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MOVABLE INTERSECTION AND BIGNESS CRITERION

by Jian Xiao

Abstract. In this note, we give a Morse-type bigness criterion for the dif-
ference of two pseudo-effective (1, 1)-classes by using movable intersections.
As an application, we give a Morse-type bigness criterion for the difference
of two movable (n− 1, n− 1)-classes.

1. Introduction. Let X be a smooth projective variety of dimension n,
and let A,B be two nef line bundles. Then we have the fundamental inequality

vol(A−B) ≥ An − nAn−1 ·B,
which was first discovered as a consequence of Demailly’s holomorphic Morse
inequalities (see [8, 19, 20]). Thus the above inequality is usually called alge-
braic Morse inequality for line bundles. Recall that the volume of a holomor-
phic line bundle L is defined by

vol(L) := lim sup
k→+∞

n!

kn
h0(X,O(kL)).

We call L a big line bundle if vol(L) > 0. In particular, the Morse-type
inequality for A,B implies that: A − B must be a big line bundle if An −
nAn−1 · B > 0. This provides a very effective way to construct holomorphic
sections; see [10,14] for related applications.

Assume that L is a holomorphic line bundle over a compact Kähler man-
ifold X. It has been proved [2, Theorem 1.2] that then the volume of L can
be characterized as the maximum of the Monge–Ampère mass of the positive
curvature currents contained in the class c1(L). This naturally extends the vol-
ume function vol(·) to transcendental (1, 1)-classes (i.e., classes in H1,1(X,R))
over compact Kähler manifolds (see [2, Definition 1.3] or [4, Definition 3.2]).
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Recall that Demailly’s conjecture on the (weak) transcendental holomor-
phic Morse inequality over compact Kähler manifolds is the following state-
ment.

Conjecture 1.1. (see [4, Conjecture 10.1])1 Let X be a compact Kähler
manifold of dimension n, and let α, β ∈ H1,1(X,R) be two nef classes. Then
we have

vol(α− β) ≥ αn − nαn−1 · β.
In particular, if αn − nαn−1 · β > 0, then there exists a Kähler current in the
class α− β.

Based on the method of [7], in our previous work [23], it was proved
that: if αn − 4nαn−1 · β > 0, then there exists a Kähler current in the class
α− β. Recently, by keeping the same method as in [7,23] and using the new
technique introduced by [17], D. Popovici has proved that the constant 4n can
be improved to the natural and optimal constant n. Thus we have a Morse-type
bigness criterion for the difference of two transcendental nef classes – indeed,
our results in this note depend mainly on this important improvement.

It is natural to ask whether the above Morse-type bigness criterion “αn −
nαn−1 · β > 0⇒ vol(α− β) > 0” for nef classes can be generalized to pseudo-
effective (1, 1)-classes. Towards this generalization, we apply the movable inter-
section products (denoted by 〈−〉) of pseudo-effective (1, 1)-classes developed
in [1,4, 5]. Then our problem can be stated as follows:

Problem 1.1. Let X be a compact Kähler manifold of dimension n, and let
α, β ∈ H1,1(X,R) be two pseudo-effective classes. Does vol(α)−n〈αn−1〉·β > 0
imply that there exists a Kähler current in the class α− β?

Unfortunately, a very simple example due to [20] implies that the above
generalization does not always hold.

Example 1.1. (see [20, Example 3.8]) Let π : X → P2 be the blow-up
of P2 at a point p. Let R = π∗H, where H is the hyperplane line bundle
on P2. Let E = π−1(p) be the exceptional divisor. Then for every positive
integer k, the space of global holomorphic sections of k(R−2E) is the space of
homogeneous polynomials in three variables of degree at most k and vanishing
up to order 2k at p; hence k(R − 2E) does not have any global holomorphic
section. Since H0(X,O(k(R − 2E))) = {0}, R − 2E cannot be big. However,
we have R2 − 2R · 2E > 0 as R2 = 1 and R · E = 0.

As the first result of this note, we show that the answer to Problem 1.1 is
positive if β is movable. Here, β being movable means that the negative part
of β vanishes in its divisorial Zariski decomposition (see [3]). In particular,

1For projective manifolds, this conjecture has been confirmed by [22].
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if β = c1(L) for some pseudo-effective line bundle, then β being movable is
equivalent to the base locus of mL + A being of codimension at least two for
a fixed ample line bundle A and for large m.

Theorem 1.1. Let X be a compact Kähler manifold of dimension n, and
let α, β ∈ H1,1(X,R) be two pseudo-effective classes with β movable. Then
vol(α)− n〈αn−1〉 · β > 0 implies that there exists a Kähler current in the class
α− β.

Remark 1.1. In the case of β = 0, Theorem 1.1 is just [2, Theorem 4.7],
and when α is also nef, it is [12, Theorem 0.5].

Though not stated explicitly, by [6, Section 3] (or [4]), we know that De-
mailly’s conjecture on the weak transcendental holomorphic Morse inequality
over compact Kähler manifolds is equivalent to the C1 differentiability of the
volume function for transcendental (1, 1)-classes.

Proposition 1.1. (cf. [6]) Let X be a compact Kähler manifold of dimen-
sion n. Then the following statements are equivalent:

1. For any two nef classes α, β ∈ H1,1(X,R), we have

vol(α− β) ≥ αn − nαn−1 · β.
2. For any two pseudo-effective classes α, β ∈ H1,1(X,R) with β movable,

we have
vol(α− β) ≥ 〈αn〉 − n〈αn−1〉 · β.

3. Let α, γ ∈ H1,1(X,R) be any two (1, 1)-classes with α big. Then

d

dt

∣∣∣∣
t=0

vol(α+ tγ) = n〈αn−1〉 · γ.

Remark 1.2. Here, we point out the equivalence (1)⇔(2). It can be de-
rived either from some basic properties of movable intersections, or from The-
orem 1.1 and the equivalence (1)⇔(3).

Remark 1.3. It is shown in [13] that the C1 differentiability of the volume
function for transcendental (1, 1)-classes holds on compact Kähler surfaces. It
is used to construct the Okounkov bodies of transcendental (1, 1)-classes over
compact Kähler surfaces.

As a direct application of the equivalence (1)⇔(2) in Proposition 1.1, the
algebraic Morse inequality can be generalized as follows. It slightly generalizes
the previous result [21, Corollary 3.2].

Theorem 1.2. Let X be a smooth projective variety of dimension n, and
let α, β be the first Chern classes of two pseudo-effective line bundles with β
movable. Then we have

vol(α− β) ≥ vol(α)− n〈αn−1〉 · β.
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Remark 1.4. In particular, if α is nef and β is movable then we have
vol(α− β) ≥ αn − nαn−1 · β which is just [21, Corollary 3.2].

Finally, as an application of Theorem 1.1, we give a Morse-type bigness
criterion for the difference of two movable (n− 1, n− 1)-classes. In particular,
this can be applied to the study of positivity of cohomology classes of curves.

Theorem 1.3. Let X be a compact Kähler manifold of dimension n, and let
α, β ∈ H1,1(X,R) be two pseudo-effective classes. Then vol(α)−nα·〈βn−1〉 > 0
implies that there exists a strictly positive (n − 1, n − 1)-current in the class
〈αn−1〉 − 〈βn−1〉.

In Section 2, we collect some preliminaries. Section 3 presents the proofs
of the main results.

2. Preliminaries.
2.1. Resolution of singularities of positive currents. Let X be a compact

Kähler manifold of dimension n. Let T be a d-closed almost positive (1, 1)-
current on X, that is T ≥ γ for some smooth (1, 1)-form γ. If γ = 0, then T is
called a positive (1, 1)-current and the class {T} is called pseudo-effective. If
γ is a hermitian metric, then T is called a Kähler current and the class {T} is
called big. (See [11] for the basic theory of positive currents.)

Assume that T = θ+ddcϕ is an almost positive current, where θ is smooth.
Then we say that it has analytic singularities, if locally ϕ = a log(

∑m
j=1 |fj |2)

modulo smooth functions, where a > 0 and f1, .., fm are holomorphic func-
tions. Demailly’s regularization theorem (see [9]) implies that one can always
approximate the almost positive (1, 1)-current T by a family of almost positive
closed (1, 1)-currents Tk with analytic singularities such that Tk ≥ γ − εkω,
where εk ↓ 0 is a sequence of positive constants and ω is a fixed hermitian
metric. In particular, when T is a Kähler current, it can be approximated by
a family of Kähler currents with analytic singularities.

When T has analytic singularities along an analytic subvariety V (I) where
I ⊂ OX is a coherent ideal sheaf, by blowing up along V (I) and then resolving

the singularities, we get a modification µ : X̃ → X such that µ∗T = θ̃ + [D],

where θ̃ is an almost positive smooth (1, 1)-form with θ̃ ≥ µ∗γ and D is an
effective R-divisor; see e.g. [4, Theorem 3.1]. In particular, if T is positive,

then θ̃ is a smooth positive (1, 1)-form. We call such a modification the log-
resolution of singularities of T .

For an almost positive (1, 1)-current T , we can always decompose T with
respect to the Lebesgue measure. We write T = Tac + Tsg, where Tac is
the absolutely continuous part and Tsg is the singular part. The absolutely
continuous part Tac can be seen as a form with L1

loc coefficients, and the wedge

product T kac(x) makes sense for almost every point x. We always have Tac ≥ γ,
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since γ is smooth. If T has analytic singularities along V , then Tac = 1X\V T
(see [2, Section 2.3] for the proof). However, in general Tac is not closed even
if T is closed (see [1]). We have the following proposition.

Proposition 2.1. Let X be a compact Kähler manifold of dimension n.
Let T1, ..., Tk be k almost positive closed (1, 1)-currents with analytic singular-

ities on X and let ψ be a smooth (n − k, n − k)-form. Let µ : X̃ → X be a

simultaneous log-resolution with µ∗Ti = θ̃i + [Di]. Then∫
X
T1,ac ∧ ... ∧ Tk,ac ∧ ψ =

∫
X̃
θ̃1 ∧ ... ∧ θ̃k ∧ µ∗ψ.

Proof. Since µ is an isomorphism outside a proper analytic subvariety

and θ̃i is smooth on X̃ for i = 1, . . . , k, we only need to check that T1,ac ∧ ...∧
Tk,ac puts no mass on proper analytic subvarieties. Without loss of generality,
we may assume that the Ti are positive. Since the currents have analytic
singularities, by the discussion above, T1,ac ∧ ... ∧ Tk,ac = 1X\V T1 ∧ ... ∧ Tk
where V is the union of singularities of the currents. The wedge product
on the right hand side is just the non-pluripolar product of positive currents
with analytic singularities, thus it puts no mass on proper subvarieties (see [5,
Section 1.2]).

2.2. Movable cohomology classes. We first briefly recall the definition of
divisorial Zariski decomposition and the definition of movable (1, 1)-class on a
compact complex manifold (see [3], and also [16] in the algebraic setting).

Let X be a compact complex manifold of dimension n and let α be a
pseudo-effective (1, 1)-class over X. Then one can always associate an effective
divisor N(α) :=

∑
ν(α,D)D to α, where the sum is taken among all prime

divisors on X. The class {N(α)} is called the negative part of α. The class
Z(α) = α − {N(α)} is called the positive part of α. The decomposition α =
Z(α) + {N(α)} is then the divisorial Zariski decomposition of α.

Definition 2.1. Let X be a compact complex manifold of dimension n,
and let α be a pseudo-effective (1, 1)-class. Then α is called movable if α =
Z(α).

Proposition 2.2. (see [3, Proposition 2.3 ]) Let α be a movable (1, 1)-class
and let ω be a Kähler class. Then for any δ > 0 there exist a modification
µ : Y → X and a Kähler class ω̃ over Y such that α+ δω = µ∗ω̃.

Remark 2.1. In [3], α is called modified nef if α = Z(α) (see [3, Definition
2.2 and Proposition 3.8]). Here we call it movable. In the algebraic geometry
setting let L be a line bundle over a smooth projective variety and let α =
c1(L). Then α is modified nef if and only if L is movable.
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2.3. Movable intersections. We take the opportunity to point out the well-
known fact: the several definitions of movable intersections of pseudo-effective
(1, 1)-classes [1, 4, 5] over a compact Kähler manifold coincide. They also
coincide with the algebraic construction of [6] on smooth projective varieties
for specified degrees. One can refer to [18, Proposition 1.10] for a detailed
proof.

We just recall the analytic definition from [5].

Definition 2.2. Let X be a compact Kähler manifold of dimension n,
and let α1, ..., αk be big (1, 1) classes on X. Then the cohomology class of
the non-pluripolar product 〈Tmin,1 ∧ ... ∧ Tmin,k〉 is independent of the choice
of Tmin,i ∈ αi with minimal singularities. This cohomology class is called
the movable intersection (or positive product) of the αi, and it is denoted by
〈α1 · ... ·αk〉. If α1, ..., αk are merely pseudo-effective, then the positive product
is defined by

〈α1 · ... · αk〉 = lim
ε→0
〈(α1 + εω) · ... · (αk + εω)〉,

where ω is an arbitrary Kähler class.

For the non-pluripolar product, we refer the reader to [5].

Remark 2.2. For any pseudo-effective (1, 1)-class α, the current with min-
imal singularities in the class α always exists. For example, assume that θ ∈ α
is a smooth (1, 1)-form, and assume that ϕmin = sup{ϕ ≤ 0|ϕ ∈ PSH(θ)}.
Then Tmin := θ + ddcϕmin is a current with minimal singularities.

Remark 2.3. By [5, Proposition 1.12], for any proper modification π :
Y → X, the movable intersection of n pseudo-effective classes satisfies 〈π∗α1 ·
... · π∗αn〉 = 〈α1 · ... · αn〉.

In [5], it is proved that: if α1, ..., αp are big classes, then there exists a

sequence of Kähler currents T
(k)
i ∈ αi with analytic singularities such that

lim
k→∞
{〈T (k)

1 ∧ ... ∧ T (k)
p 〉} = 〈α1 · ... · αp〉.

In particular, by considering a sequence of simultaneous log-resolutions of

T
(k)
i ∈ αi, one gets a sequence of modifications µk : Xk → X such that
µ∗kαi = ω̂i,k + [Ei,k] and

lim
k→∞

(µk)∗(ω̂1,k · ... · ω̂p,k) = 〈α1 · ... · αp〉,

where the notation · in the left-hand side limit is the intersection of coho-
mology classes, and the ω̂i,k are postive classes upstairs and the Ei,k are real
effective divisors. By [5, Theorem 1.16], this is exactly the definition of [4].
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By [5, Theorem 1.16] again, it is easy to see that the movable intersection is
monotonous with respect to the positivity of the αi.

By [4, Definition 1.3, Theorem 1.5 and Conjecture 2.3], the definition of
movable (n−1, n−1)-classes in the Kähler setting can be formulated as follows.

Definition 2.3. Let X be a compact Kähler manifold of dimension n, and
let γ ∈ Hn−1,n−1(X,R). Then γ is called a movable (n− 1, n− 1)-class if it is
in the closure of the convex cone generated by cohomology classes of the form
〈α1 · ... · αn−1〉 with every αi pseudo-effective.

Remark 2.4. When X is a smooth projective variety of dimension n, [4,
Theorem 1.5] implies that the rational movable (n− 1, n− 1)-classes are in the
cone of movable curves.

3. Proof of the main results. Now let us begin to prove our main
results. We first give a Morse-type bigness criterion for the difference of two
pseudo-effective (1, 1)-classes by using movable intersections. To this end, we
need some properties of movable intersections.

Lemma 3.1. Let X be a compact Kähler manifold of dimension n, and let
α1, ..., αn−1, β ∈ H1,1(X,R) be pseudo-effective classes with β nef. Then we
have

〈α1 · ... · αn−1 · β〉 = 〈α1 · ... · αn−1〉 · β.

Proof. By the continuity of positive products, by taking limits, we can
assume that α1, ..., αn−1 are big and β is Kähler.

By [5] or [4, Theorem 3.5], there exists a sequence of simultaneous log-
resolutions µm : Xm → X with µ∗mαi = ωi,m + [Di,m] and µ∗mβ = γm + [Em]
such that

〈α1 · ... · αn−1 · β〉 = lim sup
m→∞

(ω1,m · ... · ωn−1,m · γm),

and

〈α1 · ... · αn−1〉 · β = lim sup
m→∞

(ω1,m · ... · ωn−1,m) · µ∗mβ,

where the ωi,m, γm are (1, 1) cohomology classes which can be represented by
positive (1, 1) forms.

First, note that by definition we always have 〈α1 · ... · αn−1 · β〉 ≤ 〈α1 · ... ·
αn−1〉 · β, when β is only assumed to be big (or pseudo-effective).

When β is Kähler, the class γm is taken to be µ∗mβ. Hence, if β is Kähler
or nef, then we have the required equality

〈α1 · ... · αn−1 · β〉 = 〈α1 · ... · αn−1〉 · β.
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Lemma 3.2. Let X be a compact Kähler manifold of dimension n. Let
α1, ..., αn−1 be pseudo-effective (1, 1)-classes, and let π : Y → X be a modifi-
cation. Then for any Kähler class ω̂ on Y we have

〈α1 · ... · αn−1〉 · π∗ω̂ ≥ 〈π∗α1 · ... · π∗αn−1〉 · ω̂.

Proof. First, we have 〈α1 · ... ·αn−1〉 · π∗ω̂ ≥ 〈α1 · ... ·αn−1 · π∗ω̂〉 as noted
in the proof of Lemma 3.1. On the other hand, we have 〈α1 · ... ·αn−1 · π∗ω̂〉 =
〈π∗α1 · ... · π∗αn−1 · π∗(π∗ω̂)〉. Assume that E is the exceptional divisor of π
and use the same symbol ω̂ to denote a Kähler metric in the class ω̂. Then
by Siu’s decomposition π∗(π∗ω̂) = ω̂ + c[E] for some c ≥ 0. In particular, the
class π∗(π∗ω̂)− ω̂ is pseudo-effective, hence

〈α1 · ... · αn−1〉 · π∗ω̂ ≥ 〈π∗α1 · ... · π∗αn−1 · ω̂〉
= 〈π∗α1 · ... · π∗αn−1〉 · ω̂.

3.1. Theorem 1.1.

Proof of Theorem 1.1. Fix a Kähler metric ω on X, and denote its
Kähler class by the same symbol. By continuity of movable intersections, we
have

lim
δ→0
〈(α+ δω)n〉 − n〈(α+ δω)n−1〉 · (β + δω) = 〈αn〉 − n〈αn−1〉 · β.

Thus 〈(α + δω)n〉 − n〈(α + δω)n−1〉 · (β + δω) > 0 for small δ > 0. Note also
that α − β = (α + δω) − (β + δω). Thus, to prove the bigness of the class
α− β, we may assume that α is big, and that β = µ∗ω̃ for some modification
µ : Y → X and some Kähler class ω̃ on Y from the start. By Lemma 3.1 and
Lemma 3.2, our assumption then implies that

〈(µ∗α)n〉 − n〈(µ∗α)n−1 · ω̃〉 = 〈(µ∗α)n〉 − n〈(µ∗α)n−1〉 · ω̃ > 0.

Claim: there exists a Kähler current in the class µ∗α− ω̃. The claim then
implies the bigness of the class α− β = µ∗(µ

∗α− ω̃).
Now it is reduced to prove the case when α is big and β is Kähler. Let ω′

be a Kähler metric in the class β. The definition of movable intersections (see
the discussion in Section 2.3) implies that there exists some Kähler current
T ∈ α with analytic singularities along some subvariety V such that∫

X\V
Tn − n

∫
X\V

Tn−1 ∧ ω′ > 0.

Let π : Z → X be the log-resolution of the current T with π∗T = θ + [D],
where θ is a smooth positive (1, 1)-form on Z. By Proposition 2.1 we have∫

Z
θn − n

∫
Z
θn−1 ∧ π∗ω′ > 0.
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The result of [17] then implies that there exists a Kähler current in the
class {θ−π∗ω′}. As π∗α = {θ+[D]}, this proves the bigness of the class α−β.

Thus we finish the proof of the result.

Remark 3.1. Indeed, by the above argument we have the following bigness
criterion: for any pseudo-effective (1, 1)-classes α, β,

〈αn〉 − n〈αn−1 · β〉 > 0⇒ vol(Z(α)− Z(β)) > 0.

Since the movable intersections 〈αn〉 and 〈αn−1 · β〉 depend only on the
positive parts of α, β (see e.g. [1, Proposition 3.2.10]), we may assume that
α, β are movable from the start. By taking limits, we may also assume that
β = π∗ω̂ for some modification π. Then we have

〈(π∗α)n〉 − n〈(π∗α)n−1〉 · ω̂ = 〈(π∗α)n〉 − n〈(π∗α)n−1 · ω̂〉
≥ 〈(π∗α)n〉 − n〈(π∗α)n−1 · π∗β〉
> 0,

which implies that α− β = π∗(π
∗α− ω̂) is big.

In the case of Example 1.1, since R is nef and E is exceptional, we have
〈R2〉 − 2〈R · 2E〉 = R2 > 0, and we get the bigness of Z(R)− Z(2E) = R.

3.2. Proposition 1.1 and Theorem 1.2.

Proof of Proposition 1.1. It is obvious that (2)⇒(1). The equivalence
(1)⇔(3) is proved in [6]. It remains to verify (1)⇒(2).

To prove (2), we only need to consider the case when β is big and movable.
First assume that β is Kähler. Take a sequence of suitable modifications

µm satisfying µ∗mα = ωm + [Em] and

〈αn〉 = lim sup
m→∞

ωnm, 〈αn−1〉 = lim sup
m→∞

(µm)∗(ω
n−1
m ).

By (1), we have vol(ωm−µ∗mβ) ≥ ωnm−nωn−1m ·µ∗mβ. Then taking limits implies
that

vol(α− β) ≥ vol(α)− n〈αn−1〉 · β
holds true when β is Kähler.

In the general case, we may assume that β = π∗ω̂ for some Kähler class
ω̂ upstairs, so π∗(π

∗α − ω̂) = α − β. By the property of volume function (see
e.g. [1]), we get vol(α− β) = vol(π∗(π

∗α− ω̂)) ≥ vol(π∗α− ω̂). Then we have

vol(α− β) ≥ vol(π∗α− ω̂) ≥ vol(π∗α)− n〈(π∗α)n−1〉 · ω̂
≥ vol(π∗α)− n〈αn−1〉 · π∗ω̂ by Lemma 3.2

= vol(α)− n〈αn−1〉 · β.
This then finishes the proof of the result.
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Remark 3.2. Since (1)⇔(3), there is an alternative way to see (1)⇒(2).
Note that the implication (1)⇒(2) is equivalent to (3)⇒(2). This is an easy
consequence of Theorem 1.1. To prove (2), we only need to verify the case
when 〈αn〉 − n〈αn−1〉 · β > 0. By Theorem 1.1, this implies that α− β is big.
Applying (3), we have

vol(α− β)− vol(α) =

∫ 1

0

d

dt
vol(α− tβ)dt

= −n
∫ 1

0
〈(α− tβ)n−1〉 · βdt ≥ −n〈αn−1〉 · β,

which is statement (2).

Proof of Theorem 1.2. We apply the equivalences in Proposition 1.1.
Since the inequality holds true for nef line bundles, by the equivalence (1)⇔(2),
we get the result.

3.3. Theorem 1.3. Finally, inspired by the method in our previous work
[23] (see also [7]), we show that Theorem 1.1 gives a Morse-type bigness cri-
terion for the difference of two movable (n− 1, n− 1)-classes.

Proof of Theorem 1.3. Denote the Kähler cone of X by K, and denote
the cone generated by pseudo-effective (n−1, n−1)-classes by N . Then by the
numerical characterization of Kähler cone in [12] (see also [4, Theorem 2.1]),
we have the cone duality

K∨ = N .
Without loss of generality, we may assume that α and β are big. Then the

existence of a strictly positive (n−1, n−1)-current in the class 〈αn−1〉−〈βn−1〉
is equivalent to the existence of some positive constant δ > 0 such that

〈αn−1〉 − 〈βn−1〉 � δ〈βn−1〉,

or equivalently,

〈αn−1〉 � (1 + δ)〈βn−1〉,

or equivalently by cone duality,

〈αn−1〉 ·N ≥ (1 + δ)〈βn−1〉 ·N,

for any non-zero nef class N . Here we denote γ � η if γ−η contains a positive
current.

In what follows, we will argue by contradiction.
By the above discussion, the statement “the class 〈αn−1〉−〈βn−1〉 does not

contain any strictly positive (n − 1, n − 1)-current” is then equivalent to the
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statement “for any ε > 0 there exists some non-zero class Nε ∈ K such that

〈αn−1〉 ·Nε ≤ (1 + ε)〈βn−1〉 ·Nε.”

On the other hand, we claim that Theorem 1.1 implies

n(N · 〈αn−1〉)(α · 〈βn−1〉) ≥ 〈αn〉(N · 〈βn−1〉)
for any nef (1, 1)-class N . (Actually, by [17], a priori, in the above inequality
the class 〈βn−1〉 can be replaced by more general positive classes.) First note
that, for each cohomology class, both sides of the above inequality are of the
same homogeneous degree. After scaling, we can assume

α · 〈βn−1〉 = N · 〈βn−1〉.
Then we need to prove nN · 〈αn−1〉 ≥ 〈αn〉. Otherwise, we have nN · 〈αn−1〉 <
〈αn〉. Then Theorem 1.1 implies that there must exist a Kähler current in the
class α−N . Then we must have

〈βn−1〉 · (α−N) > 0,

which contradicts our assumption 〈βn−1〉 · (α−N) = 0.
Let N = Nε, we get

(1 + ε)n(Nε · 〈βn−1〉)(α · 〈βn−1〉) ≥ n(Nε · 〈αn−1〉)(α · 〈βn−1〉)
≥ 〈αn〉(Nε · 〈βn−1〉).

This implies

(1 + ε)nα · 〈βn−1〉 ≥ 〈αn〉.
Since ε > 0 is arbitrary, this contradicts our assumption 〈αn〉−nα ·〈βn−1〉 > 0.
Thus there must exist a strictly positive (n − 1, n − 1)-current in the class
〈αn−1〉 − 〈βn−1〉.

This finishes the proof of the result.

Remark 3.3. Let X be a smooth projective variety of dimension n and
let Mov1(X) be the closure of the cone generated by movable curve classes.
In [15], we show that any interior point in Mov1(X) is of the form 〈Ln−1〉 for
a unique big and movable divisor class. Hence, Theorem 1.3 applies to the
classes of movable curves.
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