
*  Piotr Zabawa (pzabawa@pk.edu.pl), Department of Physics, Mathematics and Computer Science,
Cracow University of Technology.

TECHNICAL TRANSACTIONS
FUNDAMENTAL SCIENCES

1-NP/2016

CZASOPISMO TECHNICZNE
NAUKI PODSTAWOWE

PIOTR ZABAWA*

THE SCOPE MANAGEMENT PROBLEM
IN JAVA ENTERPRISE EDITION FRAMEWORKS

PROBLEM ZARZĄDZANIA ZAKRESEM
WE FRAMEWORKACH JAVA ENTERPRISE EDITION

A b s t r a c t
The paper focuses on the problem of managing the scope understood as managing the multiplicity
of elements that constitute the application context for Java Enterprise Edition (Java EE) frameworks.
The subject of constructing graph modeling languages is the basis for scope management considerations.
The problem can be demonstrated while the frameworks are superposed, which is necessary for meta-
-modeling compliant to the Context-Driven Meta-Modeling (CDMM) approach. The realization of
the approach is based on Spring and AspectJ frameworks, which offer incompatible concepts of scope
management. As part of the analysis the scope management problem in Java EE frameworks application
context was identified, formulated, its area was defined and the sketch of the generalized concept of scope
management elaborated and implemented by the author in relation to Java EE frameworks was presented..

Keywords:  modeling language, meta-model, graph, application context, java bean, java enterprise
framework, Spring, aspect-oriented programming, AspectJ

S t r e s z c z e n i e
Artykuł ten koncentruje się na problemie zarządzania zakresem rozumianym jako zarządzanie krotnościa-
mi elementów składających się na kontekst aplikacji we frameworkach Java Enterprise Edition (Java EE).
Punktem odniesienia dla rozważań dotyczących zarządzania zakresem jest zagadnienie konstruowania
grafowych języków modelowania. Problem ten ujawnia się przy składaniu ze sobą tych frameworków
niezbędnym w meta-modelowaniu zgodnym z podejściem Context-Driven Meta-Modeling (CDMM). Jego
realizacja oparta jest na frameworkach Spring i AspectJ, w których koncepcje zarządzania zakresem nie są
zgodne. W ramach analizy zidentyfikowano problem zarządzania zakresem w kontekście aplikacji Java EE,
sformułowano ten problem, określono jego zakres oraz zaprezentowano zarys opracowanej i zrealizowanej
przez autora uogólnionej koncepcji zarządzania zakresem w odniesieniu do frameworków Java EE.

Słowa  kluczowe:  język modelowania, metamodel, graf, kontekst aplikacji, ziarno java, framework java
enterprise, Spring, programowanie aspektowe, AspectJ

DOI: 10.4467/2353737XCT.16.137.5716

30

1.  Introduction

Scope management in a broad sense comprises managing the number of instances
during the process of constructing them, that is, at run-time. The conventional approach
of programmers associates the responsibility of multiplicity determining mentioned above
with a class. This is apparent, among other things, in singleton (anti)pattern. However,
in Java EE frameworks this responsibility is moved to the framework. A bean multiplicity
in the framework can be specified by the application context. The bean, on the other hand,
reflects the way the framework (and in the consequence the software system implemented
in the framework) perceives classes. The bean contains more information than the class,
among other things just information about multiplicity of the bean. This additional information
stored in the bean is specified in the application context file based on which the framework
creates bean instances (and thus class instances). A particular class may occur once as the
instance of one bean the scope of which is specified as singleton and, at the same time in
the same application, the same class may occur multiple times as instances of other bean
(associated to the same class) the scope of which is defined as prototype. In contrast to meta-
-models (modeling languages) constructing this solution turns out not to be sufficient due to
the high complexity of graph meta-models. Also relating the scope to the bean only turns out
not to be sufficient while applying it to graph modeling languages. That is why the need to
enrich the current mechanism occurred.

In scientific papers [12] as well as in the IT industry literature [5] and in industry standards
[6, 13, 19] meta-models are created statically – modeling languages are defined at compile
time. However, as research results achieved by the author show [20], it is possible to define
modeling languages at run-time. The application context mentioned above can be used to
specify graph-like interrelations between language elements.

Further in the paper it is shown that when the scope notion is addressed to modeling
languages constructed at run-time, this notion should be addressed both to Java EE beans
and to classes. Moreover, bean sets as well as sets of classes involved with relationships
interrelating particular bean sets play an important role in meta-modeling.

A characteristic feature of the CDMM approach [21] is constructing meta-model graph
from elements consisting of meta-model entity classes and meta-model relation classes.
The graph is constructed from Java EE beans defined for these classes, thus from entity
beans and relation beans. Entity beans are placed in graph nodes while relation beans are
placed in graph edges. In such an approach the application context XML file constitutes the
definition of the meta-model graph. However, in such approach the correct management of
relation instances quantity during relation beans injections into entity beans is an important
problem. It is especially evident with reference to N-ary relationships [4, 8, 9, 14, 15, 17],
relations that join more than two graph nodes at the same time. In the case of such relations
the mechanism of injecting the same relation object (relationship bean instance or relation
class instance) to all nodes involved with this relation must be provisioned. It appears,
however that the possibilities offered by Java EE frameworks are not sufficient in the area
of multiplicity management, as they are focused on management of multiplicities of singular
beans only. It is worth noticing that the implementation of N-ary relations and the so called
“arity problem” is difficult while constructing graph modeling languages. It is shown by

31

documented problems visible in Object Management Group (OMG) standards, like Meta-
-Object Facility (MOF) – the definition of N-ary association was omitted here because of
too much difficulty [1, 13], then the implementation of this relationship as a separate notion
in Unified Modeling Language (UML) standard was retired [19] (it is represented on the
diagramming and not on the modeling level, so the code cannot be generated from UML
modeling tools) [7]. The root cause for these problems and limits is the lack of representation
for relationships in all sources known from scientific literature, IT industry publications
and software modeling tools documentation [3, 10, 11, 18] However, these problems can be
solved in CDMM technology as the relations have their representation in it.

It should be pointed out that the scope management problem with reference to the CDMM
technology concerns such meta-model elements only which are involved in representing
relations, so they play the role of edges of the graph being the representation of a modeling
language. Edge (meta-model relation) classes play the role of static responsibilities for node
(meta-model entity) classes. These responsibilities are injected to entity classes as default
implementations of interfaces of these relation classes with the help of dependency injections
(Spring) and with the help of aspect-oriented inter-type declarations (AspectJ).

2.  Scope Management in Spring Framework

The Spring framework offers scope management limited to the Spring beans. The bean
is the way Spring as well as the Spring-based application (more generally – a software
system), sees Java POJO classes. The object model in Spring is enriched in comparison
to Java object model by many attributes that can be associated to beans. One of them is
the “scope” attribute of a bean. According to the documentation of Spring framework [16]
the scope attribute can have one of the following values: “singleton”, “prototype”. The
“singleton” attribute informs Spring that the bean with this attribute value can have exactly
one instance – the bean and not the POJO class behind the bean. The “prototype” attribute
informs that the bean with this attribute can be multiplied as needed.

Static information about beans is defined in Spring application context XML file.
As long as bean instances are created from the application through the Spring Application
Programming Interface (API) the solution offered by the framework is sufficient.

When the instance of a particular bean is created from the Spring-based application
through the API of Spring the constructor of the class which is behind the bean is called by
default. However, Spring offers also another mechanism, which is applied in the approach
presented in the paper. The bean instances may be created through factories. This approach
is much more flexible and was originally added to Spring to simplify application of
creational design patterns.

3.  Scope Management Problems in AspectJ with Spring

The situation described in section 2, when Spring is used as the only framework and
when bean instances are created from the Spring-based application is simple and does not
trigger any problems. However, when the Spring is superposed with other framework and

32

this additional framework influences or even takes control over bean instances creation
process, some problems appear. They result from the fact that the additional framework
may take responsibility for bean instance creation from the Spring-based application to the
additional framework. Moreover, the additional framework may delegate this responsibility
back to Spring and to application context. And this is the case when Spring is superposed
with AspectJ [2].

The Spring framework is integrated to Aspect Oriented Programming (AOP) via two
Spring sub-projects: SpringAOP [16] and Spring+AspectJ [16]. The first one constitutes
a limited implementation of AOP concepts and is not sufficient for the CDMM-F
implementation. However, the second project offers full AspectJ functionality and is
sufficient for the application of the CDMM concept. The rest of the paper is limited to the
full integration of Spring with AspectJ.

The implementation of CDMM-F is based on extensive usage of AOP concept
applicable to influencing class hierarchies, thus inter-type declarations, and more specifically,
declare-parents construct. This way the relationship classes of a meta-model can be injected
as default interface implementations to particular meta-model entity classes as their structural
responsibilities (in contrast to dynamic responsibilities, which are more typical). The method
for such injections is specified in Spring+AspectJ application context file according to
the sample code presented in Listing 1.

Listing  1.  Meta-model elements defined in Spring and their injections defined in Spring+AspectJ
application context file (extract only)

It is clear from the Listing 1 that meta-model entity beans have their scope defined
as “prototype” while the attribute is ignored for relationship beans. It is not specified in
application context file to underline the fact that AspectJ ignores this attribute for beans it
injects.

When the Spring integrated to AspectJ loads an application context file that contains
such injections, the default implementations of interfaces are created as Spring beans. This

<!— Meta-Model Entity Beans (Spring) -->
<bean
 class=”com.componentcreator.metamodel.coremetamodel.domains.DEntity”
 id=”entity”
 scope=”prototype”>
</bean>

<!— Meta-Model Relation Beans (Spring) -->
<bean
 class=”com.componentcreator.metamodel.coremetamodel.relations.RRelation”
 id=”relImplForDEntity”>
</bean>

<!— Meta-Model Graph Creation (Spring+AspectJ) -->
<!— Meta-Model Relation Injections to Meta-Model Entities -->
<aop:declare-parents
 types-matching
 =”com.componentcreator.metamodel.coremetamodel.domainsimpl.DEntity”
 implement-interface
 =”com.componentcreator.metamodel.coremetamodel.relations.IRRelation”
 delegate-ref=” relImplForDEntity”/>

33

behavior influences and destroys the original Spring concept of scope management. It is even
impossible to change the Spring+AspectJ behavior from the bean “scope” parameter – from
its predefined as well as from its user-defined version. The Spring interpretation of the “scope”
bean parameter is completely overlapped by AspectJ. But, fortunately, Spring+AspectJ
create injected beans of default implementation classes for each such injection. Moreover,
the AspectJ mechanism does not overwrite the option of calling factories in place of
constructors when a bean is instantiated. It is shown further in the paper that combining
both mentioned features helps to take full control over the instantiating process when meta-
-model is created.

4.  Scope Management Problem

This section is focused on two goals – showing how the control over scope management
(introduced intuitively before) can be regained in case of overlapping incompatible
solutions offered by different Java EE frameworks and presenting the skeleton of the concept
of advanced scope management for meta-modeling purposes.

In order to address the two goals mentioned above, the scope management problem
should be clearly stated and then its solution can be presented. At the end the correctness
of the solution should be verified. All these stages are presented below.

4.1.  Problem statement

The scope management problem is the problem of controlling the multiplicity of
application elements while their construction process driven by Java EE application context
under the assumption that the application context file is interpreted by more than one
Java EE framework.

As the consequence we have the following situation – the superposition of frameworks:
F F F FN= ° ° °1 2 

where:
F	 –	 the framework created as the result of superposition of other frameworks,
F1 ‒ FN	 –	 superposed frameworks.
The problem is at least two-dimensional as it concerns both classes and their beans.

The problem of the actual dimension is discussed in section 4.2. The size of the problem
does not depend of the number of frameworks F1 – FN.

The problem is limited to meta-model relation beans and classes.
The problem can be solved if the following conditions are fulfilled:

–	 FN framework tries to construct application elements whenever needed
–	 FN framework does not eliminate the ability to access factories for application elements

construction purpose
Topological aspects only are taken into account in the paper. This means that such problems

like cardinalities of meta-model relationships (meta-cardinalities) as well as the problem
resulting from the above – the problem of existence of some nodes at the meta-model relation
ends are ignored in the paper. The problem of meta-model relationship cardinalities which
is new and separate from the scope management problem is intended for future publications.

34

4.2.  Problem solution

It was mentioned before that scope may be addressed to beans and/or classes specified
in the application context. Another observation related to Spring scope management is that
the concept of scope management is related to the whole application. This means that the
particular scope associated to a particular bean defines the multiplicity of the bean instances
in the whole application. However, in the meta-modeling problem the range of the scope
should be differentiated to such areas like meta-model, context file, constructor.

As the result, in the meta-modeling problem, the following dimensions of the scope
management problem should be assumed:

Subject (relationship class, relationship bean)
Scope (meta-model, context file, constructor)
Thus, the name of scope fits better to the true meaning of this notion.
For each combination of the above elements, for each pair (Subject, Scope) the element

of the framework F which is responsible for scope management should be identified. So,
the divagations should be enriched by the following mapping:

(Subject × Scope) → ScopeManager
where:

ScopeManager = {class, bean, context, framework} ⊂ F
The communication between framework F and the right ScopeManager is controlled by

factories that are called while constructing application elements. The special case is when the
factory does not delegate the scope management responsibility to dedicated ScopeManager
but takes this responsibility. This assumption was assumed in the rest of the paper for
simplification. As the result, the naming convention for factories, which in consequence
of this assumption can be predefined in F, can be introduced. The naming convention may
be as follows:

Responsibility<Subject><Scope><Manager>ScopeFactory,

where, under the above assumption <Manager>=Factory ⊂ F
In consequence, the names of such factories are as the ones contained in Table 1.

T a b l e 1
The names of factory classes which are responsible for managing meta-model relationclasses

Scope         
Subject

Class Bean

Metamodel ResponsibilityClassMetamodel
ScopeFactory

ResponsibilityBeanMetamodel
ScopeFactory

Context file ResponsibilityClassFile
ScopeFactory

ResponsibilityBeanFile
ScopeFactory

Constructor ResponsibilityClassConstructor
ScopeFactory

ResponsibilityBeanConstructor
ScopeFactory

35

The ResponsibilityBeanConstructorScopeFactory class is sufficient to solve the arity
problem. That is why the nature, implementation and verification of just this class is discussed
further in this section as the illustration of the factories implementation concept.

Two variants are taken into account below to characterize the nature of
ResponsibilityBeanConstructorScopeFactory class. The simple case is presented first (one
relation for a particular set of entities). Then the complex case (many relations for a particular
set of entities) is shown. The problem of number of relations in meta-model has not been
identified and has not been investigated before. The name suggested by the author for this
problem is meta-cardinality and it is related to the CDMM system of notions. However, this
problem is discussed in a separate paper. The two cases mentioned above are defined for:
–	 a particular relation (for a particular bean of a relation class) joining a set of entity

classes – one bean instance is created by the factory
–	 many relations of the same kind (represented by the same bean of a relation class) joining

a set of entity classes – the number of bean instances created is equal to the number
of relations.
More generally speaking, for a particular set of constructors of any number of a relation

beans (for the same relation class) the number of instances of this bean is equal to the number
of beans and not to the number of the bean class injections to the set of entity classes.

The characteristics of ResponsibilityBeanConstructorScopeFactory class can be
referenced to Figure 1 and Listing 3 in section 4.2.

In the next research stage all possible combinations of relation construction cases were
identified for the meta-modeling application domain. These observations have theoretical
nature (all cases were identified for consideration completness).

The following notational system was designed to specify scope in the application context
file:
–	 CDMMFsubject (applied in each bean to determine if the scope is related to the bean or

to its class)
–	 CDMMFscope (applied in each bean to define the scope for CDMMFsubject)
–	 CDMMFmanager (applied in each bean to define the element responsible for the scope

management for this bean)
–	 The following comments are related to the system of tags introduced above:
–	 CDMMFmanager may be optional (if we assume that the scope management is default)
–	 CDMMFmanager may not be required if the right class will be determined by the pair

(CDMMFsubject, CDMMFscope)
–	 as long as any Java EE framework F has its notation related to scope management

the CDMM prefix is required
The implementation of the ResponsibilityBeanConstructorScopeFactory scope manager

is presented in Listing 1.

36

The factory implemented in the form presented on the Listing 1 works as follows.
The meta-model relation bean (represented by beanId in the source code) is defined in the
application context file for Spring Java EE. Then the relation bean is injected by AspectJ
framework when the default interface implementation of a relation class is associated to
a meta-model entity class. In place of constructor the method getInstanceMinimal() is called
with the following parameters: beanId equal to the Id of relation bean, cls equal to the
pathname of the relation class, str equal to the list of pathnames of entity classes the relation
bean is injected to. The method determines if the object was already constructed for the set
of parameters (beanId, cls, str) and creates it or returns the reference to already existing bean
instance.

4.3.  Verification

The concept of scope management was tested for the superposition of Spring and AspectJ
frameworks. This combination of frameworks is sufficient for obtaining the superposition
with required features as defined in section 4.1. This superposition of just these frameworks
is also good enough for defining sufficiently complex meta-models.

The correctness of the approach presented in the paper was verified in three following
stages:
–	 all factory classes presented in Table 1 were implemented,
–	 appropriate meta-models were defined to generate all test cases (at least one test case was

needed to test each factory class),
–	 appropriate unit tests were implemented to test each test case resulting from meta-models

defined above.

Listing  2.  Scope management factory class dedicated to N-ary relationship instance
multiplicity handling

public class ResponsibilityBeanConstructorScopeFactory implements
 IResponsibilityBeanScopesFactory {

 private static Map<String, IResponsibility> relationshipMinimal
 = new HashMap<String, IResponsibility>();

 public IResponsibility getInstanceMinimal(String beanId, String cls,
 List<String> str) throws NoSuchMethodException, SecurityException,
 ClassNotFoundException, InstantiationException, IllegalAccessException,
 IllegalArgumentException, InvocationTargetException {
 // the instance of the beanId was already created
 if (relationshipMinimal.containsKey(beanId)) return
 relationshipMinimal.get(beanId);
 // the beanId has not been created yet
 else {
 // create the instance of cls object passing it str parameters
 // - Java reflection needed here
 relationshipMinimal.put(beanId, (IResponsibility)
 ResponsibilityBeansRegister.get(cls).getConstructor(new Class[]
 {List.class}).newInstance(new Object[] { str }));
 return relationshipMinimal.get(beanId);
 }
 }
}

37

All test case executions confirmed the correctness of both the approach and the
implementation of all factories dedicated to support meta-modeling. It is worth noticing
that the elaboration of all meta-model concepts required to implement test cases for each
factory class was especially demanding and time consuming. This complexity resulted from
the fact that in this case the special meta-modeling problems should be invented to check
the correctness of the solutions which were foreseen before during theoretical research. This
approach was abnormal as usually the problem appears first and the solution comes later.

As the illustration of the use of the factory for a sample meta-model is presented in
Figure 1 and then the extract from the application context file is shown.

The way the factory is specified in the application context file and how it is associated to
the RN-ary bean is clarified in Listing 3.

Fig.  1.  Sample meta-model for the N-ary relationship

38

5.  Conclusions

The scope management problem was identified for meta-modeling purposes. The meta-
modeling application domain as defined by CDMM approach is complex enough to study
the problem. The concept of the scope management solution was also implemented in
CDMM-F with the help of appropriate factories. Then the solution correctness was verified
by appropriate test cases.

The paper initiates further research efforts in the field of scope management by creating
solid fundamentals and presenting the skeleton of the solution for the next problems related
to scope management. The mentioned problems are named and characterized briefly below.

Several interesting subjects for research are connected to meta-cardinality (the problem of
defining the number of relation instances). This problem is very complex and is not supported
by currently available technologies.

Another interesting problem which is new for meta-modeling and modeling disciplines
is the problem of navigability of meta-model relationships named by the author meta-
navigability. This problem is connected to traversing the directed graph of modeling language
and impacts CDMM-F API significantly.

Also a complex problem of combining scopes may appear when several application context
files that are based on different scope management concepts are used (reused) to constitute

Listing  3.  Meta-model scope factory and relation beans specification in the application context file

<bean
 class=”com.componentcreator.metamodel.coremetamodel.scopefactories
 .ResponsibilityBeanConstructorScopeFactory”
 id=” responsibilityBeanConstructorScopeFactory ” scope=”singleton”></bean>

<bean class=”com.componentcreator.metamodel.coremetamodel.relations.RNary”
 id=”naryImpl”
 factory-bean=”responsibilityBeanConstructorScopeFactory”
 factory-method=”getInstanceMinimal”>
 <constructor-arg>
 <value>”naryImpl”</value>
 </constructor-arg>
 <constructor-arg>
 <value>
 ”com.componentcreator.metamodel.coremetamodel.relations.RNary”
 </value>
 </constructor-arg>
 <constructor-arg>
 <list>
 <value>
 com.componentcreator.metamodel.coremetamodel.domainsimpl.DC1
 </value>
 <value>
 com.componentcreator.metamodel.coremetamodel.domainsimpl.DC2
 </value>
 <value>
 com.componentcreator.metamodel.coremetamodel.domainsimpl.DC3
 </value>
 </list>
 </constructor-arg>
</bean>

39

the whole meta-model application context. In the paper a simple case is implemented (see
relationshipMinimal), but the concept of relationshipRedundant was also designed (but not
verified yet) to support future solution of the scope combining problem.

Other challenging problems are connected to the so-called arity problem. The N-ary
relationships can be handled in CDMM-F but in order to gain the full solution of the
problem the meta-cardinality and meta-navigability problems must be completely solved
and published.

R e f e r e n c e s

[1]	 Akehurst D., Howells G., McDonald-Maier K., Implementing associations: UML 2.0 to Java 5,
Softw Syst Model, Springer-Verlag 2006, DOI 10.1007/s10270-006-0020-1

[2]	 AspectJ framework, https://eclipse.org/aspectj/.
[3]	 Bildhauer D., On the relationship between subsetting, redefinition and association specialization,

[in:] Proc. of the 9th Baltic Conference on Databases and Information Systems 2010, Riga,
Latvia (07 2010).

[4]	 Bildhauer D., Associations as First-class Elements, Proceedings of the 2011 conference on
Databases and Information Systems VI: Selected Papers from the Ninth International Baltic
Conference, DB&IS 2010, p. 108-121, IOS Press Amsterdam, The Netherlands, The Netherlands
2011.

[5]	 Booch G., Rumbaugh J., Jacobson I., The Unified Modeling Language User Guide, Addison-
-Wesley, 2005.

[6]	 Object Management Group (2011), Business Process Model and Notation 2.0. http://www.omg.
org/spec/BPMN/2.0/.

[7]	 Diskin Z, Easterbrook S., Dingel J., Engineering Associations: From Models to Code and Back
through Semantics, [in:] Objects, Components, Models and Patterns, Volume 11, Lecture Notes
in Business Information Processing, Proceedings of 46th International Conference, TOOLS
EUROPE 2008, Zurich, Switzerland, June 30‒July 4, 2008, p 336-355.

[8]	 Feinerer I., A Formal Treatment of UML Class Diagrams as an Efficient Method for Configuration
Management, PhD. dissertation, Vienna, March 2007.

[9]	 Feinerer I., Salzer G., Numeric semantics of class diagrams with multiplicity and uniqueness
constraints, Software & Systems Modeling, 13(3), 2014, p. 1167-1187.

[10]	 Génova, G., Lloréns, J., Martínez, P., The meaning of multiplicity of N-ary associations in UML,
Software and System Modeling 1(2), 2002, 86-97.

[11]	 Génova G., Ruiz del Castillo C., Llorens J., Mapping UML Associations into Java Code, Journal
of Object Technology, Vol. 2, No. 5, September‒October 2003.

[12]	 Kleppe A. G., Warmer J., Bast W., MDA Explained: The Model Driven Architecture: Practice
and Promise, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[13]	 Object Management Group (2006), Meta Object Facility (MOF) core specification version 2.0.
http://www.omg.org/spec/MOF/2.0/.

[14]	 Roques P., SysML vs. UML 2: A Detailed Comparison, MoDELS’11 Tutorial, October 16th,
Wellington, New Zealand, 2011.

[15]	 Sergievskiy M., N-ary Relations of Association in Class Diagrams: Design Patterns, (IJACSA)
International Journal of Advanced Computer Science and Applications, Vol. 7, No. 2, 2016.

[16]	 Spring framework, https://spring.io/.

40

[17]	 Szlenk M., Formal Semantics and Reasoning about UML Class Diagram, 2006 International
Conference on Dependability of Computer Systems, IEEE, 25‒27 May 2006, p. 51-59, DOI:
10.1109/DEPCOS-RELCOMEX.2006.27.

[18]	 Tan H.B.K., Yang Y., Bian L., Improving the Use of Multiplicity in UML Association, Journal
of Object Technology, Vol. 5, No. 6, July‒August 2006.

[19]	 Object Management Group (2009), Unified Modeling Language (UML) superstructure version
2.2, http://www.omg.org/spec/UML/2.2/.

[20]	 Zabawa P., Context-Driven Meta-Modeling Framework (CDMM-F) ‒ Context Role, Technical
Transactions, 1-NP/2015, p. 105-114, DOI: 10.4467/2353737XCT.15.119.4156.

[21]	 Zabawa P., Stanuszek M., Characteristics of Context-Driven Meta-Modeling Paradigm
(CDMM-P), Technical Transactions of Cracow University of Technology, Fundamental Sciences,
3-NP (111), 2014, p. 123-134.

