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EINSTEIN DOUBLY WARPED PRODUCT MANIFOLDS WITH

SEMI-SYMMETRIC METRIC CONNECTION

by Punam Gupta and Abdoul Salam Diallo

Abstract. In this paper, we study the doubly warped product manifolds
with semi-symmetric metric connection. We derive the curvature formu-
las for doubly warped product manifold with semi-symmetric metric con-
nection in terms of curvatures of components of doubly warped product
manifolds. We also prove the necessary and sufficient condition for a dou-
bly warped product manifold to be a warped product manifold. We ob-
tain some results for an Einstein doubly warped product manifold and
Einstein-like doubly warped product manifold of class A with respect to a
semi-symmetric metric connection.

1. Introduction. In 1969, Bishop and O’Neill [4] introduced singly
warped products or warped products. They used this concept to construct
Riemannian manifolds with negative sectional curvature. The warped product
B×h F of two Riemannian manifolds (B, gB) and (F, gF ) with a smooth func-
tion h : B → (0,∞) is a product manifold of form B×F with the metric tensor
g = gB ⊕ h2gF . Here, (B, gB) is called the base manifold, (F, gF ) is called the
fiber manifold and h is called the warping function. In 1983, O’Neill [16] dis-
cussed warped products and derived curvature formulas of warped products in
terms of curvatures of components of warped products.

In general, doubly warped products are generalization of singly warped
products. The doubly warped product Bf × hF of two Riemannian mani-
folds (B, gB) and (F, gF ) with smooth functions, which are known as warping
functions, h : B → (0,∞), f : F → (0,∞) is a product manifold of form
B × F with the metric tensor g = f2gB ⊕ h2gF . Doubly warped products are
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studied by many authors: Allison [2] studied pseudoconvexity of Lorentzian
doubly warped products; Gebarowski considered conformal properties of dou-
bly warped products in ([8], [9]). Geodesic completeness of Riemannian and
Lorentzian doubly warped products have been studied by Unal [25]. In 2003,
Ramos et al. [19] gave an invariant characterization of doubly warped space-
times in terms of Newman–Penrose formalism, and proposed a classification
scheme. Recently, the first author [10] studied the compact Einstein doubly
warped product manifold and established some interesting results.

In 1924, Friedmann and Schouten [7] introduced the idea of a semi-sym-
metric linear connection on a Riemannian manifold. Later, in 1932, Hayden
[12] introduced the concept of semi-symmetric metric connection. A metric
connection is a Levi-Civita connection when its torsion is zero and it becomes
the Hayden connection [12] when it has a non-zero torsion. Thus, metric
connections include both Levi-Civita connections and Hayden connections. In
1970, Yano [26] considered the semi-symmetric metric connection and studied
some of its properties.

In 2001, Sular and Özgur [21] studied the warped product with semi-
symmetric metric connection and established some results. Motivated by these
results, we study doubly warped product manifolds with a semi-symmetric
metric connection and derive the curvature formulas for doubly warped prod-
uct manifolds with semi-symmetric metric connection in terms of curvatures
of components of doubly warped product manifolds. We also obtain results
for Einstein doubly warped product manifold and Einstein-like doubly warped
product manifold of class A with respect to a semi-symmetric metric connec-
tion.

2. Preliminaries. LetM be an n-dimensional Riemannian manifold with
Riemannian metric g. A linear connection ∇̃ on a Riemannian manifold M is
called a semi-symmetric connection if the torsion tensor T̃ of the connection
∇̃ given by

(2.1) T̃ (X,Y ) = ∇̃XY − ∇̃Y X − [X,Y ]

satisfies

(2.2) T̃ (X,Y ) = π(Y )X − π(X)Y,

where π is a 1-form associated with the vector field P on M defined by

(2.3) π(X) = g(X,P ).

A semi-symmetric connection ∇̃ is called a semi-symmetric metric connection
if ∇̃g = 0. Let ∇ be the Levi-Civita connection of a Riemannian manifold,
then the unique semi-symmetric metric connection ∇̃ given by Yano [26] is

(2.4) ∇̃XY = ∇XY + π(Y )X − g(X,Y )P.

9

A relation between the curvature tensors R and R̃ of the Levi-Civita con-
nection ∇ and the semi-symmetric connection ∇̃ is given by

R̃(X,Y )Z = R(X,Y )Z + g(Z,∇XP )Y − g(Z,∇Y P )X

+ g(X,Z)∇Y P − g(Y, Z)∇XP

+ π(P ) (g(X,Z)Y − g(Y, Z)X)(2.5)

+ (g(Y, Z)π(X)− g(X,Z)π(Y ))P

+ π(Z) (π(Y )X − π(X)Y ), X, Y, Z ∈ X(M),

where X(M) is the set of smooth vector fields on M [26]. Yano proved that
a Riemannian manifold is conformally flat if and only if it admits a semi-
symmetric metric connection whose curvature tensor vanishes identically. This
result was generalized onto vanishing Ricci tensor of the semi-symmetric metric
connection by T. Imai (see [13], [14]). For a general survey of various kinds of
connections (see Tripathi [24]).

3. Doubly Warped Product Manifolds. Doubly warped product man-
ifolds were introduced as a generalization of warped product manifolds. Let
(B, gB) and (F, gF ) be two Riemannian manifolds with real dimension n1 and
n2, respectively. Let h : B → R+ and f : F → R+ be two smooth functions.
Consider the product manifold B × F with its projections ρ : B × F → B and
σ : B × F → F . The doubly warped product Bf × hF is the product manifold
B × F furnished with the metric tensor

g = (f ◦ σ)2ρ∗ (gB) + (h ◦ ρ)2σ∗ (gF ),

where ∗ denotes pullback. If X is tangent to B × F at (p, q), then

g(X,X) = f2(q)gB(dρ(X), dρ(X)) + h2(p)gF (dσ(X), dσ(X)).

Thus, we have

(3.1) g = f2gB + h2gF .

The functions h and f are called the warping functions of the doubly warped
product. The manifold B is called the base of (M, g) and the manifold F is
called the fibre of (M, g). If the warping function f or h is constant, then

the doubly warped product Bf × hF reduces to a warped product B × hF̃ (or

B̃f × F ), where the fibre F̃ is just F with metric g̃F given by 1
h2 gF (or where

the base B̃ is just B with metric g̃B given by 1
f2 gB). If the warping function

f or h is equal to 1, then the doubly warped product Bf × hF reduces to a
warped product B × hF (or Bf × F ). If both f and h are constant, then it is

simply a product manifold B̃ × F̃ , where the fibre F̃ is just F with metric g̃F
given by 1

h2 gF and the base B̃ is just B with metric g̃B given by 1
f2 gB. If both

f and h are equal to 1, then it is simply a product manifold B × F .
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The sets of all smooth and positive valued functions h : B → R+ and
f : F → R+are denoted by F(B) = C∞(B) and F(F ) = C∞(F ), respectively.

The lifts of h and f to M are defined by h̃ = h ◦ ρ ∈ F(M) and f̃ = f ◦ σ ∈
F(M), respectively. If Xp ∈ Tp(B) and q ∈ F , then the lift X̃(p,q) of Xp to M

is the unique tangent vector in T(p,q)(B × {q}) such that dρ(p,q)(X̃(p,q)) = Xp

and dσ(p,q)(X̃(p,q)) = 0. The set of all such horizontal tangent vector lifts will
be denoted by L(p,q)(B). Similarly, we can define the set of all vertical tangent
vector lifts L(p,q)(F ).

Let X ∈ X(B), where X(B) is the set of smooth vector fields on B. The

lift X̃ of X to M is the unique element of X(M) whose value, at each (p, q),
is the lift of Xp to (p, q). The set of such lifts will be denoted by L(B). In a
similar manner, we can define L(F ). Throughout the paper, we assume that
X,Y, Z ∈ L(B) and U, V,W ∈ L(F ). The connections ∇, B∇ and F∇ are
Levi-Civita connections on M , B and F , respectively. We will denote by R,BR
and FR the Riemann curvatures on M , B and F , respectively; S, BS and FS
the Ricci tensors for the connections ∇, B∇ and F∇, respectively; r,Br and
F r are the scalar curvatures for the connections ∇,B∇ and F∇, respectively.

We need the following lemmas for later use. For more details see [1, 11,
18,25].

Lemma 3.1. Let M = Bf × hF be a doubly warped product manifold. If
X,Y ∈ X(B) and V,W ∈ X(F ), then

tan∇XY = − gradf

f
g(X,Y ),

nor∇XY is the lift of ∇XY on B,

∇XV = ∇V X =
Xh

h
V +

V f

f
X,

nor∇V W = − gradh

h
g(V,W ),

tan∇V W is the lift of ∇V W on F,

where tan and nor stand for tangent part to F and normal part to B, respec-
tively.

Lemma 3.2. Let M = Bf × hF be a doubly warped product manifold. If
X,Y, Z ∈ X(B) and U, V,W ∈ X(F ), then

R(X,Y )Z = BR(X,Y )Z +
‖grad f‖2

f2
(g(X,Z)Y − g(Y, Z)X),
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R(X,V )Y =
Hh

B(X,Y )

h
V +

1

f
g(X,Y )F∇V (grad f),

R(X,Y )V =
V f

f

(
Y h

h
X − Xh

h
Y

)
,

R(X,V )W = −
Hf

F (V,W )

f
X − 1

h
g(V,W )B∇X(gradh),

R(V,W )X =
Xh

h

(
Wf

f
V − V f

f
W

)
,

R(V,W )U = FR(V,W )U +
‖gradh‖2

h2
(g(V,U)W − g(W,U)V ),

where Hh
B and Hf

F are the Hessian of h and f , respectively.

Lemma 3.3. Let M = Bf × hF be a doubly warped product manifold. If
X,Y ∈ X(B) and V,W ∈ X(F ), then

S(X,Y ) = BS(X,Y )− n2

h
Hh

B(X,Y )

− g(X,Y )

(
(n1 − 1)

‖grad f‖2

f2
+

∆F f

f

)
,

S(X,V ) =
(n− 2)(Xh)(V f)

hf
,

S(V,W ) = FS(V,W )− n1

f
Hf

F (V,W )

− g(V,W )

(
(n2 − 1)

‖gradh‖2

h2
+

∆Bh

h

)
,

where ∆F f and ∆Bh are the Laplacian of f on F and h on B, respectively.

Lemma 3.4. Let M = Bf ×hF be a doubly warped product manifold. Then

r =
1

f2
Br +

1

h2
Fr − 2n1

∆F f

f
− 2n2

∆Bh

h

− n1(n1 − 1)
‖grad f‖2

f2
− n2(n2 − 1)

‖gradh‖2

h2
.(3.2)

4. Doubly Warped Product Manifolds Endowed with the Semi-
Symmetric Metric Connection. In this section, we consider doubly warped
product manifolds with respect to the semi-symmetric metric connection and
find new expressions concerning curvature tensor, Ricci tensor and the scalar
curvature admitting the semi-symmetric metric connection where the associ-
ated vector field P ∈ X(B) or P ∈ X(F ).
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The following results hold true.

Proposition 4.1. Let M = Bf × hF be a doubly warped product manifold

and let ∇̃,B∇̃ and F ∇̃ be the semi-symmetric metric connections on M,B and
F , respectively. If X,Y ∈ X(B), V,W ∈ X(F ) and P ∈ X(B), then

tan ∇̃XY = − 1

f
g(X,Y ) grad f,(4.1)

nor ∇̃XY is the lift of B∇̃XY,(4.2)

∇̃XV =
Xh

h
V +

V f

f
X,(4.3)

∇̃V X =
Xh

h
V +

V f

f
X + π(X)V,(4.4)

nor ∇̃V W = −
(
gradh

h
+ P

)
g(V,W ),(4.5)

tan ∇̃V W is the lift of F ∇̃V W on F,(4.6)

where tan and nor stand for tangent part to F and normal part to B, respec-
tively.

Proof. Considering P ∈ X(B) and using (2.4), first equation of Lemma
3.1, we get (4.1). Simailarly, we can easily find the others statements by using
(2.4) and Lemma 3.1.

Proposition 4.2. Let M = Bf × hF be a doubly warped product manifold

and let ∇̃,B∇̃ and F ∇̃ be the semi-symmetric metric connections on M,B and
F, respectively. If X,Y ∈ X(B), V,W ∈ X(F ) and P ∈ X(F ), then

tan ∇̃XY = −
(
grad f

f
+ P

)
g(X,Y ),(4.7)

nor ∇̃XY is the lift of B∇̃XY,(4.8)

∇̃XV =
Xh

h
V +

V f

f
X + π(V )X,(4.9)

∇̃V X =
Xh

h
V +

V f

f
X,(4.10)

nor ∇̃V W = −gradh

h
g(V,W ),(4.11)

tan ∇̃V W is the lift of F ∇̃V W on F.(4.12)

Proof. Considering P ∈ X(F ) and using (2.4), first equation of Lemma
3.1, we get (4.7). Simailarly, we can easily find the others results by using (2.4)
and Lemma 3.1.
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Proposition 4.3. Let M = Bf × hF be a doubly warped product manifold

and let R̃,BR̃ and FR̃ be the Riemannian curvature tensors with respect to the
semi-symmetric metric connections ∇̃,B∇̃ and F ∇̃, respectively. If X,Y, Z ∈
X(B), U, V,W ∈ X(F ) and P ∈ X(B), then

R̃(X,Y )Z = BR̃(X,Y )Z +
‖grad f‖2

f2
(g(X,Z)Y − g(Y, Z)X)

+ (g(Y, Z)π(X)− g(X,Z)π(Y ))
grad f

f
,

R̃(V,X)Y =

(
Hh

B(X,Y )

h
+π(X)π(Y )− g(Y,B ∇XP )

)
V +

V f

f
π(Y )X

−
(
V f

f
P +

Ph

h
V + π(P )V − 1

f

F

∇V grad f

)
g(X,Y ),

R̃(X,Y )V =

(
(V f)(Y h)

hf
+

(V f)

f
π(Y )

)
X

−
(
(V f)(Xh)

hf
+

(V f)

f
π(X)

)
Y,

R̃(V,W )X =

(
(Wf)(Xh)

hf
− (Wf)

f
π(X)

)
V

−
(
(V f)(Xh)

hf
− (V f)

f
π(X)

)
W,

R̃(X,V )W = −
Hf

F (V,W )

f
X − Wf

f
π(X)V

− g(V,W )

(
B∇X gradh

h
+

Ph

h
X +B∇XP

+ π(P )X − π(X)P − grad f

f
π(X)

)
,

R̃(U, V )W = FR(U, V )W − Uf

f
g(V,W )P +

V f

f
g(U,W )P

−

(
‖gradh‖2

h2
+

2Ph

h
+ π(P )

)
(g(V,W )U − g(U,W )V ).

Proof. Assume that M = Bf × hF is a doubly warped product and R

and R̃ denote the curvature tensors with respect to the Levi-Civita connection
and the semi-symmetric metric connection, respectively.
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The following results hold true.

Proposition 4.1. Let M = Bf × hF be a doubly warped product manifold

and let ∇̃,B∇̃ and F ∇̃ be the semi-symmetric metric connections on M,B and
F , respectively. If X,Y ∈ X(B), V,W ∈ X(F ) and P ∈ X(B), then

tan ∇̃XY = − 1

f
g(X,Y ) grad f,(4.1)

nor ∇̃XY is the lift of B∇̃XY,(4.2)

∇̃XV =
Xh

h
V +

V f

f
X,(4.3)

∇̃V X =
Xh

h
V +

V f

f
X + π(X)V,(4.4)

nor ∇̃V W = −
(
gradh

h
+ P

)
g(V,W ),(4.5)

tan ∇̃V W is the lift of F ∇̃V W on F,(4.6)

where tan and nor stand for tangent part to F and normal part to B, respec-
tively.

Proof. Considering P ∈ X(B) and using (2.4), first equation of Lemma
3.1, we get (4.1). Simailarly, we can easily find the others statements by using
(2.4) and Lemma 3.1.

Proposition 4.2. Let M = Bf × hF be a doubly warped product manifold

and let ∇̃,B∇̃ and F ∇̃ be the semi-symmetric metric connections on M,B and
F, respectively. If X,Y ∈ X(B), V,W ∈ X(F ) and P ∈ X(F ), then

tan ∇̃XY = −
(
grad f

f
+ P

)
g(X,Y ),(4.7)

nor ∇̃XY is the lift of B∇̃XY,(4.8)

∇̃XV =
Xh

h
V +

V f

f
X + π(V )X,(4.9)

∇̃V X =
Xh

h
V +

V f

f
X,(4.10)

nor ∇̃V W = −gradh

h
g(V,W ),(4.11)

tan ∇̃V W is the lift of F ∇̃V W on F.(4.12)

Proof. Considering P ∈ X(F ) and using (2.4), first equation of Lemma
3.1, we get (4.7). Simailarly, we can easily find the others results by using (2.4)
and Lemma 3.1.
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Proposition 4.3. Let M = Bf × hF be a doubly warped product manifold

and let R̃,BR̃ and FR̃ be the Riemannian curvature tensors with respect to the
semi-symmetric metric connections ∇̃,B∇̃ and F ∇̃, respectively. If X,Y, Z ∈
X(B), U, V,W ∈ X(F ) and P ∈ X(B), then

R̃(X,Y )Z = BR̃(X,Y )Z +
‖grad f‖2

f2
(g(X,Z)Y − g(Y, Z)X)

+ (g(Y, Z)π(X)− g(X,Z)π(Y ))
grad f

f
,

R̃(V,X)Y =

(
Hh

B(X,Y )

h
+π(X)π(Y )− g(Y,B ∇XP )

)
V +

V f

f
π(Y )X

−
(
V f

f
P +

Ph

h
V + π(P )V − 1

f

F

∇V grad f

)
g(X,Y ),

R̃(X,Y )V =

(
(V f)(Y h)

hf
+

(V f)

f
π(Y )

)
X

−
(
(V f)(Xh)

hf
+

(V f)

f
π(X)

)
Y,

R̃(V,W )X =

(
(Wf)(Xh)

hf
− (Wf)

f
π(X)

)
V

−
(
(V f)(Xh)

hf
− (V f)

f
π(X)

)
W,

R̃(X,V )W = −
Hf

F (V,W )

f
X − Wf

f
π(X)V

− g(V,W )

(
B∇X gradh

h
+

Ph

h
X +B∇XP

+ π(P )X − π(X)P − grad f

f
π(X)

)
,

R̃(U, V )W = FR(U, V )W − Uf

f
g(V,W )P +

V f

f
g(U,W )P

−

(
‖gradh‖2

h2
+

2Ph

h
+ π(P )

)
(g(V,W )U − g(U,W )V ).

Proof. Assume that M = Bf × hF is a doubly warped product and R

and R̃ denote the curvature tensors with respect to the Levi-Civita connection
and the semi-symmetric metric connection, respectively.
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In view of the (2.5), Lemma 3.1 and Lemma 3.2, we can write

R̃(X,Y )Z = BR(X,Y )Z +
‖grad f‖2

f2
(g(X,Z)Y − g(Y, Z)X)

+ g(Z,B ∇XP )Y − g(Z,B ∇Y P )X

+ g(X,Z)(B∇Y P + π(P )Y − π(Y )P )

− g(Y, Z)(B∇XP + π(P )X − π(X)P )

+ (g(Y, Z)π(X)− g(X,Z)π(Y ))
grad f

f

+ π(Z)(π(Y )X − π(X)Y ).

By using equation (2.5), we can write

R̃(V,X)Y = R(V,X)Y + g(Y,∇V P )X − g(Y,∇XP )V

− g(X,Y )[∇V P + π(P )V − π(V )P ](4.13)

+ π(Y )[π(X)V − π(V )X].

Since P ∈ X(B) and by making use of Lemma 3.1 and Lemma 3.2, we get

R̃(V,X)Y =

(
Hh

B(X,Y )

h
+π(X)π(Y )− g(Y,B ∇XP )

)
V +

V f

f
π(Y )X

−
(
V f

f
P +

Ph

h
V + π(P )V − 1

f
F∇V grad f

)
g(X,Y ).

Replacing Z with V in equation (2.5), we get

(4.14) R̃(X,Y )V = R(X,Y )V + g(V,∇XP )Y − g(V,∇Y P )X.

Using Lemma 3.1 and Lemma 3.2, we get

R̃(X,Y )V =

(
(V f)(Y h)

hf
+

(V f)

f
π(Y )

)
X

−
(
(V f)(Xh)

hf
+

(V f)

f
π(X)

)
Y.

By making use of (2.5) and Lemma 3.1 Lemma 3.2, we get

R̃(V,W )X =

(
(Wf)(Xh)

hf
− (Wf)

f
π(X)

)
V

−
(
(V f)(Xh)

hf
− (V f)

f
π(X)

)
W.(4.15)
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From the equation (2.5), we find

R̃(X,V )W = R(X,V )W + g(W,∇XP )V − g(W,∇V P )X

− g(V,W )(∇XP + π(P )X − π(X)P ).(4.16)

Using Lemma 3.1 and Lemma 3.2 in (4.16), we have

R̃(X,V )W = −
Hf

F (V,W )

f
X − Wf

f
π(X)V

− g(V,W )

(
B∇X gradh

h
+

Ph

h
X +B∇XP

+ π(P )X − π(X)P − grad f

f
π(X)

)
.

In view of equation (2.5), we have

R̃(U, V )W = R(U, V )W + g(W,∇UP )V − g(W,∇V P )U

+ g(U,W )∇V P − g(V,W )∇UP(4.17)

+ π(P )[g(U,W )V − g(V,W )U ].

By making use of Lemma 3.1 and Lemma 3.2 in (4.17), we obtain

R̃(U, V )W = FR(U, V )W − Uf

f
g(V,W )P +

V f

f
g(U,W )P

−

(
‖gradh‖2

h2
+

2Ph

h
+ π(P )

)
(g(V,W )U − g(U,W )V ).

Hence, the proof is completed.

Proposition 4.4. Let M = Bf × hF be a doubly warped product manifold

and let R̃,BR̃ and FR̃ be the Riemannian curvature tensors with respect to the
semi-symmetric metric connections ∇̃,B∇̃ and F ∇̃, respectively. If X,Y, Z ∈
X(B), U, V,W ∈ X(F ) and P ∈ X(F ), then

R̃(X,Y )Z = BR(X,Y )Z +

(
g(X,Z)

Y h

h
− g(Y, Z)

Xh

h

)(
P − grad f

f

)

+

(
‖grad f‖2

f2
+

2Pf

f
+ π(P )

)
(g(X,Z)Y − g(Y, Z)X),

R̃(V,X)Y = −
(
Hh

B(X,Y )

h
+

Pf

f
g(X,Y ) + π(P )g(X,Y )

)
V − (Y h)

h
π(V )X

+ g(X,Y )

(
1

h
π(V ) gradh+ π(V )P − F∇V P − 1

f
F∇V grad f

)
,
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From the equation (2.5), we find

R̃(X,V )W = R(X,V )W + g(W,∇XP )V − g(W,∇V P )X

− g(V,W )(∇XP + π(P )X − π(X)P ).(4.16)

Using Lemma 3.1 and Lemma 3.2 in (4.16), we have
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Hence, the proof is completed.

Proposition 4.4. Let M = Bf × hF be a doubly warped product manifold

and let R̃,BR̃ and FR̃ be the Riemannian curvature tensors with respect to the
semi-symmetric metric connections ∇̃,B∇̃ and F ∇̃, respectively. If X,Y, Z ∈
X(B), U, V,W ∈ X(F ) and P ∈ X(F ), then

R̃(X,Y )Z = BR(X,Y )Z +

(
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h
− g(Y, Z)

Xh
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)(
P − grad f
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)

+
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+
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+ π(P )

)
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+ g(X,Y )
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h
π(V ) gradh+ π(V )P − F∇V P − 1

f
F∇V grad f

)
,
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R̃(X,Y )V =

(
(V f)(Y h)

hf
− (Y h)

h
π(V )

)
X −

(
(V f)(Xh)

hf
− (Xh)

h
π(V )

)
Y,

R̃(V,W )X =

(
(Wf)(Xh)

hf
+

(Xh)

h
π(W )

)
V −

(
(V f)(Xh)

hf
+

(Xh)

h
π(V )

)
W,

R̃(X,V )W = −g(V,W )

(
1

h
B∇X gradh+

Pf

f
X + π(P )X +

(Xh)

h
P

)

−

(
Hf

F (V,W )

f
− π(V )π(W ) + g(W,F ∇V P )

)
X +

(Xh)

h
π(W )V,

R̃(U, V )W = FR̃(U, V )W − ‖gradh‖2

h2
(g(V,W )U − g(U,W )V )

+ (π(U)g(V,W )− g(U,W )π(V ))
gradh

h
.

Proof. Assume that the associated vector field P is in X(F ). Then the
equation (2.5) can be written as

R̃(X,Y )Z = R(X,Y )Z + g(Z,∇XP )Y − g(Z,∇Y P )X

+ g(X,Z)∇Y P − g(Y, Z)∇XP

+ π(P )(g(X,Z)Y − g(Y, Z)X).

By the use of Lemma 3.1 and Lemma 3.2, the above equation gives us

R̃(X,Y )Z = BR(X,Y )Z

+

(
‖grad f‖2

f2
+

2Pf

f
+ π(P )

)
(g(X,Z)Y − g(Y, Z)X)

+ (g(Y, Z)(Xh)− g(X,Z)(Y h))

(
grad f

hf
− P

h

)
.

By (4.13), Lemma 3.1 and Lemma 3.2, we obtain

R̃(V,X)Y = −
(
Hh

B(X,Y )

h
+

Pf

f
g(X,Y ) + π(P )g(X,Y )

)
V − (Y h)

h
π(V )X

+ g(X,Y )

(
1

h
π(V ) gradh+ π(V )P − F∇V P − 1

f
F∇V grad f

)
,

Replacing Z with V in equation (2.5), we get

R̃(X,Y )V = R(X,Y )V + g(V,∇XP )Y − g(V,∇Y P )X.
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Using Lemma 3.1 and Lemma 3.2, we obtain

R̃(X,Y )V =

(
(V f)(Y h)

hf
− Y h

h
π(V )

)
X

−
(
(V f)(Xh)

hf
− Xh

h
π(V )

)
Y.

From equation (2.5), we get

R̃(V,W )X = R(V,W )X + g(X,∇V P )W − g(X,∇WP )V.

By Lemma 3.1 and Lemma 3.2, we get

R̃(V,W )X =

(
(Wf)(Xh)

hf
+

(Xh)

h
π(W )

)
V

−
(
(V f)(Xh)

hf
− (Xh)

h
π(V )

)
W.

From equation (2.5), we get

R̃(X,V )W = R(X,V )W + g(W,∇XP )V − g(W,∇V P )X

− g(V,W )∇XP − π(P )g(V,W )X + π(V )π(W )X.

Using Lemma 3.1 and Lemma 3.2, we get

R̃(X,V )W = −g(V,W )

(
1

h
B∇X gradh+

Pf

f
X + π(P )X +

(Xh)

h
P

)

−

(
Hf

F (V,W )

f
− π(V )π(W ) + g(W,F ∇V P )

)
X +

(Xh)

h
π(W )V.

From equation (2.5), we have

R̃(U, V )W = R(U, V )W + g(W,∇UP )V − g(W,∇V P )U

+ g(U,W )∇V P − g(V,W )∇UP

+ π(P )(g(U,W )V − g(V,W )U)(4.18)

+ (g(V,W )π(U)− g(U,W )π(U))P

+ π(W )(π(V )U − π(U)V ).

By use of Lemma 3.1 and Lemma 3.2 in above equation, we obtain

R̃(U, V )W = FR̃(U, V )W

− ‖gradh‖2

h2
(g(V,W )U − g(U,W )V )

+ (π(U)g(V,W )− g(U,W )π(V ))
gradh

h
.

Thus, we have completed the proof.
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R̃(X,Y )V =

(
(V f)(Y h)

hf
− (Y h)

h
π(V )

)
X −

(
(V f)(Xh)

hf
− (Xh)

h
π(V )

)
Y,

R̃(V,W )X =

(
(Wf)(Xh)

hf
+

(Xh)

h
π(W )

)
V −

(
(V f)(Xh)

hf
+

(Xh)

h
π(V )

)
W,

R̃(X,V )W = −g(V,W )

(
1

h
B∇X gradh+

Pf

f
X + π(P )X +

(Xh)

h
P

)

−

(
Hf

F (V,W )

f
− π(V )π(W ) + g(W,F ∇V P )

)
X +

(Xh)

h
π(W )V,

R̃(U, V )W = FR̃(U, V )W − ‖gradh‖2

h2
(g(V,W )U − g(U,W )V )

+ (π(U)g(V,W )− g(U,W )π(V ))
gradh

h
.

Proof. Assume that the associated vector field P is in X(F ). Then the
equation (2.5) can be written as

R̃(X,Y )Z = R(X,Y )Z + g(Z,∇XP )Y − g(Z,∇Y P )X

+ g(X,Z)∇Y P − g(Y, Z)∇XP

+ π(P )(g(X,Z)Y − g(Y, Z)X).

By the use of Lemma 3.1 and Lemma 3.2, the above equation gives us

R̃(X,Y )Z = BR(X,Y )Z

+

(
‖grad f‖2

f2
+

2Pf

f
+ π(P )

)
(g(X,Z)Y − g(Y, Z)X)

+ (g(Y, Z)(Xh)− g(X,Z)(Y h))

(
grad f

hf
− P

h

)
.

By (4.13), Lemma 3.1 and Lemma 3.2, we obtain

R̃(V,X)Y = −
(
Hh

B(X,Y )

h
+

Pf

f
g(X,Y ) + π(P )g(X,Y )

)
V − (Y h)

h
π(V )X

+ g(X,Y )

(
1

h
π(V ) gradh+ π(V )P − F∇V P − 1

f
F∇V grad f

)
,

Replacing Z with V in equation (2.5), we get
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As a consequence of Proposition 4.3 and Proposition 4.4, by a contraction
of the curvature tensors, we obtain the Ricci tensors of the doubly warped
product with respect to the semi-symmetric metric connection as follows:

Corollary 4.5. Let M = Bf × hF be a doubly warped product manifold

and let S̃,BS̃ and FS̃ be the Ricci tensors with respect to the semi-symmetric
metric connections ∇̃,B∇̃ and F ∇̃, respectively. If X,Y ∈ X(B), V,W ∈ X(F )
and P ∈ X(B), then

S̃(X,Y ) = BS̃(X,Y )− n2

h
Hh

B(X,Y ) + n2π(X)π(Y )− n2g(Y,
B ∇XP )

−

(
(n1 − 1)

‖grad f‖2

f2
+ n2π(P ) + n2

Ph

h
+

1

f
�f

)
g(X,Y ),

S̃(X,V ) = (n1 − 1)
(V f)(Xh)

hf
+ (n− 2)

(V f)

f
π(X),

S̃(V,X) = (n2 − 1)
(V f)(Xh)

hf
− (n− 2)

(V f)

f
π(X),

S̃(V,W ) = FS(V,W )− n1

f
Hf

F (V,W )

−
(
divP +

1

h
�h+ n1

Ph

h
+ (n1 − 1)π(P )

)
g(V,W )

− (n2 − 1)

(
‖gradh‖2

h2
+

2Ph

h
+ π(P )

)
g(V,W ).

Corollary 4.6. Let M = Bf × hF be a doubly warped product manifold

and let S̃,BS̃ and FS̃ be the Ricci tensors with respect to the semi-symmetric
metric connections ∇̃,B∇̃ and F ∇̃, respectively. If X,Y ∈ X(B), V,W ∈ X(F )
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S̃(X,Y ) = BS(X,Y )− n2
Hh

B(X,Y )

h

− (n1 − 1)

(
‖grad f‖2

f2
+

2Pf

f

)
g(X,Y )

−
(
1

f
F�f + (n− 2)π(P ) + n2

Pf

f
+ divP

)
g(X,Y ),

S̃(X,V ) = (n1 − 1)
(V f)(Xh)

hf
− (n− 2)

Xh

h
π(V ),
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S̃(V,W ) = FS̃(V,W )

− n1g(W,F ∇V P )− n1

f
Hf

F (V,W ) + n1π(V )π(W )

−

(
1

h
B�h+ n1

Pf

f
+ (n2 − 1)

‖gradh‖2

h2
+ n1π(P )

)
g(V,W ).

As a consequence of Corollary 4.5 and Corollary 4.6, by a contraction of
the Ricci tensors, we get scalar curvatures of the doubly warped product with
respect to the semi-symmetric metric connection as follows:

Corollary 4.7. Let M = Bf × hF be a doubly warped product manifold

and P ∈ X(B). Let r̃, B r̃ and F r̃ be the scalar curvatures with respect to the

semi-symmetric metric connections ∇̃, B∇̃ and F ∇̃, respectively. Then

r̃ =
B r̃

f2
+

F r

h2
− n1(n1 − 1)

‖grad f‖2

f2
− n2(n2 − 1)

‖gradh‖2

h2

− 2n2(n− 1)
Ph

h
− 2n1

F∆f

f
− 2n2

B∆h

h
− 2n2 divP

− n2(n+ n1 − 3)π(P ).

Corollary 4.8. Let M = Bf × hF be a doubly warped product and P ∈
X(F ). Let r̃,B r̃ and F r̃ be the scalar curvatures with respect to the semi-

symmetric metric connections ∇̃,B∇̃ and F ∇̃, respectively. Then

r̃ =
Br

f2
+

F r̃

h2
− n1(n1 − 1)

‖grad f‖2

f2
− n2(n2 − 1)

‖gradh‖2

h2

− 2n1(n− 1)
Pf

f
− 2n1

F∆f

f
− 2n2

B∆h

h
− 2n1 divP

− n1(n+ n2 − 3)π(P ).

Remark 4.9. Doubly warped product manifolds with a semi-symmetric
metric connection has also been studied by Sular [20], where the author has
taken the associated vector field P ∈ X(M) as P = PB + PF , PB and PF are
the components of P on B and F , respectively.

5. Einstein doubly warped product manifolds endowed with the
semi-symmetric metric connection. In this section, we consider Einstein
doubly warped products and Einstein-like doubly warped product of class A
endowed with the semi-symmetric metric connection.

Theorem 5.1. Let M = Bf × hF be a doubly warped product manifold

(n > 2) and P ∈ X(B). Then (M, ∇̃) is an Einstein manifold with Einstein
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constant µ if and only if

BS̃(X,Y ) =
n2

h
Hh

B(X,Y )− n2π(X)π(Y ) + n2g(Y,
B ∇XP )

+

(
(n1 − 1)

‖grad f‖2

f2
+ n2π(P ) + n2

Ph

h
+

1

f
�f + µ

)
g(X,Y ),(5.1)

FS(V,W ) =
n1

f
Hf

F (V,W )

+

(
divP +

1

h
�h+ n1

Ph

h
+ (n1 − 1)π(P )

)
g(V,W )(5.2)

+ (n2 − 1)

(
‖gradh‖2

h2
+

2Ph

h
+ π(P ) + µ

)
g(V,W ).

Proof. The proof follows from Corollary 4.5 and Corollary 4.6.

Theorem 5.2. Let (M, ∇̃) be an Einstein doubly warped product manifold
with Einstein constant µ and P ∈ X(B). Suppose that B is a compact Rie-
mannian manifold, F is a complete Riemannian manifold, n1 , n2 ≥ 2, and

Hf
F (V,W ) is a constant multiple of gF . If µ ≤ 0, Ph ≥ 0, π(P ) ≤ 0, divP ≤ 0

then M is a warped product manifold.

Proof. Since Hf
F (V,W ) is a constant multiple of gF , then by using the

result of Tashiro [23, Theorem 2], we can say that F is a Euclidean space, then
Ricci tensor of F is zero. By (5.2), we get

0 =

(
cn1

f
+ (n2 − 1)

(
‖gradh‖2 + 2hPh+ h2π(P ) + µh2

)

+ h2 divP + h�h+ n1hPh+ (n1 − 1)h2π(P )

)
gF (V,W ).

So

0 =

(
cn1

f
+ (n2 − 1)

(
‖gradh‖2 + 2hPh+ h2π(P ) + µh2

)

+ h2 divP + h�h+ n1hPh+ (n1 − 1)h2π(P )

)
,(5.3)

Let x ∈ B such that h(x) is the maximum of h on B. Therefore gradh(x) = 0
and �h(x) ≤ 0. Then Ph(x) = g(gradh(x), P ) = 0. So the equation (5.3) at
the point x is

0 =
(
(n2 − 1)

(
h2(x)π(P ) + µh2(x)

)

+ h2(x) divP + h(x)�h(x) + (n1 − 1)h2(x)π(P )
)
.(5.4)
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By eq(5.3) and eq(5.4), we have

0 =

(
cn1

f
+ (n2 − 1)

(
‖gradh‖2 + 2hPh+ (h2 − h2(x))π(P ) + µ(h2 − h2(x))

)

+ (h2 − h2(x)) divP + h�h− h(x)�h(x) + n1hPh

+ (n1 − 1)(h2 − h2(x))π(P )
)
.(5.5)

Since µ ≤ 0, Ph ≥ 0, π(P ) ≤ 0, divP ≤ 0, then equation (5.5) implies that
h�h ≤ 0, which shows that the Laplacian has constant sign and hence h is
constant.

Theorem 5.3. Let (M, g) be an Einstein doubly warped product manifold
M = If × hF with respect to the semi-symmetric metric connection, where I
is an open interval, dim I = 1 and dimF = n− 1(n ≥ 3). If P ∈ X(I), then f
is constant on F or Ph = hπ(P ).

Proof. Let (M, g) be a doubly warped product M = If × hF , where I is
an open interval, dim I = 1 and dimF = n − 1(n ≥ 3). By Corollary 4.5, we
have

S̃(X,V ) = (n− 2)
V f

f
π(X),

(5.6) S̃(V,X) = (n− 2)
(V f)

f

(
Xh

h
− π(X)

)
.

Since M is an Einstein manifold with respect to the semi-symmetric metric
connection, we can write

S̃(P, V ) = αg(P, V ),

where α is constant. But g(P, V ) = 0, therefore S̃(P, V ) = 0. By (5.6),

we have either V f = 0 or
Ph

h
= π(P ). Therefore, either f is constant or

Ph = hπ(P ).

Definition 5.4. [22] A Riemannian manifold (M, g) is said to admit a
cyclic-Ricci parallel tensor or is Einstein-like of class A if

(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = 0

for any vector fields X,Y, Z ∈ X(M) or equivalently (∇XS)(X,X) = 0.

Proposition 5.5. Let M = Bf × hF be an Einstein-like doubly warped
product manifold of class A with respect to the semi-symmetric metric con-
nection ∇̃ and P ∈ X(B). The Riemannian manifold B is an Einstein-like



20

constant µ if and only if

BS̃(X,Y ) =
n2

h
Hh

B(X,Y )− n2π(X)π(Y ) + n2g(Y,
B ∇XP )

+

(
(n1 − 1)

‖grad f‖2

f2
+ n2π(P ) + n2

Ph

h
+

1

f
�f + µ

)
g(X,Y ),(5.1)

FS(V,W ) =
n1

f
Hf

F (V,W )

+

(
divP +

1

h
�h+ n1

Ph

h
+ (n1 − 1)π(P )

)
g(V,W )(5.2)

+ (n2 − 1)

(
‖gradh‖2

h2
+

2Ph

h
+ π(P ) + µ

)
g(V,W ).

Proof. The proof follows from Corollary 4.5 and Corollary 4.6.

Theorem 5.2. Let (M, ∇̃) be an Einstein doubly warped product manifold
with Einstein constant µ and P ∈ X(B). Suppose that B is a compact Rie-
mannian manifold, F is a complete Riemannian manifold, n1 , n2 ≥ 2, and

Hf
F (V,W ) is a constant multiple of gF . If µ ≤ 0, Ph ≥ 0, π(P ) ≤ 0, divP ≤ 0

then M is a warped product manifold.

Proof. Since Hf
F (V,W ) is a constant multiple of gF , then by using the

result of Tashiro [23, Theorem 2], we can say that F is a Euclidean space, then
Ricci tensor of F is zero. By (5.2), we get

0 =

(
cn1

f
+ (n2 − 1)

(
‖gradh‖2 + 2hPh+ h2π(P ) + µh2

)

+ h2 divP + h�h+ n1hPh+ (n1 − 1)h2π(P )

)
gF (V,W ).

So

0 =

(
cn1

f
+ (n2 − 1)

(
‖gradh‖2 + 2hPh+ h2π(P ) + µh2

)

+ h2 divP + h�h+ n1hPh+ (n1 − 1)h2π(P )

)
,(5.3)

Let x ∈ B such that h(x) is the maximum of h on B. Therefore gradh(x) = 0
and �h(x) ≤ 0. Then Ph(x) = g(gradh(x), P ) = 0. So the equation (5.3) at
the point x is

0 =
(
(n2 − 1)

(
h2(x)π(P ) + µh2(x)

)

+ h2(x) divP + h(x)�h(x) + (n1 − 1)h2(x)π(P )
)
.(5.4)

21

By eq(5.3) and eq(5.4), we have

0 =

(
cn1

f
+ (n2 − 1)

(
‖gradh‖2 + 2hPh+ (h2 − h2(x))π(P ) + µ(h2 − h2(x))

)

+ (h2 − h2(x)) divP + h�h− h(x)�h(x) + n1hPh

+ (n1 − 1)(h2 − h2(x))π(P )
)
.(5.5)

Since µ ≤ 0, Ph ≥ 0, π(P ) ≤ 0, divP ≤ 0, then equation (5.5) implies that
h�h ≤ 0, which shows that the Laplacian has constant sign and hence h is
constant.

Theorem 5.3. Let (M, g) be an Einstein doubly warped product manifold
M = If × hF with respect to the semi-symmetric metric connection, where I
is an open interval, dim I = 1 and dimF = n− 1(n ≥ 3). If P ∈ X(I), then f
is constant on F or Ph = hπ(P ).

Proof. Let (M, g) be a doubly warped product M = If × hF , where I is
an open interval, dim I = 1 and dimF = n − 1(n ≥ 3). By Corollary 4.5, we
have

S̃(X,V ) = (n− 2)
V f

f
π(X),

(5.6) S̃(V,X) = (n− 2)
(V f)

f

(
Xh

h
− π(X)

)
.

Since M is an Einstein manifold with respect to the semi-symmetric metric
connection, we can write

S̃(P, V ) = αg(P, V ),

where α is constant. But g(P, V ) = 0, therefore S̃(P, V ) = 0. By (5.6),
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manifold of class A with respect to the semi-symmetric metric connection ∇̃ if
and only if B∇XY = Xh

2h Y , B∇XP = 0 and

0 = n2π(X)

(
π(X)

Xh

h
− ‖gradh‖2

2h2
g(X,X)

)

+
Xh

h
g(X,X)

(
(n2 − 1)

‖grad f‖2

f2
− n2π(P )− n2

1

f
�f

)
.

Proof. By using (4.1), (4.2) and Corollary 4.5, we have

(∇̃X S̃)(X,X) = XS̃(X,X)− S̃(∇̃XX,X)− S̃(X, ∇̃XX)

= X
(
BS̃(X,X)− n2

h
Hh

B(X,X) + n2π(X)π(X)− n2g(X,B ∇XP )
)

−X

((
(n1 − 1)

‖grad f‖2

f2
+ n2π(P ) + n2

Ph

h
+

1

f
�f

)
g(X,X)

)

− S̃(∇̃B
XX− 1

f
g(X,X) grad f,X)−S̃(X, ∇̃B

XX− 1

f
g(X,X) grad f),

(∇̃X S̃)(X,X) = (∇̃B
X S̃)(X,X) +

n2

h2
XhHh

B(X,X)− n2

h
X

(
Hh

B(X,X)
)

+ n2X(π(X))2 − n2Xg(X,B ∇XP )

−

(
(n1 − 1)

‖grad f‖2

f2
+ n2π(P ) + n2

Ph

h
+

1

f
�f

)
Xg(X,X)

−

(
(n1 − 1)X

‖grad f‖2

f2
+ n2Xπ(P ) + n2X

Ph

h
+X

1

f
�f

)
g(X,X)

+
1

f
g(X,X)S̃(grad f,X) +

1

f
g(X,X)S̃(X, grad f).

Since B∇XY = Xh
2h Y and B∇XP = 0, we have

(∇̃X S̃)(X,X) = (∇̃B
X S̃)(X,X) + n2π(X)

(
π(X)

Xh

h
− ‖gradh‖2

2h2
g(X,X)

)

+
Xh

h
g(X,X)

(
(n2 − 1)

‖grad f‖2

f2
− n2π(P )− n2

1

f
�f

)
.

The proof is completed.

Remark 5.6. Einstein-like manifolds are natural extension of Einstein
manifolds. Einstein-like manifolds admitting different curvature conditions
were considered by Calvaruso [6]. Einstein-like manifolds of dimensions 3 and

23

4 are studied in [3, 5]. Projective spaces and spheres furnished with class A
or class B Einstein-like metrics were classified in [17]. An interesting study
in [15] shows that Einstein-like Generalized Robertson–Walker spacetimes are
perfect fluid space-times except one class of Gray’s decomposition.

Acknowledgements. We thank the reviewer for valuable suggestions and
corrections.
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B(X,X) + n2π(X)π(X)− n2g(X,B ∇XP )
)

−X

((
(n1 − 1)

‖grad f‖2

f2
+ n2π(P ) + n2

Ph

h
+

1

f
�f

)
g(X,X)

)

− S̃(∇̃B
XX− 1

f
g(X,X) grad f,X)−S̃(X, ∇̃B

XX− 1

f
g(X,X) grad f),

(∇̃X S̃)(X,X) = (∇̃B
X S̃)(X,X) +

n2

h2
XhHh

B(X,X)− n2

h
X

(
Hh

B(X,X)
)

+ n2X(π(X))2 − n2Xg(X,B ∇XP )

−

(
(n1 − 1)

‖grad f‖2

f2
+ n2π(P ) + n2

Ph

h
+

1

f
�f

)
Xg(X,X)

−

(
(n1 − 1)X

‖grad f‖2

f2
+ n2Xπ(P ) + n2X

Ph

h
+X

1

f
�f

)
g(X,X)

+
1

f
g(X,X)S̃(grad f,X) +

1

f
g(X,X)S̃(X, grad f).

Since B∇XY = Xh
2h Y and B∇XP = 0, we have

(∇̃X S̃)(X,X) = (∇̃B
X S̃)(X,X) + n2π(X)

(
π(X)

Xh

h
− ‖gradh‖2

2h2
g(X,X)

)

+
Xh

h
g(X,X)

(
(n2 − 1)

‖grad f‖2

f2
− n2π(P )− n2

1

f
�f

)
.

The proof is completed.

Remark 5.6. Einstein-like manifolds are natural extension of Einstein
manifolds. Einstein-like manifolds admitting different curvature conditions
were considered by Calvaruso [6]. Einstein-like manifolds of dimensions 3 and

23

4 are studied in [3, 5]. Projective spaces and spheres furnished with class A
or class B Einstein-like metrics were classified in [17]. An interesting study
in [15] shows that Einstein-like Generalized Robertson–Walker spacetimes are
perfect fluid space-times except one class of Gray’s decomposition.

Acknowledgements. We thank the reviewer for valuable suggestions and
corrections.
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Math. Z., 21 (1924), no. 1, 211–223.

8. Gebarowski A., Doubly warped products with harmonic Weyl conformal curvature tensor,
Colloq. Math., 67 (1994), 73–89.

9. Gebarowski A., On conformally recurrent doubly warped products, Tensor (N.S.),
57 (1996), 192–196.

10. Gupta P., On compact Einstein doubly warped product manifolds, Tamkang Jour. Math.,
49 (2018), no. 1, 267–275.

11. Hatzinikitas A.N., A note on doubly warped product spaces, arXiv:1403.0204v1.
12. Hayden H.A., Subspace of a space with torsion, Proc. London Math. Soc., II Series,

34 (1932), 27–50.
13. Imai T., Hypersurfaces of a Riemannian manifold with semi-symmetric metric connec-

tion, Tensor (N.S.), 23 (1972), 300–306.
14. Imai T., Notes on semi-symmetric metric connections, Commemoration volumes for Prof.

Dr. Akitsugu Kawaguchi’s seventieth birthday, Vol. I. Tensor (N.S.), 24 (1972), 293–296.
15. Mantica C.A., Molinari L.G., Young J.S., Shenawy S., Perfect-Fluid, Generalized

Robertson–Walker Space-times, and Gray’s Decomposition, J. Math. Phys., 60 (2019),
no. 5, 052506, 9 pp.

16. O’Neill B., Semi-Riemannian geometry with applications to relativity, Academic Press,
New York, London, 1983.

17. Peng C., Chao Q., Homogeneous Einstein-like metrics on spheres and projective spaces,
Differential Geometry and its Applications, 44 (2016), 63–76.

18. Ponge R., Reckziegel H., Twisted products in pseudo-Riemann geometry, Geometriae
Dedicata, 49 (1993), 15–25.

19. Ramos M.P.M., Vaz E.G.L.R., Carot J., Double warped space time, Jour. Math. Phys.,
44 (2003), no. 10, 4835–4869.



24

20. Sular S., Semi-symmetric metric connection on doubly warped product manifolds, Int.
Jour. Pure Math., 4 (2017), 52–58.

21. Sular S., Ozgur C., Warped product with semi-symmetric metric connection, Taiwanese
Journal of Mathematics, 15 (2011), no. 4, 1701–1719.

22. Sumitomo T., On a certain class of Riemannian homogeneous spaces, Coll. Math.,
26 (1972), 129–133.

23. Tashiro Y., Complete Riemannian manifolds and some vector fields, Transaction of the
American Mathematical Society, 117(1965), 251–275.

24. Tripathi M.M., A new connection in a Riemannian manifold, Int. Electron. J. Geom.,
1 (2008), no. 1, 15–24.
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Université Alioune Diop de Bambey
B.P. 30, Bambey
Sénégal
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EXISTENCE OF COMPLEX STRUCTURES ON

DECOMPOSABLE LIE ALGEBRAS

by Marcin Sroka

Abstract. We provide the classification of the six-dimensional decompos-
able Lie algebras, with the dimension of the biggest indecomposable sum-
mand less than five, admitting complex structures.

1. Introduction. An almost complex structure on a Lie algebra h is an
endomorphism

I : h → h

such that
I2 = −id.

We say that an almost complex structure I on h is a complex structure if the
following condition, being a linear version of the vanishing of the Nijenhuis
tensor, holds

[I, I](v, w) = −[v, w] + [Iv, Iw]− I[Iv, w]− I[v, Iw] = 0

f or any v, w ∈ h. Because of the trivialization of the tangent bundle, by left
invariant vector fields, (almost) complex structures on a Lie algebra correspond
to left invariant (almost) complex structures on any associated Lie group or
its quotient by a discrete subgroup.

The following approach is classic. To any I as above we can assign its
extension IC to hC, being a complexification of h, and vector subspaces

h1,0I = {u ∈ hC | IC(u) = iu} = {h− iI(h) | h ∈ h}

h0,1I = {u ∈ hC | IC(u) = −iu} = {h+ iI(h) | h ∈ h}

2010 Mathematics Subject Classification. 17B40, 53C15, 53C30.
Key words and phrases. Invariant complex structures, Lie algebras, homogeneous
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