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A b s t r a c t   

This paper presents applications of a new model of the rheological behaviour of dense oil-in-

water emulsions of non-colloidal droplets to describe the flow structure, the effects of the 

flow of dense emulsion on drop deformation and the related increase of the interfacial area 

and the mass transfer rate. 
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S t r e s z c z e n i e   

W artykule przedstawiono metodę wykorzystania modelu reologii gęstych emulsji olej/woda 

do opisu struktury przepływu, deformacji kropel, rozwinięcia powierzchni międzyfazowej 

oraz współczynników wymiany masy. Przedyskutowano możliwość wykorzystania 

podobnych metod do opisu układów micelarnych. 
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1.  Introduction  

Dense emulsions form many useful products including food products (homogenised 

milk, sauces, dressings, beverages, butter), as well as pharmaceutical and cosmetic products 

such as creams and balms. Emulsions are used as personal hygiene products, fire-fighting 

agents, agricultural industry products, paints and inks. In the manufacturing and applying of 

emulsions, it is often necessary to predict or control the emulsion viscosity and the flow 

pattern. The mass transfer between the continuous and dispersed phase can also affect this 

process. 

Emulsion viscosity η depends on the continuous phase viscosity ηc, the volume 

fraction of the dispersed phase ϕ and its viscosity ηd, the interfacial tension σ, the shear rate 

 , the emulsifying agent (if present) and of course, on temperatures that obviously affect 

the physicochemical properties. The development of strict theoretical models is possible for 

infinitely dilute emulsions of spherical uncharged droplets. 

The equation for the relative viscosity ηr under the limiting conditions listed below, 

when the hydrodynamic viscous stress is negligible compared to the interfacial stress, was 

proposed by Taylor [1]:  
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where K = ηd/ηc is the ratio of the dispersed-phase viscosity ηd to the continuous-phase 

viscosity ηc and ϕ is the volume fraction of droplets. Equation (1) is valid for ϕ → 0, 

NCa → 0 and Pe → ∞, where NCa is the capillary number,  

  /RN
cCa

  (2) 

being the ratio of the hydrodynamic stress that tends to stretch the droplet and increase its 

surface energy, to the interfacial tensile stress resulting from interfacial tension, σ. The 

tensile stress tends to decrease the surface energy by maintaining the spherical shape of the 

droplet.  Pe is the Péclet number defined by 
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where 


B
D  is the coefficient of Brownian diffusion for a particle separated from other 

particles, R is the drop radius, and Pe >> 1  is equivalent to the condition that the drops are 

much larger than the distance travelled due to Brownian motions. 

Most of models on the rheology of emulsions are based on the extension of this early 

model proposed by Taylor. Recently, a new method was proposed for including the effect 

of the droplet size distribution on the rheological behaviour of dense oil-in-water emulsions 

of non-colloidal droplets [2]. The method is based on an extension of the advanced model 

[3] for the relative viscosity of the concentrated monodisperse emulsion to account for 

polydispersity effects.   
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Model [3] is constituted by Equation (4) with three parameters M, N and P defined by 

Equations (5), (6) and (7) and dependent upon the capillary number  /RN
cCa

  and 

the viscosity ratio K. 
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The model expressed by Equations (4) to (7) was validated using much experimental data 

starting from the paper by Pal [3]; however, effects resulting from the drop size distribution 

were explained in [2].  

To include the polydispersity of emulsion [2] one needs to calculate the equivalent radius R 

of the polydisperse system using the drop volume distribution fV(Ri), such that fV(Ri)dRi 

means a volume fraction of drops from the range Ri to Ri + dRi. 
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with I(Ri) given by 
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where  /RN
ici,Ca

 . 

Figure 1 shows the relative viscosity calculated using bimodal distribution; the 

viscosity is plotted against the capillary number based on the equivalent radius R that is 

defined by Equations (8) and (9). There are three more curves on the figure that are 

constructed using the capillary number based on the mean sizes R10, R32 and R30 that 

characterise the considered population for the same relative viscosity, ηr. The difference 

between the curves ηr = f(NCa) is significant.  

Figure 1 shows that neither of the mean sizes traditionally used to characterise 

population, i.e. R10, R32 and R43 is able to represent the population as the characteristic size 

in the model for the emulsion viscosity in the case of the bimodal distribution. However, as 

shown in Figure 2, in the case of the bell-shaped, unimodal distribution, the curve for the 

capillary number defined using R32 represents the distribution quite well – the difference in 
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the predicted viscosity is less than 10% in such a case. This problem is discussed in detail 

in Ref. [2]. 

 

 

Fig. 1. Effect of the capillary number on the relative viscosity for  ϕm = 0.8, volume fractions of 

dispersed phase  ϕ = 0.795,  ηc = 0.91 mPas,  ηd = 9.4 mPas; bimodal distribution 

 

 

Fig. 2. Effect of the capillary number on the relative viscosity for  ϕm = 0.8, volume fractions of 

dispersed phase  ϕ = 0.60,  ηc = 0.91 mPas,  ηd = 9.4 mPas; unimodal distribution 

As shown in Ref. [2], the model has a universal character and can be combined with the 

population balance equation and CFD. Examples of modelling are presented in [2] for 

laminar and turbulent flows of dense emulsions. In the case of laminar flow, the Couette 

flow and the Taylor-Couette flow were considered. In the case of turbulent flow, it has been 

shown how dispersion of droplets in the high-shear, rotor-stator mixer affects the flow 

pattern and rheology of the emulsion product.  
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2.  Simulation of turbulent dispersion of drops in dense emulsion 

 

To perform computations, it has been assumed that dense emulsions can be treated as 

the shear thinning pseudo-homogeneous fluids of the constant volume fraction of the 

dispersed phase of viscosity expressed by Equations (4) to (9). The local values of the drop 

size distribution are calculated using the moment transformation of population balance and 

QMOM to solve the moment balances using the breakage kernel based on the multifractal 

theory of turbulence as presented by Bałdyga and Podgórska [4]. The assumption of 

pseudo-homogeneity is supported by the observation of Ovarlez et al. [5], that no migration 

of droplets takes place in dense emulsions during the Couette flow. According to Ovarlez et 

al. [5], a reason for keeping homogeneity could be the deformability of droplets resulting 

from shear. 

Following the results presented in [2], we consider here the dispersion of droplets 

present in dense emulsion in the in-line Silverson 150/250 MS high-shear, rotor-stator 

mixer and observe the modification of the rheological properties of the emulsion.   

A performance of the Silverson double-screen mixer 150/250/MS, the same as that 

applied in [2] and [6], is investigated to simulate drop dispersion. The mixer is equipped 

with twin rotors that rotate with the same frequency within close-fitting screens. The inner 

rotor has an inner diameter of 2.62
.
10

-2
 m, the outer diameter is 3.81

.
10

-2
 m, and is equipped 

with four blades. The outer rotor diameters are 4.99
.
10

-2
 m (internal) and 6.35

.
10

-2
 m 

(external) and this rotor is equipped with eight blades.  

 

 
 

Fig. 3. Distribution of the equivalent radius (a) and the rate of energy dissipation (b) for ϕm = 0.8,  

ϕ = 0.75,  ηc = 0.91 mPas,  ηd = 9.4 mPas,  Q = 600 kg/h,  N = 11000 rpm 
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1.59

.
10

-3
 m on a 0.100 inch tri pitch. The rotor-stator gap is 0.24 mm. In all calculations the 

interfacial tension was equal to 10.6 mN/m. 

Figures 3 (a) and (b) show that the region of drop breakage is localised in the rotor 

swept region where the rate of energy dissipation is the highest. Figure 4 shows distribution 

of the relative viscosity in the mixer. The shear thinning properties of emulsion are very 

well observed. As presented in Ref. [2], the flow curves characterising the rheology of the 

emulsion after processing in the rotor-stator mixer under different process conditions 

depend on the resulting drop size distributions.  

 
 

Fig. 4. Distribution of the relative, effective viscosity for ϕm = 0.8,  ϕ = 0.75,  ηc = 0.91 mPas, 

ηd = 9.4 mPas,  Q = 600 kg/h, N = 3000 rpm 

 

 

3.  Drop deformation and mass transfer in dense emulsion 

 

In the case of shear flow or extensional flow when the external viscous force is smaller 

than the surface tension force (NCa < 10), the droplets are slightly deformed. According to 

an analytical solution by Taylor [7], the drop is represented by an elongated sphere that can 

be approximated by a prolate ellipsoid, as shown schematically in Figure 5. The drop shape 

is then determined by Equation (10) 
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where  DT represents the Taylor shape deformation parameter, whereas  L and  B are the 

major and minor axes of the deformed drop, respectively. 
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Fig. 5. Schematic of a slightly deformed drop 

 

Combining eq. (10) with two expressions for the drop volume 

 LBV  2

3

4
 (11) 

 3

3

4
RV   (12) 

where R denotes the equivalent radius, one can calculate L and B, and the resulting surface 

area of the drop. Under the process conditions applied in this work, the drops are only 

slightly deformed; it can be seen in Figures 6 and 7 that increase of the specific interfacial 

area due to shear effect is rather small, when compared to spherical particles of the same 

volume. 

 

            
Fig. 6. The drop size distribution (DSD) at the inlet to the mixer (left) and the specific interfacial area 

of the feed emulsion (right) 
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Fig. 7. The specific interfacial area after processing emulsion for ϕm = 0.8,  ϕ = 0.75,  

ηc = 0.91 mPas,  ηd = 9.4 mPas,  Q = 600 kg/h,  N = 3000 rpm and 7000 rpm, respectively 

The effect of drop elongation is also observed during emulsion processing. This is 

presented in Figure 8. 

 

                 

Fig. 8. The specific interfacial area during the process of creating emulsion 

for  ϕm = 0.8,  ϕ = 0.75,  ηc = 0.91 mPas,  ηd = 9.4 mPas,  Q = 600 kg/h,  N = 1000 rpm. 

(a) elongated droplets, (b) neglecting drop deformation 

The model for predicting external mass transfer coefficient to or from prolate, ellipsoid 

drops submerged in an extensional flow was recently proposed by Favelukis and 

Lavrenteva [8].  
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where Y = (19·K + 16)/(16·K + 16) and in this equation, 
i

D/RPe 2  . Equation (13) is 

valid at steady state, for 
1 t . Hence, Equation (13) represents the asymptotic solution. 

For  t → 0, one has t/DRak
idropL

 24 . For NCa = 0, Equation (13) describes mass 

transfer to or from spherical drops.  

The population of droplets was identified using population balance, and it was possible 

to recalculate the specific interfacial area, a, from the surface of deformed droplet adrop  and 

calculate the volumetric mass transfer coefficient kLa in this manner.  

 

 

                

Fig. 9. The volumetric mass transfer coefficient in dense emulsion 

for ϕm = 0.8,  ϕ = 0.75,  ηc = 0.91 mPas,  ηd = 9.4 mPas,  Q = 600 kg/h, 

for  for  N = 1000 rpm, (b) for  N = 11000 rpm  

Figure 9 shows that there is very large difference in the mass transfer rate between 

different regions of the rotor-stator mixer. The presented example shows that the new 

rheological model can be useful for describing interfacial mass transfer as well as the flow 

of dense emulsion. 

4.  Possibility of application of rheological model to micelle dispersion 

Bouchoux et al. [9] presented measurements of the rheological properties of casein 

micelle dispersions. They considered three concentration regimes; in the present paper we 

are interested in the first of these, where the steady shear viscosities were measured with 

casein micelle dispersions “that flow, i.e., dispersions that do not behave as solids” [9]. For 

the interpretation of measured viscosity they applied the Krieger and Dougherty model with 

characteristic stress calculated from  

kLa [1/s] (a) kLa [1/s] (b)
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where kB is the Boltzmann constant and the average micelle radius R is equal to 100 nm. 

Parameter b is used for fitting and takes values of between 1 and 3.5. The rate of shear 

from a range 0.1s
-1 

to 1000s
-1 

was used in the experiments. The volume fraction of casein 

micelles was between 0.044 and 0.739. The application of Equation (14) is based on the 

assumption that the shear is induced by particle thermal fluctuations. Hence, we start by 

checking if all experiments are in this regime. To this end, we apply the Péclet number 

defined as follows: 
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where DB(ϕ) is the coefficient of Brownian diffusion in suspension of volume fraction ϕ. 

If Pe exceeds unity, the Brownian motion does not contribute much to viscosity. To 

calculate Pe, the method of Buyevich and Kabpsov [10] is applied.  
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Figure 10 shows the effects of the shear rate and micelle volume fraction on Pe.  
 

 

Fig. 10. Effect of micelle volume fraction on Pe, 820.
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When Equation (4) is presented in the form 
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one can check if there is any non-Brownian regime where the   ,F  curves collapse.  

Figure 11 shows that this is the case.  

 

 

 
 

Fig. 11. Effect of shear rate on   ,F , 820.
m
  

 

Figure 11 shows that both the Brownian and non-Brownian mechanisms should be 

combined and applied to interpret experimental data properly. This can be done in future by 

combining the model presented in this work with the model valid for the Brownian regime.  

 

5.  Conclusions 

In this paper, several new possible applications of the model developed initially to 

describe rheology of dense emulsions have been presented. These new applications include 

modelling of the specific interfacial area and the volumetric mass transfer coefficient 

during the process of emulsion formation and afterwards, during emulsion flow. Another 

potential application is related to modelling the viscosity of micelle suspensions; the 

combining of Brownian and non-Brownian mechanisms is proposed for future research.  
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