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A b s t r a c t

The paper gives an overview of various bacterial type evolutionary algorithms used for fuzzy rule 
based identification. In order to find an optimal rule base from the input-output training data set, several 
improved algorithms have been developed in recent years. The task is to increase the models’ accuracy and 
convergence speeds by modifying a part of the Mamdani-type inference system.
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S t r e s z c z e n i e

W artykule zawarto przegląd ewolucyjnych algorytmów bakteryjnych wykorzystywanych do identyfikacji 
bazy reguł rozmytych. W celu znalezienia optymalnej bazy reguł ze zbioru danych testowych wejściowych 
i wyjściowych, w ostatnich latach opracowano kilka ulepszonych algorytmów. Zamysłem przedstawionych 
tu badań jest uzyskanie wzrostu dokładności modeli oraz szybkości ich zbieżności poprzez modyfikację 
systemów wnioskowania typu Mamdaniego.
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1. Introduction

Special employment of fuzzy systems, the fuzzy controllers are present in every day 
applications. The design of fuzzy controllers is concerned with the calculus of fuzzy rules 
[17]. The construction of fuzzy rules, mathematically, sets of fuzzy relations, is one of the 
key problems of fuzzy reasoning and control. An important task in fuzzy rule extraction is 
how to obtain a set of appropriate fuzzy rules for a given system. The application of bacterial 
type algorithms (Pseudo-Bacterial Genetic Algorithm – PBGA and Bacterial Evolutionary 
Algorithm – BEA) for fuzzy rule base identification (FRBI) was proposed in [16, 17].  
A modified, memetic version of the bacterial evolutionary algorithm called the Bacterial 
Memetic Algorithm – BMA was also proposed in [3]. The combination of evolutionary and 
gradient based algorithms was used rather successfully in global optimization approaches. 
In order to improve the system’s convergence speed and their function approximation 
capabilities a series of new bacterial algorithms has been proposed by us: the Improved 
Bacterial Memetic Algorithm (IBMA) [4], the Bacterial Memetic Algorithm with Memetic 
Mutation (BMAM) [5], the Modified Bacterial Memetic Algorithm (MBMA) [6], the 3Step 
BMA (3BMA) [8], and the Progressive Bacterial Algorithm (PBA) [10]. In our previous 
papers [7, 9], we had examined how using different t-norms instead of the conventional 
‘min’ fuzzy operator affected the system’s learning capability and the convergence speed 
of the Mamdani-type inference system [12]. We had studied how accurately input-output 
data samples could be reproduced by using fuzzy rule bases obtained via an automatic 
rule identification process. The extensive investigations showed that the IBMA or MBMA 
training algorithms with non-parametric t-norms like algebraic, trigonometric [7], Hamacher 
product and a parametric operator like the Hamacher t-norm (with optimized parameter 
value) definitely improved the system learning capability.

After the Introduction, in Section 2 we will briefly review the PBGA, BEA, BMA, 
IBMA, BMAM, MBMA and PBA algorithms. This section provides some typical simulation 
results of fuzzy rule based identification processes using various algorithms. Finally, some 
conclusions are taken and references listed.

2. Bacterial Type Evolutionary and Memetic Algorithms 

2.1. Pseudo-Bacterial genetic Algorithm (PBGA) 

Nawa et al. [16] proposed a novel type of evolutionary algorithm called the Pseudo- 
-Bacterial Genetic Algorithm (PBGA) for fuzzy rule based extraction. This is a special 
kind of genetic algorithm with a core that contains a new genetic operation called bacterial 
mutation. This method mimics the microbial evolution phenomenon. Its basic idea is to 
improve the parts of chromosomes contained in each bacterium. Bacteria can transfer genes 
to other bacteria. This mechanism is used in bacterial mutation. For the bacterial algorithm, 
the first step is to determine how the problem can be encoded in a bacterium (chromosome). 
The task is to find the optimal fuzzy rule base for a pattern set. Thus, the parameters of the 
fuzzy rules must be encoded in the bacterium. In general, the parameters of the rules are the 
breakpoints of the trapezoids, thus, a bacterium will contain these breakpoints. 
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The next step is to optimize the parameters. Therefore, a procedure is working on changing 
the parameters, testing the model obtained by this way and selecting the best. The inference 
system used for model calculations can be any of the various types of fuzzy inference systems 
(e.g. FRI [11]). 

The main steps of the PBGA are as follows:
–	 Create the initial population: NInd individuals are randomly created and evaluated.  

(NInd is the number of individuals in the population.) Each individual contains NFuzzy_rules 
fuzzy rules encoded in the chromosome (NFuzzy_rules is the number of fuzzy rules of the 
desired model).

–	 Apply the bacterial mutation to each individual:
–	 Each individual is selected one by one.
–	 NClones copies of the selected individual are created (‘clones’).
–	 Choose the same part or parts randomly from the clones and mutate it (except one 

single clone that remains unchanged during this mutation cycle).
–	 Select the best clone and transfer its mutated part or parts to the other clones.
–	 Repeat the part choosing-mutation-selection-transfer cycle until all the parts are 

mutated and tested exactly once.
–	 The best individual is to remain in the population, all other clones are deleted.
–	 This process is repeated until all the individuals have gone through the bacterial 

mutation.
–	 Apply conventional genetic operations (selection, reproduction and crossover).
–	 Repeat the procedure above from the bacterial mutation step until a certain termination 

criterion is satisfied (e.g. maximum number of generations).
The algorithm works efficiently where weak relationships between the parameters 

encoded in the chromosome exist.

2.2. Bacterial Evolutionary Algorithm 
(BEA) 

Bacterial Evolutionary Algorithm (BEA) 
 is based on the PBGA supported by a new 
genetic operation called the gene transfer 
operation [17]. This new operation establishes 
relationships among the individuals of the 
population.

The main steps of the gene transfer 
operation are:
–	 Sort the population according to the fitness 

values and divide it into two halves. The 
half that contains the better individuals is 
called ‘superior half’ while the other half 
is the ‘inferior half’.

–	 Choose one individual (the ‘source 
chromosome’) from the superior half 
and another one (the ‘destination 
chromosome’) from the inferior half. Fig. 1. Flowchart of the BEA
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–	 Transfer a part of the source chromosome to the destination chromosome (select the part 
randomly or by a predefined criterion).

–	 Repeat the steps above NInf times (NInf is the number of ‘infections’ to occur in one 
generation).
The gene transfer operation can be used in place of selection, reproduction, or the 

crossover in the algorithm described by the PGBA. The BEA flowchart can be seen in Fig. 1.

2.3. Bacterial Memetic Algorithm (BMA) 

Bacterial Memetic Algorithm [3] combines evolutionary and local search algorithms [15], 
in particular the BEA and Levenberg-Marquardt (LM) methods [14]. The algorithm main 
steps are (after the creation of the initial population):
–	 the bacterial mutation to each individual,
–	 a few iterations of the LM method,
–	 gene transfer operation applied per generation a number of infection times.

The above steps are repeated from the bacterial mutation until a certain stopping 
criterion is satisfied. When applying this method in the case of the trapezoidal shaped fuzzy 
membership functions it often happens that the trapezoid breakpoints do not satisfy a certain 
relationship, namely, the membership function defined by the four breakpoints cannot be 

interpreted as a fuzzy membership function. 
In this case (knot order violation, KOV) an 
update vector reduction factor is applied in 
the LM method [2].

2.4. Improved Bacterial Memetic Algorithm 
(IBMA) 

Gál et al. proposed in [4] the so called 
Improved Bacterial Memetic Algorithm for 
a more efficient handling the knot order 
violations occurred in the bacterial memetic 
algorithm used for fuzzy rule based extraction. 
This method performs slightly better than 
the method used before. The ‘merge of 
the violating knots into a single knot’, and 
‘swapping of the knots that are in the wrong 
order’ methods are introduced, which are easy 
to implement and to integrate info the BMA. 
The IBMA flowchart can be seen in Fig. 2.

2.5. Bacterial Memetic Algorithm with 
Memetic Mutation (BMAM) and Modified 

Bacterial Memetic Algorithm (MBMA)

Although BMA provides a very good 
speed of convergence towards the optimal Fig. 2. Flowchart of the IBMA
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model parameters, there are some points of the algorithm where the performance could 
be increased. The Bacterial Memetic Algorithm with Memetic Mutation [6] exploits the 
Levenberg-Marquardt method more efficiently. Instead of applying the LM cycle after the 
bacterial mutation as a separate step, the modified algorithm executes several LM cycles 
during the bacterial mutation after each mutational step.

The bacterial mutation operation changes one or more parameters of the modeled system 
randomly, then it checks whether the model obtained in this way performs better than the 
previous models or the models that have been changed concurrently this way in the other 
clones. The mutation test cycle is repeated until all the parameters of the model have gone 
through the bacterial mutation.

In the mutational cycle, it is possible to gain a temporary model that has an instantaneous 
fitness value that is worse than the one in the previous or the concurrent models. However, it 
is potentially better than those, because it is located in a region of the search space that has 
a better local optimum than the other models do. In accordance with this, if some Levenberg-
Marquardt iterations are executed after each 
bacterial mutational step, the test step is able 
to choose some potentially valued clones that 
could be lost otherwise.

In the Bacterial Memetic Algorithm with 
Memetic Mutation, after each mutational step 
of every single bacterial mutation iteration 
several LM iterations are done (memetic 
mutation). Several tests have shown it is 
enough to run just 3 to 5 of LM iterations per 
mutation in order to improve the performance 
of the whole algorithm. The usual test phase of 
the bacterial mutation operation follows after 
the LM iterations. After the complete modified 
(memetic) bacterial mutation follows the LM 
method that is used in the original BMA, where 
more, e.g. 10 iterational steps, are done with 
all the individuals of the population towards 
reaching the local optimum. After all this, the 
gene transfer operation is executed if needed.

The advantages of the IBMA and BMAM 
algorithms are combined in the Modified 
Bacterial Memetic Algorithm (MBMA) [6]. 
The original bacterial memetic algorithm is 
modified in the knot order violation handling 
(affecting the LM method incorporated in 
the BMA), and in the revised operator execution order (memetic mutation). The simulation 
results [6] proved that this method is superior to the IBMA and BMA algorithms. The MBMA 
flowchart can be seen in Fig. 3.

We observed that the model convergence speed depends not only on the complexity of 
the fuzzy rule base, but varies in different phases of the optimization process. For example, 
we measured less convergence speed in the first 10% of the optimization process, case 

Fig. 3. Flowchart of the MBMA
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of a 2 dimensional test function, and in the 20–30% of the optimization process, case of 
a  6 dimensional test function. In the various algorithms, the time measured between two 
generations (one iteration length) is very different. The BEA is the fastest (the cycle includes 
bacterial mutation and gene transfer), followed by the IBMA (applying the bacterial 
mutation, LM cycles and gene transfer). A single iteration of the MBMA requires the longest 
time, including in each cycle modified bacterial mutation (with LM iterations), LM method 
and gene transfer. Comparing the BEA – IBMA (BMA) resp. the IBMA – MBMA methods 
we concluded that BEA shows the highest convergence speed in the initial phase of the 
optimization process.

2.6. Progressive Bacterial Algorithm (PBA) 

In [10] we proposed a novel algorithm, the Progressive Bacterial Algorithm (PBA), which 
combines the improvements of BEA, IBMA and MBMA algorithms. In case of unknown 
applications, the main questions are: What should be the proper sequence of these methods? 
How can they be combined to obtain an overall high quality model of the optimization process 
with a very good convergence speed? The main goal is to obtain low model error values 
during the whole optimization process [1]. We proposed to use BEA in the early stage of the 
optimization, followed by IBMA, and using MBMA as the last step. In order to determine when 
to change from one algorithm to another, we concurrently apply two algorithms for different 
individuals in the population. The individuals were monitored in terms of time. For all those, 
whom the simplest algorithm provides no more better model errors we switch the individuals 
training algorithm to the other one. In this way, in each stage of the optimization process, 
favorable overall MSE values and training characteristics can be obtained.  

The PBA flowchart can be seen in Fig. 4. The different algorithms we denoted by:  
M1 = BEA, M2 = IBMA and M3 = MBMA. The first step is to create the initial population, 
after that, we apply a different learning algorithm for each individual, for example: at the 
beginning of the optimization process for the main part of the population, we choose the 
method M1, while for the rest (for example: 1 + int(NPopulation / 5)), we choose M2. 
Our proposed approach starts in parallel with two versions, and we chose the best one by 
calculating and comparing the models MSE value. In order to have comparable MSE data, 
we have to ensure the same optimization time for each individual. Their learning times are 
measured and stored for each bacterium along with the current training method. In this novel 
approach, regarding to one PBA generation, any version (individual’s) generation iteration 
time corresponds to the more complicated method’s generation iteration time. The following 
step of the PBA is to create the individual’s next generation. First, we try for a number of 
individuals the ‘complicated’ IBMA (M2 iterations without gene transfer). Then the BEA 
method (M1 iterations without gene transfer) is applied for a few times for the corresponding 
remainder individual’s, while each individual’s total optimization time (TM1) is less than 
a medium total time per individual (TM2) reached with the M2 algorithm.

Then the gene transfer operation within method groups is made (and if a certain termination 
criterion is satisfied the optimization process is over). During the gene transfer operation 
a model parameter sequence is transferred from the better individuals into individuals with less 
fitness values. For them, in many cases, the infections result in temporary high MSE values. 
That is the reason why the gene transfer operation, in case of sufficient number of individuals, 
is applied just among individuals which belongs to the same current training method.  
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Fig. 4. Flowchart of the PBA

If we have in the population, for example four individuals trained with BEA and one trained with 
IBMA: application of the gene transfer operation to individuals trained with various methods, 
it probably happens that the gene transfer (which causes repeated temporary deterioration) will 
always affect that one trained with IBMA method, thus reducing the model efficiency. 
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When the minimum MSE value of individuals trained by M2 is higher than the 
corresponding maximum MSE value of individuals trained by M1, the procedure is repeated 
from the M2 – M1 training steps until a stopping criterion is satisfied (e.g. maximum 
number of generations). For individuals where the inequality MSEi < min(MSEM2) is not 
satisfied, the M2 method is assigned. After all, the population’s individuals are switched 
to M2 algorithm, we assign the method M2 to M1, furthermore, method M3 to M2, and 
then we start from the beginning, with reassigning methods M1 and M2 for individuals (this 
method can be extended for more than three suitable training algorithms). In contrast to the 
former algorithms (e.g. BEA, IBMA, MBMA), in this new algorithm (PBA), the course of 
the simulation is not replicable due to the granularity in the processing time measurement. 
Not even for the same initial conditions and pseudo-random number sequences.

2.7. Experimental results for PBA performance evaluation

We investigated the performance properties of the PBA and predecessor algorithms, 
involving the model accuracy and convergence speed. During the simulations, we examined 
the relationship between simulation time and model accuracy while training the model 
parameters of a (fuzzy rule based) Mamdani-type inference system [13] with various bacterial 
type training algorithms. Two test functions were used, as described below:
a)	Test function with 2 input variables (2iv), 200 samples:

	 	 (1)

b)	Test function with 6 input variables (6iv) [17]; 500 samples:

	 	 (2)

The algorithms parameters are: fuzzy rules: 5; population size: 7; clones: 7; gene transfers per generation: 3; LM 
iterations per memetic bacterial mutation: 5; Mamdani inference system aggregation operator: min.

Fig. 5 and 6 present some graphs of typical simulation results with a less complex test 
function (2 dimensional 2 iv) and a more complex test function (6 dimensional 6 iv) comparing 
the characteristics for BEA, IBMA, MBMA and PBA algorithms [10]. The graphs show 
the relationship between the simulation time (horizontal axis) and the model MSE values 
(vertical axis). Comparing the simulation results, in the case of both test functions, it is shown 
that the PBA method provides favorable behavior: high model accuracy in the final stage of 
the optimization and low model error compared to the other algorithms from the first stage. 
However, in the initial phase of the optimization, the BEA still provides higher convergence 
speed. The BEA is fast because the main steps of the algorithm are the bacterial mutation and 
the gene transfer operation. In the PBA, gene transfer operations are not applied until every 
single (M1) individual’s processing time exceeds the method M2 (IBMA) iteration time. This 
could be the reason for the higher initial convergence speed of BEA. During the optimization 
process, the BEA is followed by the PBA, IBMA and finally by the MBMA algorithms.  
In the middle and in the final phase of the process, when the BEA efficiency decreased, the 
PBA algorithm MSE values are the lowest, highlighting the method’s main advantage. 
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Fig. 5. Typical simulation results – less complex (two dimensional) test function; 
BEA, IBMA, MBMA, PBA

Fig. 6. Typical simulation results – complex (six dimensional) test function; 
BEA, IBMA, MBMA, PBA

3. Conclusions

In this paper, we revisited various methods to improve the bacterial algorithms performance 
used for fuzzy rule base extraction. A few evolutionary approaches have been proposed 
for fuzzy rule base extraction from input-output data such as the Pseudo-Bacterial Genetic 
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Algorithm, the Bacterial Evolutionary Algorithm, and various bacterial memetic algorithms 
developed by us. All these methods have turned out to be helpful with the construction of fuzzy 
rule based models. Finally, we proposed a special combination of bacterial evolutionary and 
memetic algorithms. The novel Progressive Bacterial Algorithm’s (PBA) speed of convergence 
is comparable with the listed approaches; nevertheless, it can be used as a useful tool by finding 
a good compromise between the model accuracy and the complexity.

This work is supported by Hungarian Scientific Research Fund (OTKA) K105529, K108405, 
TÁMOP-4.2.2.A-11/1/KONV-2012-0012, TÁMOP-4.2.2.C-11/1/KONV-2012-0012.
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