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SEMIGROUPS FOR FLOWS ON LIMITS OF GRAPHS

by Christian Budde

Abstract. We use a version of the Trotter–Kato approximation theorem
for strongly continuous semigroups in order to study flows on growing net-
works. For that reason we use the abstract notion of direct limits in the
sense of category theory.

Introduction. Transport of goods is nowadays of extreme importance
and indispensable considering what mankind needs for daily life. Now imag-
ine a start-up company shipping special goods all over the world. Of course,
the company starts with a small network of customers. However, assuming
the company grows and retains the already existing routes and customers, the
shipping network grows and grows. It might come to the point in the develop-
ment of the company that one actually has lost the view on all specific routes
but only knows how the network works since it becomes too big. However, one
still wants to know how the transport is going on the whole network.

Mathematically speaking, the routes and customers can be described
through edges and vertices of a graph, respectively. By giving the graph a
metric structure one obtains so-called quantum graphs or networks. Transport
can be modelled simply by the linearized flow equation

∂

∂t
w(t, x) = c

∂

∂x
w(t, x),

where c > 0 is the given velocity of the transported good. The combination
of flows and networks in a pure operator algebraic setting was first worked
out by M. Kramar Fijavž and E. Sikolya [20] for finite graphs. Later on,

2010 Mathematics Subject Classification. 47D05, 65J08, 37L05, 47A58, 82C70, 35R02,
18A30, 20M50.

Key words and phrases. Strongly continuous semigroups, Trotter–Kato theorems, trans-
port problems, networks, category theory.
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B. Dorn generalized this also to infinite graphs [15]. The idea is to rewrite
the transport equation on the network, which is subjected to some general
boundary conditions due to the structure of the network, as an abstract Cauchy
problem, which can be solved using C0-semigroups. The techniques are also
used frequently by other authors [7,8,10] even for the situation where one asks
for weaker solutions [14] by means of bi-continuous semigroups. Notice that the
motivating example given above is not the only one, actually, one can imagine
a lot more scenarios, e.g., social networks [3,5] or brain connections [26], just
to name a few.

That a network is growing, through adding vertices and edges, means that
one has a sequence of at first finite graphs, i.e., one knows the exact structure as
described in the situation above. In this case, each finite graph of the sequence
yields a phase space L1 ([0, 1] ,Cm), where m ∈ N is the number of edges of the
graph. It is important to notice, that hence the phase space changes depending
on number of edges m. One assumes that each graph is a subgraph of the
subsequent graph in the sequence, describing the above mentioned situation of
growing networks. The above mentioned situation, where the network becomes
to big for all network routes to be known, will be modelled by an infinite graph.
Then we work on the Banach space L1

(
[0, 1] , `1

)
. The transition from finite

to infinite graphs will be modelled with direct limits in a certain category. The
approximation of the transport process on the direct limit graph, is done by
a version of the Trotter–Kato approximation theorem, which is originally due
to T. Kato [19, Chapter IX, Thm. 3.6] and H.F. Trotter [27, Thm. 5.2 & 5.3]
and modified by K. Ito and F. Kappel [18, Thm. 2.1], which we are going to
use. Actually this is related to the first Trotter–Kato theorem, cf. [17, Chapter
III, Thm. 4.8]. In the present paper we extend the work of Ito and Kappel by
another approximation theorem, which is an extension of the second Trotter–
Kato theorem, cf. [17, Chapter III, Thm. 4.9]. We notice that this paper deals
with categorical limits of graphs. However, there is another notion of graph
limits due to L. Lovász [22] by means of graphons or graphings. This notion
of limits totally differs from what we consider within this paper but is worth
mentioning since this is a interesting topic which is supposed to yield future
research into networks and dynamical systems. In fact, graph limits in the
sense of L. Lovász are in the focus of forthcoming papers.

The structure of the paper is as follows: in the first section we recall all
fundamentals on networks, flows on them and category theory. In Section 2 we
apply the first Trotter–Kato theorem to our model of growing networks. The
following section consists of the second Trotter–Kato approximation theorem
in the style of Ito and Kappel.
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1. Preliminaries.
1.1. Graphs and networks. In order to talk about finite and infinite net-

works we make use of the notation used in [20], [15] or [16]. A network
is modelled by a finite or infinite directed graph G = (V(G),E(G)), where
V(G) = {vi : i ∈ I} is the set of vertices and E(G) = {ej : j ∈ J} ⊆ V × V
is the set of directed edges for some at most countable sets I, J ⊆ N. For a
directed edge e = (vi, vk), i, k ∈ I, we call vi the tail and vk the head of e.
Further, the edge e is an outgoing edge of the vertex vi and an incoming edge
for the vertex vk. Recall that a graph G is called simple if there are neither
loops nor multiple edges in G. This means in particular, that there are no
edges of the form e = (vi, vi), i ∈ I (i.e., the tail and the head of the edge
coincide and so an edge connects a vertex with itself) and no several edges
connecting two vertices in the same direction. We also assume that the graph
G is uniformly locally finite meaning that each vertex has only finitely many
outgoing edges and that the number of outgoing edges is uniformly bounded
from above.

The structure of a graph can be described by its incidence or its adjacency
matrix. The outgoing incidence matrix Φ− = (Φ−ij) is defined by

(1) Φ−ij :=

{
1 if vi

ej−→,
0 otherwise,

By vi
ej−→ we mean that the vertex vi is the tail of the edge ej . The incoming

incidence matrix Φ+ = (Φ+
ij) is defined by

(2) Φ+
ij :=

{
1 if

ej−→ vi,

0 otherwise.

Here
ej−→ vi means that the vertex vi is the head of the edge ej . The incidence

matrix Φ of the directed graph G, describing the structure of the network
completely, is then defined by Φ := Φ+ − Φ−. There are two other impor-
tant matrices associated to a general graph and needed in what follows. The
transposed adjacency matrix of the graph G is defined by

A := Φ+
(
Φ−
)>
.

The nonzero entries of A correspond exactly to the edges of the graph, cf. [9,
p. 280]. In fact, A can be described explicitly as

(3) Aij :=

{
1 if vj

ek−→ vi,

0 otherwise.
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Last but not least we use the so-called (transposed) adjacency matrix of the

line graph B = (Bij) defined by B := (Φ−)
>

Φ+. One can also give an explicit
entrywise description as

(4) Bij :=

{
1 if

ej−→ vk
ei−→,

0 otherwise.

Notice that by the assumption of the uniform locally finiteness of the graph
the matrix B is a bounded operator on `1 := `1(J).

In what follows, we stick to the following mathematical setting. We identify
every edge of our graph with the unit interval, ej ≡ [0, 1] for each j ∈ J , and
parametrize it contrary to the direction of the flow, if cj > 0, j ∈ J , so that it
is assumed to have its tail at the endpoint 1 and its head at the endpoint 0,
i.e., the material flows from 1 to 0. With this assumption, we stay within the
framework introduced by B. Dorn, M. Kramar Fijavž and E. Sikolya, see for
example [15, 20]. For simplicity we use the notation ej(1) and ej(0) for the
tail and the head, respectively. In this way we obtain a metric graph.

1.2. Category theory. By taking all simple locally finite directed graphs
together, one obtains a rich mathematical structure of a category. We recall
the most important definitions here as they can be found for example in the
monographs by S. Mac Lane [23] or S. Awodey [6]. We first recap the basic
definition of a category.

Definition 1.1. A category C consists of objects A,B,C, . . . and arrows
f, g, h, . . . (also called morphisms). For each arrow f there are given objects
dom(f) and cod(f) called the domain and codomain of f . We write f : A→ B
to indicate that A = dom(f) and B = cod(f). Given arrows f : A → B and
g : B → C, that is, with cod(f) = dom(g) there is given an arrow g◦f : A→ C
called the composite of f and g. Furthermore, for each object A there is given
an arrow 1A : A→ A called the identity arrow of A. These arrows are required
to satisfy the following axiomas:

(a) Associativity, i.e., for f : A→ B, g : B → C and h : C → D one has

h ◦ (g ◦ f) = (h ◦ g) ◦ f,

(b) Unit law, i.e., for each f : A→ B one has

f ◦ 1A = f = 1B ◦ f.

As said above, the objects we are interested in are simple and locally finite
graphs. In order to form a category, we need to specify what the arrows in the
category are. For that reason we recall the definition of the so-called graph
homomorphisms.
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Definition 1.2. A (graph)-homomorphism between two graphs G =
(V(G),E(G)) and H = (V(H),E(H)) is a map ϕ : V(G) → V(H) such that
(v1, v2) ∈ E(G) implies that (ϕ(v1), ϕ(v2)) ∈ E(H). If such an homomorphism
is injective, then G is a subgraph of H.

By taking together graphs and their homomorphisms we obtain a category.

Definition 1.3. The category C := SimpLocFinG consists of simple and
locally finite graphs as objects and graph homomorphisms as arrows.

In category theory, constructions on categories, e.g., products of categories
or free categories, as well as universals and limits play a central role. For
the purpose of this paper we recall the following definition of a direct limit
in a category. Notice that we simplified the original definition to sequences
of objects instead of directed systems of objects, cf. [23, Chapter V, Sect. 1]
or [6, Def. 5.17 & 5.18], in order to fit in our framework.

Definition 1.4. Let C be a category and (An)n∈N a sequence of objects
in C such that there exist maps ϕn : An → An+1 for each n ∈ N, i.e., we have
the following diagram

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ A4 −→ · · ·

We say that an object A in C is the direct limit of the sequence (An)n∈N if for
any n ∈ N there exists an arrow ψn : An → A such that ψn+1 ◦ ϕn = ψn for
each n ∈ N, i.e., the following diagram commutes for each n ∈ N:

An

ψn ""

ϕn // An+1

ψn+1

��
A

Moreover, A is universal in the sense that if for another object B there exist
arrows ϑn : An → B such that ϑn+1 ◦ ϕn = ϑn for all n ∈ N, then there exists
a unique arrow α : A→ B such that α ◦ ψn = ϑn for each n ∈ N.

We will use the concept of direct limits for our special category C =
SimpLocFinG for the special case that the arrows (ϕn)n∈N are all injective,
i.e., that we consider a sequence (Gn)n∈N of simple and locally finite graphs
which is growing in the sense that Gn is a subgraph of Gn+1 for each n ∈ N.
As a matter of fact, each element in the sequence (Gn)n∈N is supposed to be
a finite simple graph and hence locally finite. The direct limit itself does not
have to be finite anymore.
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1.3. Flows in networks. So far we have been considering the algebraic com-
ponents of this paper. We will now turn to the analytical structure, i.e., we will
discuss transport processes on networks. Notice that we only treat the infinite
graph case here, since the finite one is included and only needs some small
modifications. Let G = (V(G),E(G)) be a simple and locally finite graph,
then we study the following partial differential equation on the graph G for
i ∈ I, j ∈ J : 

∂

∂t
wj(t, x) = cj

∂

∂x
wj(t, x), x ∈ (0, 1) , t ≥ 0,

wj(x, 0) = fj(x), x ∈ (0, 1) ,

Φ−ijwj(1, t) =
∑
k∈N

Φ+
ikwk(0, t), t ≥ 0.

(PDE)

How this equation relates to the classical linear Boltzmann equation is de-
scribed in [16, Sect. 1]. In what follows, we assume that all velocities cj ,
j ∈ J , on the edges stay away from zero and are bounded from above, i.e.,
there exist m,M > 0 such that

m ≤ cj ≤M, j ∈ J.(5)

The boundary conditions of the equation depend on the structure of the net-
work, which is introduced by the incidence matrices. Now consider the Banach
space X := L1

(
[0, 1] , `1

)
equipped with the norm given by

‖f‖ :=

∫ 1

0
‖f(s)‖`1 ds

and introduce the (unbounded) operator (A,D(A)) on X defined by

A := diag

(
d

dx

)
, D(A) :=

{
f ∈W1,1

(
[0, 1] , `1

)
: f(1) = BCf(0)

}
,(6)

where

BC := C−1BC and C := diag (cj) .(7)

Notice that (5) assures, that the operator BC is bounded. It is well known that
the corresponding abstract Cauchy problem given by{

u̇(t) = Au(t), t ≥ 0

u(0) = f,
(ACP)

on the Banach space X = L1
(
[0, 1] , `1

)
is equivalent to the partial differential

equation (PDE), i.e., a solution of (ACP) gives rise to a solution of (PDE) and
vice versa, cf. [15, Prop. 3.1] and [20] for the finite graph case. We now need
the notions of well-posedness of abstract Cauchy problems and C0-semigroups,
cf. [17, Chapter II, Thm. 6.7].
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Definition 1.5. A function u : R+ → X is called a (classical) solution of
(ACP) if u is continuously differentiable with respect to X, u(t) ∈ D(A) for all
t ≥ 0 and (ACP) holds.

Definition 1.6. The abstract Cauchy problem (ACP) is called well-posed
if for every f ∈ D(A), there exists a unique solution u(·, f) of (ACP), D(A)
is dense in X and if for every sequence (fn)n∈N in D(A) with limn→∞ fn = 0,
one has limn→∞ u(t, fn) = 0 uniformly on compact intervals.

Definition 1.7. A family of bounded linear operators (T (t))t≥0 is called
strongly continuous one-parameter semigroup of linear operators, or C0-semi-
group, if the following properties are satisfied:

(i) T (t+ s) = T (t)T (s) for all t, s ≥ 0 and T (0) = I.
(ii) limt↘0 ‖T (t)f − f‖ = 0 for each f ∈ X.

Each C0-semigroup (T (t))t≥0 gives rise to an operator (A,D(A)) called the
generator. This operator is defined as follows.

Ax := lim
t↘0

T (t)x− x
t

, D(A) :=

{
x ∈ X : lim

t↘0

T (t)x− x
t

exists

}
.

The converse question: “Is a given operator (A,D(A)) the generator of a C0-
semigroup?” is more challenging. As a matter of fact, this question is answered
by the Hille–Yosida theorem, cf. [17, Chapter II, Thm. 3.8], [28]. If a given
operator (A,D(A)) generates a C0-semigroup (T (t))t≥0 on a Banach space X
satisfying ‖T (t)‖ ≤ Meωt for some M ≥ 1, ω ∈ R and for all t ≥ 0, then we
will denote this by A ∈ G(M,ω,X). The most important fact is that by [17,
Chapter II, Cor. 6.9] the abstract Cauchy problem (ACP) is well-posed in the
sense of Definition 1.6 if and only if the operator (A,D(A)) is the generator of
a C0-semigroup. The following result shows that our explicit abstract Cauchy
problem (ACP) associated to (PDE) is well-posed, cf. [15, Thm. 3.4]. For the
finite network case, we refer to [20, Prop. 2.5].

Theorem 1.8. The operator (A,D(A)) on X = L1
(
[0, 1] , `1

)
defined by

(6) generates a C0-semigroup. Therefore, (ACP) is well-posed.

2. Approximation of flows on direct limit graphs. We now consider
the situation as described earlier. Let (Gn = (V(Gn),E(Gn)))n∈N be a growing
sequence of finite simple graphs, i.e., there exists an injective graph homomor-
phism ϕn : Gn → Gn+1 for each n ∈ N. Notice that by [25, Def. 8.1] the limit of
such a sequence (Gn)n∈N exists. Let us denote this limit by G = (V(G),E(G)).
In particular, one has G =

⋃
n∈NGn. For each n ∈ N we have a strongly con-

tinuous semigroup (Tn(t))t≥0 solving (ACP) on the space L1 ([0, 1] ,C)|E(Gn)|.
Moreover, we have a C0-semigroup (T (t))t≥0 on L1

(
[0, 1] , `1

)
. The clue is, that

the semigroups (Tn(t))t≥0 approximate the semigroup (T (t))t≥0 is a sense. To
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make this more precise, we refer to the work of K. Ito and F. Kappel [18]. In
fact, we will use the following theorem.

Theorem 2.1. [18, Thm. 2.1] Let X and Xn, n ∈ N, be Banach spaces and
such that for each n ∈ N there exist bounded linear operators Pn : X → Xn and
En : Xn → X such that supn∈N ‖Pn‖ <∞, supn∈N ‖En‖ <∞ and PnEn = In,
where In denotes the identity operator on Xn, n ∈ N. Let A ∈ G(M,ω,X)
and An ∈ G(M,ω,Xn) for each n ∈ N and let (T (t))t≥0 and (Tn(t))t≥0 be
the semigroups generated by A and An on X and Xn, respectively. Then the
following statements are equivalent.

(a) There exists λ0 ∈ ρ(A) ∩
⋂
n∈N ρ(An), such that for all x ∈ X,

lim
n→∞

‖EnR(λ0, An)Pnx−R(λ0, A)x‖ = 0.

(b) For every x ∈ X and t ≥ 0

lim
n→∞

‖EnTn(t)Pnx− T (t)x‖ = 0

uniformly on bounded t-intervals.

In order to apply this theorem we have to specify all required data for our
situation. The choices for the Banach spaces are clear, i.e., one chooses

Xn := L1 ([0, 1] ,C)|E(Gn)| = L1
(

[0, 1] ,C|E(Gn)|
)
, n ∈ N,

and

X := L1
(
[0, 1] , `1

)
.

Now we have to specify what the operators (Pn)n∈N and (En)n∈N have to
be in our case. Since G = (V(G),E(G)) is the direct limit of the sequence
(Gn)n∈N there exist graph homomorphisms ψn : Gn → G, n ∈ N, which
by [25, Prop. 8.3] are injective, too. These maps yield maps En : Xn → X
for n ∈ N. Actually, the operator En intuitively extends the functions on G
by infinitely many zeros. Without loss of generality, we may assume that the
labeling of the edges of Gn and G coincide on E(G) \ E(Gn). To be more
detailed, the operator En acts as follows:

En(f1, f2, . . . , f|E(Gn)|) = (f1, f2, . . . , f|E(Gn)|, 0, 0, 0 . . .).

The operators Pn : X → Xn, n ∈ N, are just the restrictions to the smaller
subspace, i.e., it is a cut-off operator. Again, by assuming that labelings of the
edges of Gn and G coincide on E(G) \ E(Gn), we can describe Pn as follows

Pn(f1, f2, f3, . . .) = (f1, f2, . . . , f|E(Gn)|)

By construction it is clear that ‖Pn‖ ≤ 1 and ‖En‖ ≤ 1 for each n ∈ N.
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Remark 2.2. The sequence of (injective) graph homomorphisms (ϕn)n∈N
corresponding to the sequence (Gn)n∈N of graphs extends, similar to the maps
(ψn)n∈N, the sequence of (Φn)n∈N of linear maps Φn : Xn → Xn+1. It is easy
to verify that L1

(
[0, 1] , `1

)
is the direct limit of the Banach spaces (Xn)n∈N

in the category of Banach spaces with contractions as morphisms. More de-
tails regarding categories of Banach spaces can for example be found in the
monograph by P. W. Michor [24].

Let us set the observation of Remark 2.2 in a bigger picture by means of
category theory. For that reason, we recall the following definition, cf. [23,
Chapter I, Sect. 3] or [6, Def. 1.2].

Definition 2.3. Let C1 and C2 be two categories. A functor F : C1 → C2
between the categories C1 and C2 is a mapping of objects to objects and arrows
to arrows, such that

(i) F (f : A→ B) = F (f) : F (A)→ F (B),
(ii) F (1A) = 1F (A),
(iii) F (f ◦ g) = F (f) ◦ F (g).

In other words, a functor F preserves domains and codomains, identity
arrows, and composition. Now let us apply the concept of functors to our
situation. In particular, let us denote the category of Banach spaces together
with linear bounded operators between them as arrows by B. Then there exists

a functor F : C → B by F (G = (V(G),E(G))) = L1 ([0, 1] ,C)|E(G)| if G is finite
and F (G = (V(G),E(G))) = L1

(
[0, 1] , `1

)
if G is infinite. Moreover, for the

graph homomorphism ϕn : Gn → Gn+1 one defines F (ϕn) = Φn.

Let us now come back to our transport problem. By the previous section,
we know that the operators A and An are in fact generators of C0-semigroups
(T (t))t≥0 and (Tn(t))t≥0, respectively. The following result shows that the
semigroups (Tn(t))t≥0 “converge” to (T (t))t≥0 in the sense of Theorem 2.1(b).

Proposition 2.4. Let (Gn)n∈N be an increasing sequence of graphs with
limit G. By ((AnD(An))n∈N and (A,D(A)) we denote the operators defined by
(6) associated with the transport problems on Xn and X, respectively. Then,
for every x ∈ X and t ≥ 0 there is ‖EnTn(t)Pnx− T (t)x‖ → 0 as n→∞ uni-
formly on bounded t-intervals. Intuitively speaking, the semigroups (Tn(t))t≥0,
n ∈ N, approximate (T (t))t≥0 along the growing sequence of graphs.

Proof. In order to prove the result, we make use of Theorem 2.1. By [9,
Prop. 18.12] there is λ ∈ ρ(A) if Re(λ) > 0 and for such a λ ∈ ρ(A) one has

R(λ,A) =
(
I + Eλ(·)(1− BC,λ)−1BC,λ ⊗ δ0

)
Rλ,
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where δ0 denotes the point evaluation at 0, Eλ(s) := diag
(
e(λ/cj)s

)
, BC,λ :=

Eλ(−1)BC , see also (7), and

(Rλf)(s) :=

∫ 1

s
Eλ(s− t)C−1f(t) dt.

Hence, it is clear that ρ(A) ∩
⋃
n∈N ρ(An) 6= ∅. By the explicit descrip-

tion of the operators (En)n∈N, (Pn)n∈N and the resolvents it is clear that
‖EnR(λ0, An)Pnx−R(λ0, A)x‖ → 0 as n→∞. Therefore, by Theorem 2.1 we
conclude that for every x ∈ X and t ≥ 0 there is ‖EnTn(t)Pnx− T (t)x‖ → 0
as n→∞ uniformly on bounded t-intervals.

Remark 2.5. We mentioned in the introduction that the theory of flows in
networks has been generalized by M. Kramar Fijavž and the author in [14] to
a bigger class of operator semigroups on the phase space L∞

(
[0, 1] , `1

)
, known

as bi-continuous semigroups. These objects have a rich structure and have
been introduced by F. Kühnemund [21] and further developed by B. Farkas
and the author [11–13]. We will not go into the details of this theory since this
is not the topic of this paper. Nevertheless, it is worth mentioning that even
in the case of bi-continuous semigroups, there are Trotter–Kato approximation
theorems [1, 2] in the spirit of [17, Chapter III, Thm. 4.8 & 4.9]. Moreover,
there is a recent paper on the first Trotter–Kato theorem which is closely
related to the work of Ito and Kappel, cf. [4]. We would like to notice that
even if such approximation theorems for bi-continuous semigroups existed, the
procedure described above could not be followed. This is due to the fact, that
one has to assume that the network is finite if one allows velocities on the edges
of the network which are not rational (and linear dependent). Unfortunately,
this is due to the absence of a Lumer–Phillips type generation theorem for
bi-continuous semigroups. However, if one assumes that even the direct limit
is finite, then the above procedure works.

3. A second Trotter–Kato type theorem. The assumption in The-
orem 2.1 is that we know that there exists a C0-semigroup on the spaces X
and in some sense we know how to approximate them by means of resolvents.
However, another important question is if there exists a C0-semigroup as a
limit on X if it is only known that there exists a sequence of semigroups on the
spaces Xn. The following theorem is related to the second Trotter–Kato theo-
rem on a single Banach space [17, Chapter III, Thm. 4.9]. We now formulate
this theorem so that it fits into K. Ito and F. Kappel’s framework.

Theorem 3.1. Let X and Xn, n ∈ N, be Banach spaces such that for each
n ∈ N there exist bounded linear operators Pn : X → Xn and En : Xn → X
such that supn∈N ‖Pn‖ < ∞, supn∈N ‖En‖ < ∞ and PnEn = In, where In the
the identity operator on Xn, n ∈ N. Let An ∈ G(M,ω,Xn) for each n ∈ N
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and let (Tn(t))t≥0, n ∈ N, be the semigroups generated by An on Xn. Then the
following statements are equivalent.

(a) There exist λ0 ∈ ρ(A) ∩
⋂
n∈N ρ(An) and a bounded operator R ∈ L (X)

with dense range, such that for all x ∈ X,

lim
n→∞

‖EnR(λ0, An)Pnx−Rx‖ = 0.

(b) There exists a strongly continuous semigroup (T (t))t≥0 on X such that for
every x ∈ X and t ≥ 0

lim
n→∞

‖EnTn(t)Pnx− T (t)x‖ = 0

uniformly on bounded t-intervals.

Proof. The implication (b) ⇒ (a) easily follows from Theorem 2.1. For
the converse, assume that assertion (a) holds. First of all, we notice that
{R(λ) : Re(λ) > 0} with

R(λ)x := lim
n→∞

EnR(λ,An)Pnx, x ∈ X,

is a pseudoresolvent on X such that∥∥∥λkR(λ)k
∥∥∥ ≤M, k ∈ N.(8)

Recall from [17, Chapter III, Def. 4.3] that {R(λ) : Re(λ) > 0} is a pseudore-
solvent if R(λ) is a bounded linear operator for all λ > 0 with Re(λ) > 0 and
the equality

R(λ)−R(µ) = (λ− µ)R(λ)R(µ),

holds for all λ, µ ∈ C with Re(λ) > 0 and Re(µ) > 0.

To see that {R(λ) : Re(λ) > 0} is indeed a pseudoresolvent, we slightly
modify [17, Chapter III, Prop. 4.4]. In fact, consider the set

Γ :=
{
λ ∈ C : Re(λ) > 0, lim

n→∞
EnR(λ,An)Pnx exists for all x ∈ X

}
.

By the assumptions of assertion (a) we have Γ 6= ∅. By [17, Chapter IV,
Prop. 1.3], for a given µ ∈ Γ there is

EnR(λ,An)Pn =
∑
k∈N

(µ− λ)kEnR(µ,An)k+1Pn,

whenever |µ− λ| < Re(µ), where the convergence is with respect to the op-
erator norm and uniform in {λ ∈ C : |µ− λ| < αRe(µ)} for each α ∈ (0, 1).
By the fact that supn∈N ‖En‖ < ∞ and supn∈N ‖Pn‖ < ∞ we see that
EnR(λ,An)Pnx converges for all λ satisfying |µ− λ| < αRe(µ) when n→∞.
We conclude that Γ is an open set in C+ := {λ ∈ C : Re(λ) > 0}. On the
other hand, let λ with Re(λ) > 0 be an accumulation point of Γ. For α ∈ (0, 1)
one can find µ ∈ Γ such that |µ− λ| < αRe(µ). By what we have seen before,
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λ ∈ Γ proves that Γ is also closed in C+. Since C+ is a connected space, we
conclude that the only subsets which are both open and closed are ∅ and C+.
Since we observed that Γ 6= ∅, we have Γ = C+.

Finally, we have to show that (8) holds. To do so, we observe that we have
the following estimate for λ > 0 due to the assumption that An ∈ G(M,ω,Xn)
for each n ∈ N

‖λR(λ)‖ ≤ lim
n→∞

‖En‖ · ‖λR(λ,An)‖ · ‖Pn‖ ≤M1 ‖R(λ,An)‖ ≤M1M2,

where M1 := supn∈N ‖En‖ · supn∈N ‖Pn‖ ≥ 0 and M2 ≥ 0 a constant such
that ‖λR(λ,An)‖ ≤ M2, which exists since An ∈ G(M,ω,Xn) for each n ∈ N
as follows from the Hille–Yosida generation theorem for strongly continuous
semigroups, cf. [17, Chapter II, Thm. 3.8]. This finally implies (8).

Since by construction Ran(R(λ)) = Ran(R), which is dense by assumption,
we conclude that there exists a densely defined operator (B,D(B)) on X such
that R(λ) = R(λ,B) for λ > 0, cf. [17, Chapter III, Cor. 4.7]. Hence, the
operator (B,D(B)) satisfies the following estimate∥∥∥λkR(λ,B)k

∥∥∥ ≤M, k ∈ N,

yielding a bounded strongly continuous semigroup (T (t))t≥0 on X. Applying
Theorem 2.1 again, we conclude that assertion (b) is true.

Remark 3.2. Notice that Theorem 2.1 allows to approximate a given semi-
group by other semigroups. However, the assertion of Theorem 3.1 is stronger
in the sense that one has to know not that there exists a semigroup on the
space X but that one has approximants which behave well in the sense that
they eventually converge to one semigroup.

4. Example. In this final section we consider an example of a growing
sequence (Gn)n∈N of networks. We only show the first two elements G1 and
G2 of the sequence since it follows an obvious pattern.

v1 v2

v3v4

e1

e2

e3

e4
e5

Figure 1. Graph of G1

v1 v2

v3v4

v5

v6

e1

e2

e3

e4
e5

e6

e7

e8

e9

Figure 2. Graph of G2

We assume that the velocities are all equal to 1. The corresponding
weighted (transposed) adjacency matrix of the line graph B1 and B2 of the
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graphs G1 and G2 are given by

B1 =


0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 1
1 0 0 0 0


and

B2 =



0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1
0 0 1 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0


=



B1

0 0 0 0
0 0 0 0
0 0 1 1
0 0 0 0
0 0 0 0

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0


Since we assumed that the velocities are all equal to 1, we may use the explicit
expression of the transport semigroups (T1(t))t≥0 and (T2(t))t≥0 on the net-
works G1 and G2, respectively, cf. [15, Sect. 3] or [9, Sect. 18.2]. In particular,
one has

Ti(t)f(s) = Bki f(x+ t− k),

for k ∈ N such that k ≤ t+x < k+1 and f ∈ L1
(
[0, 1] ,C|E(Gi)|

)
where i = 1, 2.

By this, one observes that (T1(t))t≥0 is indeed a restriction of (T2(t))t≥0.
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