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A b s t r a c t   

The aim of this study is to develop a numerical model of a steam pipeline. The energy 

conservation equations for the pipeline wall and steam are solved using the finite volume 

method (FVM). The transient temperature of the pipeline wall, steam temperature and thermal 

stresses can be calculated using the model developed in the paper.  
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S t r e s z c z e n i e   

Celem artykułu jest opracowanie modelu numerycznego rurociągu parowego. Równania 

zachowania energii dla ścianki rurociągu i pary są rozwiązywane przy użyciu metody 

objętości skończonych (MOS). Nieustalona temperatura ścianki rurociągu, temperatura pary 

oraz naprężenia cieplne mogą być obliczone za pomocą modelu przedstawionego w artykule.  

Słowa kluczowe:  nagrzewanie rurociągu, temperatura nieustalona, model numeryczny, 

naprężenia cieplne 
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1.  Introduction  

High-temperature steam pipelines in steam boilers are used to transport superheated 

steam from the boiler to the turbine. During start-ups and shutdowns of the power units, as 

well as during load changes, high thermal stresses can occur in the pipeline wall and in 

pipeline fittings. Particularly high stresses occur in T-pipes and Y-pipes. Additionally, 

thick-walled sections with complex shapes such as valves and gate valves are exposed to 

large thermal loads. Both high thermal stresses and time-variable thermal stresses may lead 

to the premature damage of pipelines in the form of cracks. Knowledge of the range of 

stresses in critical components allows conducting the startup of the boiler in a way that 

provides a safe and long life of the boiler and turbine. Issues relating to the direct and 

inverse calculation and monitoring of thermal stresses in cylindrical components are the 

subjects of current research [1, 2]. In this paper, transient temperature and thermal stress 

distributions in a pipeline connecting the boiler and turbine will be determine. The finite 

volume method (FVM) is used to determine the transient temperature of the steam and 

pipeline wall. Thermal stresses are also calculated.  

2.  Mathematical formulation  

A scheme of the pipeline linking the boiler with a turbine in a power unit with a capacity of 

120MW is depicted in Fig. 1. 

The governing equations for the steam are:  

 

 mass conservation equations 
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 energy conservation equations 
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Fig. 1. The pipeline connecting the boiler and turbine 

The transient heat conduction equation for the pipeline wall is 
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The derivative 𝜕𝜌/𝜕𝑡 in Eq. (1) was assumed to be equal zero since the changes in 

pressure along the length of the pipeline are small and consequently the steam density can 

be assumed constant. The assumption  𝜕𝜌/𝜕𝑡 = 0 in Eq. (1) implies that mass flow rate 𝑚̇ is 

constant over the tube length, i.e.  

 constm   (5) 

The velocity of the steam in each cross-section of the pipeline can be calculated from 

the formula 
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Considering that 𝜕𝑚̇/𝜕𝑡 = 0, the momentum conservation equation (2) reduces to 
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Using Eq. (7), the steam pressure can be determined along the path flow. 

Neglecting the thermal expansion of the steam (β = 0), the heat generation due to 

friction and the axial thermal conduction in the steam, the energy conservation equation (3) 

for the steam simplifies to the form 
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The heat conduction equation (4) in the cylindrical coordinate system is  

     









































z

T
T

zr

T
Tr

rrt

T
c w

ww

w

ww

w

pww

1
 (9) 

The system of partial differential equations (8, 9) is subject to the following initial and 

boundary conditions: 
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In addition to the conditions (10 ÷ 16), the pressure and mass flow rate of the steam are 

known at the inlet of the pipeline.  

The initial-boundary value problem (8 ÷ 16) was solved using the finite volume method 

(FVM) [3, 4]. 

First, the computational domain, i.e. the wall and the area occupied by the steam, was 

divided into finite volumes (Fig. 2). 
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Fig. 2. Division of the computational domain into finite volumes 

Energy balance equations were formed for each control volume lying both in the wall 

and the steam. 

For example, the energy balance equation for node i is set for the control volume 

located in the computational area of the wall (Fig. 3). 

 

 

Fig. 3. Wall temperature at the node i and adjacent nodes i-1, i+1, i-n-1, i+n+1 

The transformation of Eq.(9) gives 
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In a similar manner, the heat balance equation for the i-th control volume located in the 

region occupied by steam can be set 
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The heat transfer coefficient α on the inner surface of the pipeline was determined using 

Gnielinski’s correlation [5] 
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where the friction factor ξ is given by the Colebrook correlation 
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The Reynolds number, Prandtl number, and Nusselt number are defined as  
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After the formulation of all balance equations for the wall and steam, a system of 

ordinary differential equations for node temperatures is obtained. The number of equations 

for the nodes lying in the wall area is (m + 1)(n + 1), while for the steam, it is (m + 1). 

The system of ordinary differential equations was solved by the Runge-Kutta method of 

the fourth order. 

To ensure the stability of determining the wall and steam temperature the Fourier 

stability condition for the wall and Courant-Friedrichs-Levy condition for the steam should 

be satisfied. The smallest allowable time step Δtmax results from the Courant-Friedrichs-

Levy condition [6] 
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Thermal stresses can be determined after calculating the transient temperature 

distribution in the wall. 
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Considering that the axial component of the temperature gradient 𝜕𝑇𝑤/𝜕𝑧 is very small, 

only the radial temperature drop in the wall of the pipeline is taken into account. Assuming 

that the ends of the pipeline are free to lengthen, the thermal stress components are given by 

the following formulas [7]: 
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where the mean wall temperature T(t) 
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where 
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Radial stresses σr are equal to zero on the inner and outer pipeline surfaces – 

circumferential σφ and axial stresses σz are equal on these surfaces. 

3.  Results 

The paper presents the results of calculations concerning the pipeline connecting the 

boiler OP-380 with a steam turbine. 

The steam pipeline is made of low-alloy steel 13HMF (C-0.18%, Mn-0.40%, Si-0.35%, 

Pmax-0.040%, Smax-0.040%, Cumax-0.25%, Cr-0.60%, Nimax-0.30%, Mo-0.65%, Almax-

0.020%). The main dimensions are: outer diameter dout = 0.324 m, wall thickness 
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b = 0.04 m, and length L = 45 m. The physical properties of steel are a function 

temperature: 

 3825 101754104660012049548 T.T.T..    (29) 

 3141195 108532101933104523103411 T.T.T..a    (30) 

where the thermal conductivity λ is in W/(m·K), the thermal diffusivity a is in m
2
/s, and the 

temperature T is in °C.  

The temperature of the wall in the radial direction is computed in five evenly-spaced 

nodes (n = 4). The number of nodes in the axial direction is m + 1 = 21. The calculation of 

the transient temperature of the fluid and pipeline wall was carried out for a different 

number of finite volumes across the thickness of pipe wall. 

Inspection of the results shown in Fig. 4 illustrates that even at four finite volumes, i.e. 

for the five nodes evenly distributed over the wall thickness, satisfactory accuracy of the 

calculations is obtained. 

Almost identical results are obtained for the division of the pipe wall into nine (10 

nodes) or nineteen finite volumes (20 nodes) as were obtained for the division into four 

finite volumes (5 nodes) Fig. 4. 

The temperature of the wall in the radial direction is computed in five evenly-spaced 

nodes (n = 4). The number of nodes in the axial direction is m + 1 = 21. 

 

Fig. 4. The temperature of the inner and outer surface of the pipeline at the inlet z = 0 m (a) and outlet 

z = 45 m (b), as a function of time t for various numbers of control volumes n across the thickness of 

the pipeline wall 

 

The pressure is  p = 13.9 MPa. The mass flow rate of the steam is 𝑚̇ = 105.55 kg/s. 

The initial temperature of the pipeline and steam is Tw0 = 20°C. At time t > 0, the 

temperature of the steam pipeline inlet increases abruptly to a constant temperature of 

T0 = 540°C.  
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Selected modelling results are shown in Figures 5 ÷ 9. The steam temperature as a 

function of time at nodes no. 2 (z = 2.25 m), no.10 (z = 20.25 m), and no. 20 (z = 42.75 m) 

are displayed in Fig. 5.  

The analysis of the results shown in Fig. 5 shows that after about 600 seconds, steam 

temperature reaches a steady state. 

 

 

Fig. 5. Steam temperature as a function of time at nodes no. 2 (z = 2.25 m), no. 10 (z = 20.25 m), and 

no. 20 (z = 42.75 m) 

Fig. 6 illustrates steam temperature changes over the length of the pipeline at time 

points 10s, 60s, 240s, and 600s. 

 

 

Fig. 6. Steam temperature changes over the length of the pipeline at time points 10 s , 60 s, 240 s, and 

600 s 

Fig. 7 depicts the pipeline wall temperature in two different cross-sections as a function 

of time. The wall temperature is shown in five uniformly spaced nodes. Nodes 11 and 101 
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are located on the inner surface while nodes 15 and 105 lie on the outer surface of the 

pipeline. 

At the beginning of the heating process, the temperature differences over the thickness 

of the wall are large but rapidly decrease over time (Fig. 7). 

Circumferential stresses on the inner and outer surface of the pipeline as a function of 

time are presented in Fig. 8.  

 

 

Fig. 7.  Wall temperature in tree cross-sections as a function of time a) z = 2.25 m, b) z = 42.75 m 

The analysis of the results presented in Fig. 8 shows that the inner surface is exposed to 

high compressive stresses while on the outer surface, substantially lower tensile stresses 

occur.  

High thermal stresses in the pipeline are caused by a high jump of 520 K in steam 

temperature at time t = 0. 

 

 

Fig. 8.  Circumferential thermal stress on the inner (nodes 11 and 96) and outer (nodes 15 and 100) 

surfaces of the pipeline as a function of time; a) z =2.25 m, b) z = 42.75 m 

b) a) 

a) b) 
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The largest absolute value of stress occurs at the beginning of heating and tends to zero 

over time Fig. 8. 

4.  Summary 

The mathematical model of the steam pipeline heating developed in the paper allows 

determining the temperature of the steam and the pipeline wall as a function of position and 

time. It is possible to determine transient thermal stresses caused by the temperature 

difference across the wall thickness using the developed model. Examples of calculations of 

the steam temperature, wall temperature and circumferential thermal stresses on the inner 

and outer surface of the pipeline have been presented. The calculation tests performed in 

the paper show that the developed mathematical model can be used to simulate the actual 

pipeline heating or cooling in a power plant. 

N o m e n c l a t u r e  

a  – thermal diffusivity a = 𝜆/(c ρ), m
2
/s 

b  – wall thickness, m 

A  – cross-section area, m
2
  

cp  – specific heat capacity, J/(kg·K) 

din  – inner diameter, m 

dout   – outer diameter, m 

E  – modulus of elasticity (Young’s modulus), Pa  

f  – fluid temperature at the inlet of the pipeline, °C 

g  – gravity acceleration, m/s
2 

L  – length of the pipeline, m 

(m+1)  – number of nodes in the longitudinal direction 

𝑚̇  – fluid mass flow rate, kg/s   

(n+1)  – number of nodes in radial direction 

Nu  – Nusselt number 

p  – absolute pressure, Pa 

Pr   – Prandtl number 

r  – radius, m 

rin  – inner radius, m 

rout  – outer radius, m 

Re  – Reynolds number 

T  – temperature, °C or K 

t  – time, s 

𝑇̅(𝑡)  – mean temperature on the wall thickness, °C or K 

𝑇̅(𝑟, 𝑡)  – mean temperature of the wall between rin and r, °C or K 

Uin  – inner perimeter of the tube, m 

w  – fluid velocity, m/s 
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Greek symbols 

α  – heat transfer coefficient, W/(m
2
·K) 

β  – volumetric thermal expansion coefficient, 1/K 

βT  – linear thermal expansion coefficient, 1/K 

Δr  – radial step, m 

Δt  – time step, s 

Δz – axial step, m 

λ – thermal conductivity, W/(m·K)  

μ – dynamic viscosity, Pa·s 

ν – Poisson’s ration 

ξ – friction fraction 

ρ – density, kg/m
3 

σr   – radial stress component, Pa 

σφ  – circumferential stress component, Pa 

σz  – axial stress component, Pa 

φ – inclination angle of the pipeline with respect to the horizontal plane 

 

Subscripts 

i  – node number 

in  – inner surface 

out  – outer surface 

w  – wall 
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