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Abstract

In this work, the process of OCM carried out over Mn-Na, WO 4/ SiO, integrated with selective oxidation
over Ag/support was investigated. the effect of feed gas composition and OCM bed temperature as well as
the position of Ag/support bed and additional oxygen injection before this bed were investigated. At optimal
OCM conditions for the Mn-Na,WO,/SiO, catalyst (CH /O, =375V, =77 cm®/min; T = 780°C),
the injection of additional 4 cm®/min of oxygen into the bed of Ag/ support (workmg at 250-300°C) leads
toa preferentl al oxidation of CO to CO,,
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Streszczenie

W pracyzbadano proces OCM w obecnosci Mn-Na,WO 4/ SiO, zintegrowany w jednym reaktorze zprocesem
selektywnego utleniania CO prowadzonym na katalizatorze Ag/nosnik. Zbadano wplyw zmiany parametrow
prowadzenia procesu OCM,, takich jak sklad surowca i temperatury oraz efekt dodatku tlenu nad zloze
Ag/nosnik. Wykazano, ze w optymalnej temperaturze pracy zloza OCM (CH 4/ 0,=375V =77 cm’/
min; T = 780°C) wprowadzenie dodatkowo 4 cm?/min tlenu nad zloze Ag/nosnik (pracujacego w temp.
250-300°C) prowadzi do preferencyjnego utleniania CO do CO,.

Stowa kluczowe: utleniajace sprzeganie metanu, integracja z utlenianiem, etylen, katalizatory srebrowe




1. Introduction

The direct conversion of methane to useful chemical intermediates, such as hydrocarbons
(saturated, unsaturated and aromatic), methanol and formaldehyde, is one of the topics.
Among all these direct processes, the closest one to commercialization is the oxidative
coupling of methane (OCM) to ethylene and ethane [1, 2]. However, a still low per-pass
conversion of methane (below 20-30%) in order to achieve high selectivity (70-80%) as
well as stability of catalysts at high reaction temperatures (780-850°C) limits its industrial
implementation [3].

An integration of OCM with other processes may improve the attractiveness of this
process. Up to now, most attention was devoted to the integration of the OCM process with
dry and steam reforming of methane [2, 4-9]. Several other possibilities for the integration
of OCM with aromatization [ 10-12], benzene alkylation [13], pyrolysis [14], conversion to
acetic acid and/or ethanol [ 15], synthesis Fischer-Tropscha [ 16], oxidative dehydrogenation
of ethane [12, 17-19], methanation of CO_[20, 21] were also explored.

An interesting issue can also be the integration of OCM with a selective oxidation of CO
to CO,. Such coupling of two exothermic reactions in one reactor (two catalytic beds in one
reactor) can be attractive from the technological point of view. The combustion of CO, which
is produced on an OCM bed as a by-product, may simplify the separation of the reaction
mixture. The total conversion of CO to CO, should especially facilitate CH, recycling as per-
pass conversion of methane that does not exceed 30%. In the case of the most promising
catalysts, e.g. Mn-Na, WO, /SiO,other by-products, such as CO, and water, it has no negative
impact on the OCM process, so, in many cases, it is not required to clean the recycled
methane from these gases, which can be used as a diluent [22-24]. However, in the case
of integration in a single reactor, there are several problems due to the presence of many
chemical compounds in the stream leaving the OCM catalyst bed, which e.g. may cause
a deactivation of the CO oxidation catalyst. Moreover, hydrocarbon products and unreacted
methane on a CO oxidation bed can be oxidized. Thus, the selection of a suitable catalyst is
difficult because, usually, the catalysts active in the oxidation of CO also catalyze the total
oxidation of hydrocarbons. An alternative solution can be the separation of ethylene and
ethane from the reaction mixture before oxidation of CO to CO,, but this solution requires
an additional reactor for CO oxidation, which increases the amount of operations.

There are many catalysts active in the selective oxidation of CO to CO,. Alot of noble metal-
based catalysts, especially of the platinum group [25-29] and ones that are gold-based [29-
33] as well as non-noble metal oxide-based catalysts (e.g. containing CoO, CuO and MnO )
[28, 34-39] have been investigated. Unfortunately, most of these catalysts are active not only
in the oxidation of CO to CO,, but also in the oxidation of hydrocarbons [40]. For example,
methane in the presence of a catalyst based on Pd can be oxidized even at around 300°C [41].

Our attention turned to silver-based catalysts. These catalysts have been recognized to
show a relatively high activity in the oxidation of CO and a low activity in the oxidation
of CH, [42, 43]. In this work, we have investigated the integration of the OCM process
over Mn-Na WO 4/ SiO, multicomponent catalyst with selective CO oxidation over Ag/



SiO, or Ag/AlZO3 in one reactor. the effects of the feed gas composition (CH 4/ O, ratio, O,
addition below second bed) and temperature on the product distribution and the conversion
of substrates were carefully investigated.

2. Experimental
2.1. Catalyst preparation

The OCM catalyst (Mn-Na,WO,/SiO, ) was prepared by incipient wetness impregnation.
Dry SiO, (Aldrich) was impregnated in two steps with an aqueous solution of Mn(NO,), x
4H,0 (POCh - Polish Reagents) and Na,WO, (Aldrich), respectively. In a typical procedure,
1 g of silica was impregnated with 1 cm® of aqueous solutions containing the desirable content
of each salt needed for obtaining 2 and § wt.% of Mn and Na, WO, sequentially. After each
impregnation, the materials were dried for 8 h at 120°C and calcined at 900°C for 8 h.

The catalysts of total oxidation (Ag/SiO, and Ag/AlO,) were also prepared by
impregnation. Dry SiO, (Aldrich) and y-AL O, (Aldrich) supports were impregnated with
aqueous solutions of AgNO, (Polish Chemical Reagents). The content of precursor in
the solution was desirable for obtaining 15-wt.% of Ag. the thermal pretreatment procedures
and conditions were the same as in the case of the OCM catalyst.

2.2. Catalytic performance

Catalytic tests were carried out in a flow-type tubular quartz reactor with the dimensions
of (internal diameter) x (length) x (wall thickness) = 8 x 270 x 1 mm. Before the process,
the catalyst placed in the reactor was heated in dry helium for 30 min at 800°C. The weight of the
catalyst was 400 mg (grain size 0.2-0.3 mm) and the temperature of the process was in the range
between 730 —800°C. The reactor was fed with the mixture of CH,:O,:He = 3.75 :1:2,8, and
CH,:0,: He =2.5:1:4,8. The total volumetric flow rate was 77 cm®/min in all runs. The reagents
mixture was analyzed using the Agilent 6890 N gas chromatograph equipped with two columns
(molecular sieve SA for separation of CO and O, and Hayesep Q for separation of H,, CO,,
H,0, and hydrocarbons) and thermal conductivity detectors.

The conversion of methane (X ) and selectivity to i-th product (S) were calculated
according to the following formulas:

— nM(inlet) _nM(‘thEt) .100% S — Zai 'ni -100%

i
nM(mlet) nM(inlet) _nM(uutlet)

X

where:

Mrttntety M(outtet) the numbers of methane moles in the inlet and the outlet of the reactor,
respectively;

n.— the number of moles of the i-th product in the outlet

a.— the number of carbon atoms in the “i” product (ethane, ethene, propane and propene).




3. Results and discussion
3.1. Effect of additional bed position

Figure 1 illustrates the position of the oxidative coupling of methane (Mn-Na,WO,/
Si0, ) and the CO oxidation catalyst beds in a tubular flow-type quartz reactor. the bed of CO
oxidation is located below the OCM band.

Mn-Na;WO,/Si0; Ag/Al,05 or Ag/SiO;
(OCM bed) (CO oxidation bed)

10 mm /

Inlet > 1 QOutlet
(CH4+0O2+He) ESE d (CH4+O2+He+C1-Cs+
COx, H>+H20)

Quartz wool

Fig. 1. Scheme illustrating Mn-Na,WO,/SiO, and Ag/support bed positions in the flow-type tubular
reactor

Table 1 summarizes the catalytic results obtained in the presence and absence of an
additional CO oxidation catalyst as a function of temperature. To clarify the effect
of integration (in two separated beds), additional catalytic tests concerning the mixture
of OCM and CO oxidation catalysts (in one bed) were investigated as well. A comparison
of results obtained in the absence and presence of additional CO oxidation bed reveals that
above 750°C the integration of OCM with CO oxidation in a separate bed exerts a small
positive effect on methane conversion and selectivity to C, . In contrast, at 750°C and
below this temperature, the integration exerts a significant negative influence on the product
distribution. the dramatic difference in the catalytic behavior vs. temperature can be explained
based on oxygen conversion over the OCM bed (in single OCM process). It is clear from
table 1 that, above 750°C, oxygen reacts in 100% over the OCM bed; therefore, the second
CO oxidation bed (Ag/SiO, ) has an insignificant effect on product distribution and methane
conversion. the situation changes at 750 °C and 730 °C when unreacted oxygen appears in
the mixture on the exit of the OCM bed. This oxygen reacts with CO and C, hydrocarbons
over Ag/SiO, catalyst; therefore, the selectivity to CO and C,, decrease significantly.

A similar explanation can be adopted for results obtained in the presence of mixed
Mn-Na,WO 4/ SiO, and Ag/ SiO, catalysts (denoted in Table 1 as Mn-Na,WO 4/ SiO, +Ag/
SiO,). Because Ag/SiO, catalyst is mixed with Mn-Na, WO, /SiO,, it has permanent contact
with oxygen at any investigated temperature; therefore, the selectivity to C, hydrocarbons
in the presence of mixed catalysts (in one bed) is always lower than in the presence single
Mn-Na,WO,/SiO, catalyst or in the integrated process carried out above 750°C.

The above results indicate that the reaction conditions optimal for the OCM process
are not optimal for selective CO oxidation over Ag/SiO, catalyst. In the integrated process,
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the Ag/SiO, catalyst participates not only in CO oxidation, but also in the total oxidation
of hydrocarbons. the range of temperature between 730-800°C is too high for selective CO
oxidation.

Assuming initial catalytic results in the next parts of the experiments, we modified
the conditions of the second CO oxidation bed by changing the positions of the Ag/SiO, bed
(change of temperature) or by adding oxygen after the OCM bed (feed gas modification).
the modifications are schematically presented in Figure 2.

Mn-Na,W0,/Si0, Ag/ALO; or Ag/SiO;
(OCM bed) (Oxidation bed)

\‘ 10, 30 or 50 mm /

Inlet —»t: Outlet
(CHs+0O2+He) (CH4+O2+He+Cy-3+
COx, H:+H20)

Additional O:

Fig.2. Scheme illustrates Mn-Na2WO4/SiO2 and Ag/support bed positions in the flow-type tubular
reactor as well as modifications in the bed position and feed gas composition injected into
the second bed zone

The results obtained after the modifications are reported in Table 2. the process of OCM
in the presence and absence of CO oxidation bed was carried out using a feed mixture with
CH,/O, = 3.8 molar ratio at two different temperatures. In selected cases, a silver catalyst
supported with Y-Al, O, was investigated as well. It is clear from Table 2 that the modification
of the second bed position gives an insignificant effect when O, is converted in 100% over
the OCM bed (e.g. at 780°C). The integration effect can be improved either by decreasing
CO oxidation bed temperature or by O, co-feeding. In most cases, a change of the oxidation
bed position (decrease of the temperature) leads to the preferential CO oxidation. Such
amodification enhances the selectivity to C, hydrocarbons.

A similar effect of CO oxidation without a significant change in the selectivity to C,
hydrocarbons is also observed in the case of Ag/Al O,, which is an industrial catalyst
for selective oxidation of ethene to ethylene oxide. It should be pointed out that, under
the reaction conditions investigated in this work, any additional products of partial oxidation
of ethene, ethane or methane are formed.

The best effect of integration is achieved when the OCM process is carried out at 780°C
and the bed of CO oxidation is located at the end of the oven where the temperature drops
to 230-250°C. In such conditions, the injection of additional 4 cm?/min of oxygen leads to
almost complete CO oxidation without C, selectivity changes. Nevertheless, even at such
a low temperature, we did not observe any additional oxygenates in the product mixture,
such as ethylene oxide or acetaldehyde. Further experiments concerning the modification
of the oxidation catalyst composition and the optimization its work conditions as well as
the influence of gaseous promoters are now in progress.
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4. Conclusions

The integration of the OCM process with selective CO oxidation in a single reactor was
investigated. Ithasbeen found that, under conditions suitable for the OCM process, controlling
the selectivity in CO oxidation is very difficult. In most cases, CO and hydrocarbons are
oxidized simultaneously over the oxidation bed. Preferential CO oxidation is possible only
when the second oxidation bed is located at the end of the oven where the temperature is
below 300°C and additional oxygen is injected before this bed.
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