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A b s t r a c t

The paper refers to the kinetics of batch adsorption in a perfect mixing reservoir. Systems 
with a linear adsorption equilibrium, spherical adsorbent pellets and mass transfer resistance 
in both phases are considered. An approximate kinetic model, based on approximation with 
the  use of continued fractions, was used in calculations. It was found that the model gives 
results consistent with the exact solution.
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S t r e s z c z e n i e

Artykuł dotyczy kinetyki adsorpcji okresowej w zbiorniku z idealnym mieszaniem. Rozważo-
no układy z liniową równowagą adsorpcyjną, kulistymi ziarnami adsorbentu i z oporami prze-
noszenia masy występującymi w obu fazach. W obliczeniach wykorzystano przybliżony model 
kinetyczny oparty na aproksymacji ułamkami łańcuchowymi. Stwierdzono, że model ten daje 
wyniki zgodne z rozwiązaniem ścisłym.

Słowa  kluczowe:  kinetyka adsorpcji, przybliżone równania kinetyczne
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Nomenclature

Bi	 –	 Biot number
C	 –	 adsorbate concentration in the fluid phase [kg/m3]
Ds	 –	 solid diffusivity [m2/s]
K	 –	 adsorption equilibrium constant
L	 –	 characteristic linear dimension (radius for a sphere) [m]
m	 –	 mass [kg]
qm	  – 	 adsorbate concentration in solid phase [kg/kg]
Q	 – 	 dimensionless concentration of the adsorbate in solid phase
t	 –	 time [s]
V	 –	 volume [m3]
Y	 –	 dimensionless adsorbate concentration in fluid phase

Greek symbols
a	 –	 adsorbent load factor
h	 –	 dimensionless space coordinate
t	 –	 dimensionless time

Indexes
0	 –	 initial value
1	 –	 pellet surface
–	 –	 average value

1.  Introduction

Three different methods are used in order to conduct studies on adsorption kinetics 
in a liquid phase [1]. These methods are presented in Fig. 1.

In the first method (Fig. 1a), adsorbent pellets are put inside a reservoir containing 
a solution with the adsorbate. The content of the reservoir is stirred. In the case of the second 
method (Fig. 1b), the adsorbent is put in a mesh basket attached to a stirrer. The stirrer is 
rotated and a solution with the adsorbate is introduced into the reservoir. The third method 
(Fig. 1c) consists of putting an amount of adsorbent into a small column connected with the 
reservoir that contains the adsorbate. The reservoir is connected to the column by a closed 
loop. The contents of the loop are circulated and flow through the bed of the adsorbent with 
such a speed that the adsorption time is much greater than the residence time of adsorbate 
in  the loop. In this way, the flow rate of the solution containing the adsorbate can be 
controlled so that the heat of the adsorption can be effectively removed and the process can 
be conducted under isothermal conditions.

In all cases, the saturation of pellets goes together with a reduction of the adsorbate 
concentration in the solution over time. This results from the finite volume of the solution 
(reservoir). Hence, the driving force of the process decreases because of two factors: 
the decreasing concentration of adsorbate in the solution; the increasing concentration 
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of adsorbate in the pellets. An extreme case is when the volume of the solution is infinitely 
large. In this case, the adsorbate concentration in the solution does not change over time.

For adsorption in a finite volume reservoir, the adsorbent load factor is the main parameter. 
It is defined in the following way:

	 α = =
VC
m q

V
m Ks m s

0

0
	 (1)

where:
V	 –	 the volume of the solution, 
C0	 –	 initial concentration of the adsorbate in the solution;,
ms	 –	 mass of adsorbent pellets,
qm0	 –	 concentration of adsorbate in pellets in equilibrium with C0,
K	 –	 adsorption equilibrium constant (= qm0/C0).

When the solution volume is infinite, then a → ∞.
The aim of this work is to analyze the suitability of the application of the approximate 

kinetic model for adsorption in a finite volume reservoir. The results obtained on the basis 
of  the approximate model presented in [2] and [3] were compared with the results of the 
exact analytical solution. Adsorption systems with linear equilibrium are considered in the 
paper. The presented analysis refers to spherical pellets.

2.  Computation expressions

2.1.  Equation of adsorption and diffusion

It is convenient to present the equation of adsorption and diffusion in the dimensionless 
form with the use of dimensionless quantities. The dimensionless concentration of the 
adsorbate in the pellet is defined in the following way:

Fig.  1.  Studies on adsorption kinetics: 1 – stirrer, 2 – adsorbent pellets, 3 – liquid solution 
containing an adsorbate
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The average concentration is defined analogically:

	 Q
q
q
m

m
=

0
	 (3)

where:
qm 	 −	 concentration averaged over pellet volume.

The dimensionless space coordinate h is introduced:

	 η =
x
L

	 (4)

and the dimensionless time t:

	 τ =
D t
L
s
2 	 (5)

Symbol Ds in the foregoing definitions denotes solid diffusivity, and L – characteristic linear 
dimension (radius for a sphere). The equation of diffusion and adsorption has the form:

	 ∂
∂

=
∂
∂

+ ⋅
∂
∂

Q Q Q
τ η η η

2

2
2 	 (6)

For pellets that do not contain the adsorbate, the initial condition has the form:
	 τ = =0 0, Q 	 (7)

One of the boundary conditions refers to the symmetry of the pellet:

	 η
η

=
∂
∂

=0 0, Q 	 (8)

The boundary condition for pellet surface takes the form:

	 η
η

=
∂
∂

= −∗1 1 1, [ ]Q Q QBi 	 (9)

The value of Q1
∗  is the solid dimensionless adsorbate concentration in equilibrium with 

the  actual bulk concentration in liquid phase, Q1 is a dimensionless concentration on the 
pellet surface, and Bi – Biot number.

2.2.  Adsorbate balance in the fluid phase

When the reservoir with fluid and adsorbent pellets has finite volume, concentration 
of  adsorbate in the solution changes during adsorption. Not only a balance equation for 
the  adsorbate in solid phase, but also a balance equation in fluid phase should be taken 
into account in the model of the process. The equation has the form:
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	 dY
d

dQ
dτ α τ

= − ⋅
1 	 (10)

where the dimensionless concentration in the fluid phase is defined in the following way:

	 Y C
C

=
0

	 (11)

The initial condition for the fluid phase:
	 τ = =0 1, Y 	 (12)

The solution to equation (10) with initial conditions (7) and (12) have the form:

	 α( )1− =Y Q 	 (13)

For t → ∞, the concentrations of adsorbate in the pellet and the fluid are in equilibrium. 
According to the definition of dimensionless concentration, the following relationship 
is valid for linear equilibrium:

	 Q Y∗ = 	 (14)

It results from equations (13) and (14) that:

	 lim lim
τ τ

α
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	 (15)

2.3.  Exact kinetic model

The results of numerical calculations were compared with results obtained from 
the analytical solution of the system of equations (6) and (10) with conditions (7), (8), (9) 
and (12). In this case, the analytical solution was given by Huang and Li [4]. The expression 
has the form:
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where mi are consecutive positive roots of the algebraic equation:

	 tan
( )
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=
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3
1 3
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2
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	 (17)

Values of the roots mi depend on the parameter α and also on the Biot number. In order 
to determine the location of the first few roots for different combinations of the values of α 
and Bi, graphs of functions y1 and y2 presented in Fig. 2 were plotted. These functions are 
defined in the following way:
	 y1 = tanµ 	 (18a)
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The graph of function y2 depends not only on the parameter a, but also on Bi. 
The  abscissas  of the intersections of functions y1 and y2 correspond to the solutions 
of equation (17), because  the equality y1 = y2 is equivalent to this equation. Values of the 
first six roots of equation (17) are presented in Table 1.

T a b l e  1
Values of solutions to equation (17)

a Bi m1 m2 m3 m4 m5 m6

1/9

5 4.3172 7.3235 10.0032 12.3015 14.8172 17.6935
20 4.3344 7.4383 10.4685 13.4484 16.3765 19.2553

100 4.3385 7.4596 10.5306 13.5867 16.6374 19.6864
∞ 4.3395 7.4645 10.5437 13.6133 16.6831 19.7565

1

5 3.3499 5.6845 8.4194 11.3837 14.4323 17.5171
20 3.6411 6.4247 9.2826 12.2069 15.1802 18.1894

100 3.7100 6.6329 9.6322 12.6749 15.7411 18.8207
∞ 3.7264 6.6814 9.7156 12.7927 15.8924 19.0049

9

5 2.6872 5.3866 8.3144 11.3398 14.4105 17.5049
20 3.0939 6.0318 9.0156 12.0243 15.0532 18.0992

100 3.2116 6.2736 9.3664 12.4680 15.5733 18.6807
∞ 3.2410 6.3353 9.4599 12.5928 15.7291 18.8672

Fig.  2.  Location of solutions to equation (17)
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2.4.  Approximate kinetic model

In order to describe transient mass (also heat) transfer, it is useful to use such an 
approximation that consists in elimination of a space  coordinate in a body (pellet). The 
process is described with an ordinary differential equation and the resulting expression 
is called the approximate kinetic equation. The approximate model used in this paper is 
based on the use of the Laplace transformation for the diffusion equation, rearrangement 
of  the  solution to form a continued fraction and truncation of the obtained expression to 
such a number of terms that ensures the required accuracy. Such a model was presented for 
the first time by Lee and Kim [2] for systems without external resistance to mass transfer, 
and the model for systems with resistance in both phases was presented in work by the authors 
of  this paper [3]. The considered approximate model refers to the basic shapes of pellets: 
infinite slab, infinite cylinder and sphere.

The main advantage of approximate kinetic equations is the fact that they are ordinary 
differential equations (not partial equations). This results in the reduction of the calculation 
time when compared to the exact calculations. This is important when a kinetic equation 
is solved repeatedly in a complex procedure.

In order to determine the adsorbate concentration in the pellet as a function of time with 
the use of the approximate kinetic equation, the following system of equations must be 
solved [3]:

	 x d Ax d b= +− − ∗1 1
1Q 	 (19)

where vectors x x,  and b are defined in the following way:

	 � � � … �x = [ ]x x xn
T

1 2 	 (20)

	 x = [ ]x x xn
T

1 2  	 (21)

	 b = [ ]3 3 3

T 	 (22)

Elements of matrix A are defined as:
	 A p q j iij i j= − >for 	 (23a)

	 A p q j iij j j= − <for 	 (23b)

	 A p q j iij i i= − =for 	 (23c)

where pi and qi  have the forms:

	 p i ii = +2 2 	 (24)

	 q ii = +4 1 	 (25)

	 d
q

j iij
j=
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	 d
q

j iij
j= + =1
Bi

for 	 (26b)
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The number of equations (19) is the order of approximation; the higher the order is, 
the higher the accuracy of the approximation.

Average dimensionless concentration of adsorbate in an adsorbent pellet after time t 
is defined by the following equation [2]:

	 Q = qx 	 (27)

where:
	 q = [ ]q q qn1 2  	 (28)

Substituting Q Y1
∗ =  into (19) and considering equation (13) one gets:

	 x d Ax d b= + −




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	 (29)

After transformation, it was obtained that:

	 x d A bq x d b= −





 +− −1 11

α
	 (30)

The following initial condition is required to solve the system of equations (30):
	 τ = =0 0, x 	 (31)

This condition refers to the pellet that does not contain the adsorbate at the beginning of 
the process. As a result of solving system (30), a vector function x(τ) is obtained. On the basis 
of relation (27) the scalar function Q( )τ  is determined.

The algorithm was as follows. Elements of matrix A and vectors b, q and d were 
determined for given values of Bi and n. Then the system of equations (30) with initial 
condition (31) is solved. Finally, the function Q( )τ  was obtained from formula (27).

3.  Results of calculations

Comparison of results obtained with the use of the approximate and exact kinetic models 
for adsorption in a finite volume reservoir with mass transfer resistance in both phases is 
presented in Fig. 3a, b and c. Solid lines refer to the approximate model. Dots denote values 
found with the use of the exact solution. The figures present results for different values 
of parameter a.

Concentrations in the fluid phase decrease, while in the pellets, they increase. After some 
time, the system reaches equilibrium and the dimensionless concentrations become equal 
to each other. Values of dimensionless equilibrium concentrations in both phases depend on 
the values of a. For instance, for Fig. 3a that refers to a = 1/9, it is easy to calculate from 

formula (15) that for t → ∞, it is Y Q= =
+

=
1 9
1 1 9

0 1/
/

. .

It can be seen from the figures that the greater value the Biot number has, the faster the 
system reaches equilibrium. It results from this fact that for a given value of diffusivity 
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in a pellet, a smaller value of external resistance corresponds to greater Bi. The reduction 
of  the external resistance, while the internal one is constant, results in the decrease of the 
total resistance to mass transfer.

It can also be seen from these figures that the approximate model gives results very 
similar to the exact results. Some deviations can be observed only for a high Biot number, 
a low adsorbent load factor and short adsorption times.

Fig.  3a.  Adsorption in a finite volume reservoir for a = 1/9

Fig.  3b.  Adsorption in a finite volume reservoir for a = 1
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The agreement between values obtained on the basis of the approximate and exact models 
confirms that the approximate model based on the continued fractions approximation can 
be used in the design and modeling of batch adsorption in a reservoir.

4.  Conclusions

The approximate model for adsorption kinetics based on continued fractions is much 
more convenient to use than exact models based on solutions in the form of an infinite series. 
The obtained results do not differ much from the results obtained with the use of the exact 
methods.

The project was funded by The National Science Centre (Poland) on the basis of the decision  
No. DEC-2011/03/N/ST8/04634.
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