.0145 0.0239
8 0.4000 0.0145 0.0236



62

6. Conclusion

In the article, new aspects of the inexact Newton methods for solving differential-
algebraic models of the chemical processes in the fully implicit form were considered. The 
methods for the choice of the forcing terms for the inexact Newton method were presented 
and tested on the catalyst mixing problem.

The presented approach has some specific advantages which we want to emphasize. First 
of all, description a technological process using differential-algebraic equations enables 
us to exploit the system structure by problem-specific solvers. Hence, the implicit model 
does not require the modeling simplifications and the variables keep their original physical 
interpretation. 

Rewriting the differential-algebraic model as a large-scale system of algebraic equations 
has a positive impact on the stability of the obtained solution. Recursive solutions do not have 
this property. This is the first step to take advantage of the effective numerical procedures for 
large and sparse matrices [3].

In the computations, matrix inversion was efficiently avoided.
Solving the large scale nonlinear differential-algebraic systems, especially with 

unbalanced nonlinearities, is a challenge. Attempts to solve these equations are still made [6]. 
One of the most famous examples of this type is the model of a kinetic batch reactor [7, 9].

For solving the Newton equation, the GMRES algorithm was used. The largest difficulty 
is associated with the calculation of the matrix-vector product. This calculation is time 
consuming and need storage of the matrix, which often has thousands of both rows and 
columns.

The future work will be concentrating on new reliable Jacobian-free Newton-Krylov 
methods, which could be successfully applied in optimal control of the chemical processes 
modeled by the nonlinear differential-algebraic equations.

Fig. 1. Trajectory of the differential variables y1 and y2. Results for the forcing terms as in as 
proposition 1 after 6 iterations
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