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On Symmetry in Physical Phenomena, 
Symmetry of  an Electric Field  

and of  a Magnetic Field

Abstract
In this work, the classical concept of  symmetry limited to 
geometric objects (figures and solids), which originated from 
ancient Greece, has been extended to allow for symmetry studies 
in other types of  objects.

By introducing the concepts of  limiting point groups and 
kinematic elements characteristic for a studied object, it was 
determined what types of  symmetries are exhibited by an electric 
field and a magnetic field. It was established that in order for 
a phenomenon to occur, a characteristic symmetry of  a medium 
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must be consistent with the characteristic symmetry of  the 
phenomenon occurring in it. It was also determined that the 
symmetry elements of  the causes must be found in the symmetry 
of  their effects.
Keywords: symmetry, dissymmetry, Curie limiting point groups, symmetry 
of  causes and effects, symmetry of  physical fields, characteristic symmetry  
of  phenomenon, characteristic symmetry of  medium

(Abstract and keywords by Andrzej Ziółkowski)(P0)  

O symetrii zjawisk fizycznych,  
symetrii pola elektrycznego  

i pola magnetycznego

Abstrakt
W pracy klasyczne pojęcie symetrii ograniczone do obiektów 
geometrycznych (figur, brył), znajdujące swoje źródło w antycz-
nej Grecji, zostało rozszerzone tak, by możliwe było badanie sy-
metrii innych rodzajów obiektów. 

Poprzez wprowadzenie pojęcia granicznych grup punktowych 
i elementów kinematycznych charakteryzujących obiekt, którego sy-
metria jest badana, określono, jakiego typu symetrie wykazują 
pole elektryczne i pole magnetyczne. Ustalono, że aby możli-
we było zachodzenie jakiegoś zjawiska, to charakterystyczna sy-
metria ośrodka musi być zgodna z charakterystyczną symetrią 
występującego w nim zjawiska. Stwierdzono, także, że elemen-
ty symetrii przyczyn muszą znaleźć odzwierciedlenie w symetrii 
wywołanych skutków.
Słowa kluczowe: symetria, dyssymetria, graniczne grupy punktowe, symetria 
przyczyn i skutków, symetria pól fizycznych, symetria charakterystyczna zjawiska, 
symetria charakterystyczna ośrodka

(Abstrakt i słowa kluczowe opracowane przez Andrzeja Ziółkow
skiego)

(P0) Translator’s note: This document contains the English translation of  the work 
of  Pierre Curie: Sur la symétrie dans les phénomènes physiques, symétrie d’un champ 
électrique et d’un champ magnétique. Journal de Physique Théorique et Appliquée, 3e série, 
1894, 3(1), pp. 393–415. DOI: 10.1051/jphystap:018940030039300.

https://dx.doi.org/10.1051/jphystap:018940030039300
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1. I think it would be useful to introduce symmetry 
considerations known to crystallographers  

into the study of  physical phenomena
For example, an isotropic body can be set in a rectilinear or a rotary 
motion; A fluid can be a medium of  vortex motions; A solid can be com  
pressed or twisted; It may be in an electric or magnetic field; Electric 
current or heat may flow through it; Natural light or light that is 
rectilinearly, circularly, elliptically, etc. polarized can pass through it.  
In all these cases, the occurrence of  some characteristic dissymmetry  
is necessary, in every point of  the body. Dissymmetries will be even 
more complex if  we assume that several phenomena coexist in the same 
medium or if  these phenomena are caused in a crystalline medium, 
which already has – due to its structure – a certain dissymmetry.

Physicists often take advantage of  the conditions resulting from 
symmetry, however, they generally pass over defining the symmetry of  
the phenomenon itself, because quite often the symmetry conditions 
are simple and almost obvious, a priori.1

However, in teaching physics it would be better to formulate these 
problems explicitly, e.g. in electricity research, to find out almost 
immediately the existence of  a characteristic symmetry of  the electric 
field and the magnetic field; we could then use these concepts to simplify 
many demonstration experiments.

From the point of  view of  general ideas, the concept of  symmetry 
can be compared with the concept of  dimension: these two fundamental 
concepts are characteristics for the medium in which the phenomenon 
occurs, and for the quantity used to assess the intensity of  the pheno-
menon, respectively.

1 The translation has been provided with translator’s end notes and a commentary 
with additional explanations and information aimed at facilitating the correct under-
standing of  the text without the need for a broad query in external resources. The end 
notes are marked in the translation as (P1), (P2), etc., and their full content is available 
in the Extended Commentary added below the translated work.

Crystallographers who need to consider more complex cases have developed a gen-
eral theory of  symmetry. In treaties in the field of  physical crystallography (which are 
at the same time actual physical dissertations), the issues of  symmetry are exposed 
with the utmost care. See the works of  Mallard (Mallard 1879, 1884), Liebisch (Liebisch 
1891), Soret (Soret 1893).
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Two media with the same dissymmetry are linked by a special con-
nection, from which we can draw physical consequences. The relationship 
of  the same type exists between two quantities of  the same dimension. 
Finally, when certain causes induce certain effects, the elements  
of  symmetry of  the causes must find reflection in the symmetry of  
produced effects. Similarly, in the equation of  the physical phenomenon 
there is a cause-effect relationship between the quantities appearing on 
both sides of  the equation, and these quantities on both sides have the 
same dimension.

2. Recovery operations and symmetry elements
Determining various types of  symmetry can be divided into two large 
areas, depending on whether it is about determining the symmetry of  
a limited system or a system that can be considered unbounded. We will 
only deal with a limited system here.2

Consider a system defined using analytical data and three orthogonal 
coordinate axes, for example. The system will have some symmetry (P1) 
when upon using other orthogonal axes of  coordinates it will still be 
defined by the same analytical data.

Elements (points, lines, planes, etc.) defined by means of  the same 
analytical data referred to such different triads of  coordinate axes are 
homological elements or the elements of  the same type.

The operation which makes the transition from the first system to 
the second is a recovery operation3 (P2).

There are two types of  orthogonal triads of  coordinate axes sym- 
metrical relative to each other. We will have a recovery operation of  the 

2 The theory of  structure of  crystalline bodies is nothing else but the general 
theory of  symmetry of  an unlimited medium with a periodic structure. This is an admirable 
theory that was developed by Bravais (Bravais 1866), Jordan (Jordan 1868a; 1868b) and 
Fedorow (Fedorow 1891, 1892). Recently, Schœnflies published a great didactic treaty 
dedicated to this theory, Krystallsysteme und Krystallstruktur (Schœnflies 1891).

Crystalline bodies can be divided into 32 classes (translator’s note: point crystal-
lographic groups or equivalently crystallographic classes), if  we consider only symmetries  
of  the external shape; but the theory predicts 230 different types of  symmetry for the 
internal structure of  these substances (translator’s note: spatial crystallographic groups). 
If  all these types exist in nature, it is a real wealth for physicists, because they have  
230 media with various symmetries at their disposal.

3 Shuffling transformation according to German crystallographers.
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system of  the first type when such an operation is a transition from 
one triad of  axes to the other identical triad of  axes. The operation 
is therefore equivalent to simple displacement in space (P3). The repetition 
of  the same elements in the system takes place.

We will have a recovery operation of  the second type or symmetric transformation 
in the right sense, when the operation is the transition from one triad of  
axes to another one symmetric to the first.

The system is then identical to its image obtained by mirror reflection.
It can be easily demonstrated that during the recovery operation 

of  a limited system at least one point always stays constant in space.  
It follows that the establishment of  all possible types of  symmetry of  
the limited system comes down to establishing all types of  symmetry around 
the point which is the center of  the shape of  the system.

The recovery operations of  the first type can always be obtained by 
a simple rotation around the repetition axis (more generally called the 
symmetry axis) passing through the point. The axis of  degree q (where q 
is an integer number) will give recovery (translator’s note: overlapping, 
invariance, stability) of  the system at rotation angles 0, 1, 2, ... , (q – 1) 
times 2 π / q (translator’s note: q-fold axis, e.g. two-fold, three-fold etc.).

We will consider the direction and sense of  each axis of  the system, 
which doubles the number of  axes, because for one axis we will count 
two directions with opposite sense. If  these two axes with opposite 
sense are of  different type from the point of  view of  repetitions (for 
example, the axis of  the regular pyramid) and of  the degree q, we will 
mark them by (Lq lq)(P4).

If  these two axes with opposite sense are of  the same type with 
respect to repetitions (for example, the main axis of  the prism) and of  
the degree q, we will mark them by (2Lq). We then have a double axis (P5).  
In this case, in the system, by necessity, there exists an axis of  repeatability 
with an even degree perpendicular to the double axis, which allows its 
transformation into itself  by rotation by 180°, which is the element of  
the recovery operation of  the system.

The recovery operations of  the second type can always be obtained 
by mirror reflection, which is accompanied by rotation around the axis 
normal to the plane of  mirror reflection.

Several cases should be examined:
1° Rotation is zero; we have a simple mirror reflection and the sys-

tem has a plane of  symmetry (P).
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2° Rotation is 180°; we have a center of  symmetry (C).
3° Axis normal to the reflection plane is the axis of  repetitions of  

degree q  and we have q symmetric transformations; each of  these 
operations consists of  one mirror image, which is followed by 
one of  the rotations

2 2 20, , 2 , ... , ( 1) ;q
q q q
    

  We then have a simple plane of  symmetry of  the degree q, which we will 
mark by Pq.

4° Axis normal to the reflection plane is the axis of  repetitions of  
degree q and we have q symmetric transformations; each of  the-
se operations consists of  a mirror image, which is followed by 
one of  the rotations

 1 2 1 2 1 2 1 2, (1 ) , (2 ) , ... , ( 1 )
2 2 2 2

q
q q q q
        

  around the axis. We then have an alternative plane of  symmetry of  
degree q; we will denote it by πq.

The model shown in Figure 1. has an axis of  degree 4 with a plane 
P4 of  a simple symmetry of  degree 4. Four lower arrows are obtained 
by a simple mirror reflection of  the four upper arrows and vice versa. 
The system can be recovered by a simple mirror reflection and the 
accompanying rotation by 90° repeated a certain number of  times.

The model in Figure 2. has an axis of  the 4th degree and an alternative 
symmetry plane π4 of  the 4th degree, perpendicular to the direction of  
the axis. Four lower arrows differ in location with images of  the four 
upper arrows obtained by a simple mirror reflection. The system can 
be recovered by mirror reflection, followed by rotation by 45° degrees 
an odd number of  times.

It is worth noting that the model in Figure 2. is overlayable on its 
mirror image, although it has neither a plane nor a center of  symmetry. 
There is only an alternative symmetry plane.4

4 P. Curie (Curie 1884a, pp. 89, Curie 1884b, pp. 418).
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3. Groups of  recovery operations
All recovery operations of  the system are defined by the use of  the sym
metry elements that we have just listed. 

A group of  recovery operations will be a combination of  operations 
in such a way that any two operations carried out successively will give 
the same result as the one which is obtained through a single operation 
included in the group.

Here we give the full table of  all groups of  recovery operations 
relative to the point. These operations are completely defined by listing 
the elements of  symmetry.

We can see that groups of  symmetry elements can be divided into seven 
classes which differ from each other in the character of  the group of  axes 
which they contain (translator’s note: The division into symmetry classes 
introduced below is based on different criteria compared to the criteria 
of  classic division into crystallographic classes, although it is analogous 
to it.). Each class can exist with or without symmetric transformation in 
the proper sense (translator’s note: i.e., in the understanding of  P. Curie, 

                            Fig. 1.                                                          Fig. 2.
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the mirror image). Usually there are several ways to give symmetry in the 
proper sense to a group that contains nothing but axes. We obtain a total 
of  19 families f. Let us consider, for example, the class III and assume 
that q = 3, we will have a group of  axes 2L3, (3L2, 3L′2), i.e. a double main 
axis of  degree 3, and three 2-fold axes and those with the opposite sense 
of  the different type  (3L2, L′2); these three axes are perpendicular to the 
main axis and they form angles of  120° among them. This system can 
exist without any other element of  symmetry [family (8), the crystalline 
form of  quartz], or with a plane of  symmetry of  degree 3 perpendicular 
to the main axis (P3) and 3 symmetry planes 3P containing the main axis 
and 2-fold axes [family (9) prism with a triangular base]. We can still have 
a symmetric system [family (10), rhombohedron] with an alternative 
plane of  symmetry π3 perpendicular to the main axis, 3 symmetry planes 
containing the main axis and perpendicular to the 2-fold axes and with 
the center of  symmetry.

Each family of  classes II and III contains an infinite number 
of  groups, q can be any integer. Families of  other classes contain only 
one group.

In families (5) and (9), there is a center of  symmetry when q is even. 
In families (6) and (10), there is a center of  symmetry when q is odd.

In class III, axes L2 and L′2  coincide, but have opposite senses if  q 
is odd. On the contrary, we have 2-fold, double axes of  two different 
types if  q is even.

The numbers N determine the class of  each group. The N specifies 
the number of  homologous points (translator’s note: equivalent 
configurations) between them in a system, when the points considered 
are not located on any axis or on any plane of  symmetry. The N is also 
the number of  orthogonal triads of  coordinate axes in which the system 
looks the same.

Systems with symmetry of  families 1, 4, 8, 11, 14, 16, 18, which 
contain only axes, cannot be overlaid onto their image obtained by 
mirror reflection; they have enantiomorphic dissymmetry.5 (P7)

A very important concept, from the point of  view of  our current 
interests, is the concept of subgroups (translator’s note: The word 
intergroupe appearing in the original was replaced by subgroup as used 

5 Detailed information can be found in treaties on crystallography. See also Bravais 
(Bravais 1866), Jordan (Jordan 1868), P. Curie (Curie 1884b, p. 418).
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nowadays). A group of  symmetry elements is a subgroup of  a wider 
group of  symmetry, when all recovery operations from the first group 
are part of  recovery operations of  the second.

For example, family (13) with tetragonal symmetry is a subgroup 
of  family (15) of  cubic symmetry. The group (L6, l6), 6P of  family (7) 
(symmetry of  a regular hexagonal pyramid) is a subgroup of  group 

,
, ,

′6 2 2

6 2

2 6 6
6

L L L
C

P P
 of  family (9) (regular hexagonal prism). Family (4) is 

a subgroup of  families (5), (6), (7), (8), (9), (10) for the same value q, etc.

4. Characteristic dissymmetry of  physical phenomena

Let us now consider any point of  the medium in any physical state. 
Symmetry at this point will necessarily be characterized by one of  the 
groups from Table 1.6

We will formulate the following theorems:

The characteristic symmetry of  a phenomenon is the maximum symme-
try consistent with the occurrence of  that phenomenon.

A phenomenon can occur in a medium that has the characteristic sym-
metry of  the phenomenon or the symmetry of  one of  the subgroups of  
its characteristic symmetry.

In other words, certain elements of  the symmetry of  the medium 
may, but do not have to, co-occur with certain symmetries of  the 
phenomenon. What is necessary is that some elements of  symmetry 
do not occur. It is dissymmetry what generates the occurrence of  a phenomenon.

6 Some minds may hesitate before applying to the medium in any physical state 
the classification which was for the first time determined from the point of  view of  
pure geometry. We will note that we can bring all the reasoning, which is used for rees-
tablishing groups, to the following form: let A, B, C be three triads of  the orthogonal 
axes of  coordinates, in which the system presents itself  the same, let D be the fourth 
system of  orthogonal coordinate axes, which is placed relative to C, just the same as B 
relative to A; D will continue to be a triad of  the coordinate axes in which the system 
will present itself  as in A, B, C. The way of  reasoning does not prejudge anything about 
the nature of  the system.
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It would be much more logical to name a plane of  dissymmetry any 
plane that is not a plane of  symmetry; the axis of  dissymmetry each 
axis which is not the axis of  symmetry, etc., and in general to provide 
a list of  operations that are not recovery operations in a given system. 
It is these operations that indicate the existence of  dissymmetry and, 
as a consequence, the possibility of  occurrence of  some feature in the 
system. But in the groups considered, there is an infinite number of  
operations that do not lead to recovery of  the system and in general 
a finite number of  recovery operations; that is why it is much easier 
to provide a list of  these last operations.

We also see that when several phenomena of  a different nature 
superimpose on each other creating one system, then the dissymmetries 
add up. Then, in the system only those elements of  symmetry remain 
that are common to all phenomena considered separately (translator’s 
note: The above statement is known as the Principle of Superposition 
of Dissymmetries.

Since certain causes produce certain effects, the elements of  symmetry of  
the causes must find reflection in the elements of  symmetry of  the cau-
sed effects.

When certain effects exhibit a certain dissymmetry, this dissymmetry 
must manifest itself  in the causes that generated these effects.

The opposite statements to the ones formulated above are not true, 
at least in practice, that is the produced effects can be more symmetric 
than the causes that induce them.

Some dissymmetries of  causes may not affect certain pheno- 
mena or at least have an impact too weak to take them into account,  
which boils down in practice to the same as if  such an impact did  
not exist.

It is interesting, from the point of  view of  physical phenomena, 
to consider separately the groups having an axis of  isotropy. There are five 
such groups; we will denote them by (a), (b), (c), (d) and (e) (translator’s 
note: See also Figure S4 and Figure S5 in the translator’s Commentary).
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 Cylindrical group (a), the most symmetric, has elements of  the 
circular cylinder symmetry, i.e. a double axis of  isotropy 2L∞, with 
an infinite number of  2fold, double axes ∞L2 perpendicular to the 
main axis and passing through the center of  shape of  the system, 
a plane of  simple symmetry P∞ of  degree ∞ orthogonal to the main 
axis, an infinite number of  planes of  simple symmetry ∞P2, of  degree 2, 
containing the main axis, and the center of  symmetry C.

If  an isotropic body is squeezed in a certain direction, it becomes 
anisotropic and has symmetry of  the cylindrical group (a). It is known 
that the body squeezed in this way has optical properties such as crystals 
with the optical axis; symmetry (a) is exactly the maximum symmetry 
compatible with the occurrence of  this phenomenon. Crystalline bodies 
with the optical axis have symmetries which are subgroups of  symmetry (a).

The remaining groups (b), (c), (d) and (e), with the axis of  isotropy, 
are subgroups of  the cylindrical group (a).

Group (b) always has a double isotropy axis and 2-fold axes, but it no  
longer has a center or planes of  symmetry. Group (b) is a holoaxial 
subgroup of  group (a). Group (b) has symmetry of  cylinder or fiber, 
twisted around its axis; (translator’s note: See Figure S4 in the translator’s 
Commentary). It is symmetry of  the center of  shape of  a system created 
from two identical cylinders with axes in one line rotating around their 
axes with equal angular velocities in opposite directions. Torsional sym- 
metry (b) does not have other symmetry elements except the axis of  
repeatability (axis of  rotational symmetry); it has non overlayable 
dissymmetry (enantiomorphism), which is necessary for the occurrence 
of  the phenomenon of  ordinary rotary polarization of  active bodies. It 
can also be said that symmetry (b) can be obtained if  the cylinder is filled 
with a liquid having the property of  rotary polarization. The crystalline 
form of  quartz 2L3, 3(L3 L′2) has symmetry of  subgroup of  group (b).
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Group (c) has an axis of  isotropy and the one with the opposite 
sense of  a different type (L∞ l∞); this axis is therefore no longer double 
(in other words, this axis is no longer equivalent regarding rotation 
operation). Group (c) still has an infinite number of  symmetry planes 
containing an isotropy axis, but it already has neither plane of  symmetry 
orthogonal to the axis, nor the center of  symmetry, nor the 2-fold axes 
of  the cylindrical group. It is symmetry of  any point on the axis of  the 
circular cut cone (translator’s note: See also Figure S4 in the translator’s 
Commentary). It is symmetry of  force, velocity, field of  universal 
gravitation; it is finally symmetry of  electric field. All these phenomena 
are represented, very aptly from the point of  view of  symmetry, by 
an arrow.

Let us consider, for example, the field of  universal gravity. The 
material sphere M with the center at point O acts on the external point 
A by generating there a field of  Newton’s attraction. If  we assume that 
the material from which sphere M is made by itself  does not introduce 
any dissymmetry, we can see that axis OA is the axis of  isotropy such 
that every plane passing through OA is a plane of  symmetry, and these 
are the only elements of  symmetry passing through point A. This is 
symmetry of  group (c). Hence, it follows that the Newtonian attraction 
field may occur in a medium with symmetry (c) or one of  its subgroups; 
what is more, one cannot imagine that the symmetry of  the medium 
could be greater than (c), because in such a case it would have to be the 
symmetry of  the cylindrical group (a) or the symmetry of  the sphere 
(19) see Table 1., and the field could not have a sense, and it would be 
the same with forces and velocities. If  we put the material sphere at 
point A, then force will act on the matter. The body will then be able 
to go into a state of  motion in direction AO, reach a certain velocity, 
and nothing in this process will disturb the symmetry of  the system. 
Therefore, symmetry (c) at the same time represents the symmetry of  
force acting on ponderable matter and the symmetry of  ponderable 
matter accelerated to a specific velocity.

In order to determine the symmetry of  the electric field, let us assume 
that this field is produced by two round plates made of  zinc and copper 
facing opposite to each other, similarly as plates of  the air capacitor. 
Consider a point between two plates lying on a common axis; we see 
that this axis is an axis of  isotropy and that every plane containing this 
axis is a plane of  symmetry. Elements of  symmetry of  causes should be 
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found in the produced effects; therefore, the electric field is compatible 
with symmetry (c) and its subgroups.

Group (a) of  cylindrical symmetry and family (19) of  spherical 
symmetry are the only groups containing subgroup (c). It is therefore 
unlikely that the electric field has a greater symmetry than (c). This 
last point can be shown rigorously if  we assume that the force acting 
on the ponderable body has a group (c) as a characteristic symmetry, 
as we saw above. Let us assume that there is an insulated, conductive 
sphere charged with electricity, and then for some reason electric field 
appears. A force will start to act on the ball in the direction of  this field. 
Dissymmetry of  this action should be sought in the causes that induced 
it; since the force does not have an axis of  symmetry perpendicular to 
the direction of  its action, the system of  charged sphere and field also 
cannot have this element of  symmetry. However, the charged sphere 
considered separately from the field has isotropy axes in all directions; 
Thus, the dissymmetry in question can only be caused by an electric field 
which cannot have an axis of  symmetry perpendicular to its direction. 
Therefore, the electric field cannot get cylindrical or spherical symmetry, 
and its characteristic symmetry is the symmetry of  group (c). The 
symmetry of  electric current and dielectric polarization is necessarily 
the same as the symmetry of  the field that causes these phenomena.

Piroelectric and piezoelectric phenomena are a new confirmation 
of  previous conclusions on the characteristic symmetry of  the electric 
field. The crystal of  tourmaline, for example, polarizes electrically in 
the direction of  its 3-fold axis when heated or squeezed in the direction 
of  this axis. Gold, when heated or squeezed, in no way changes its 
crystalline symmetry, which is (L3, l3)3P, i.e. a 3-fold axis (and axis with 
the opposite sense of  a different type), which is contained by three planes 
of  symmetry; it is symmetry of  subgroup (c) (L∞ l∞)∞P, so this symmetry 
is compatible with the occurrence of  dielectric polarization along the axis.

Finally, let us notice that the electric field causes the same optical 
phenomena in liquids that are obtained by squeezing in solids (Kerr 
phenomenon). The characteristic symmetry of  these phenomena is 
cylindrical symmetry (a), of  which group (c) is a subgroup; therefore, 
we see that the phenomenon of  Kerr reveals only a part of  the 
characteristic dissymmetry of  the electric field. The phenomenon of  
electrical dilatation (Duter phenomenon) reveals only the dissymmetry 
of  group (a).
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Group (d) has an isotropy axis and an axis with opposite sense of  the 
other type (L∞ l∞); thus, this axis is not a double axis with respect to 
repetition operation (translator’s note: here: rotation), but the system has 
a center of  symmetry and a plane of  symmetry of  degree ∞ perpendicular 
to the axis. Therefore, axes L∞ and l∞ with opposite senses are symmetric 
relative to each other, and it can be said that the axis of  isotropy is 
double by symmetry. The group has neither 2-fold axes nor symmetry 
planes containing the main axis of  the cylindrical group (a). Group (d) 
determines the symmetry of  the center of  the shape of  circular cylinder, 
which rotates around its axis at some speed. Again, we must refer to this 
symmetry in the case of  torque, angular velocity and magnetic field.

Let us determine, for example, the characteristic symmetry of  the 
magnetic field. For this purpose, consider the magnetic field which 
exists at the center of  the circumferential circuit through which electric 
current flows; this field is directed perpendicular to the circumference 
plane. Let us determine the symmetry of  the cause, i.e. the symmetry 
of  the center of  the circuit through which the current flows. First of   
all, we have an axis of  isotropy perpendicular to the plane of  the cur-
rent flow circuit. Electric current is compatible with the existence of  
symmetry planes containing the direction of  current flow; therefore, the 
circumference plane will be a plane of  symmetry; electric current does 
not allow the existence of  either a repetition axis or a plane of  symmetry 
perpendicular to its direction. Therefore, there is no axis of  symmetry 
in the plane of  the circuit or planes of  symmetry containing the axis of  
isotropy. Thus, the symmetry of  the causes is a group of  symmetry (d) 
(L∞ l∞) / P∞, C. These elements of  symmetry are compatible with the  
existence of  a magnetic field passing through the axis of  isotropy, because 
the elements of  symmetry of  the causes are in the produced effects.

We see that the magnetic field can have a plane of  symmetry 
perpendicular to its direction. In addition, the magnetic field does not allow 
the existence of  2-fold axes of  symmetry perpendicular to its direction. 
To prove this, we will use the phenomenon of  induction. Let us consider, 
for example, a straight wire moving at a certain velocity perpendicular to 
its direction. Such a system has a 2-fold axis in the direction of  velocity. 
Let us assume that there is a magnetic field in a direction perpendicular 
to the direction of  the wire and the velocity of  motion; an electromotive 
force will appear in the wire. This phenomenon is incompatible with the 
existence of  a 2-fold axis oriented in the direction of  the motion, i.e. 
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perpendicular to the wire. Dissymmetry of  effects should be found in 
the causes; the necessary disappearance of  the 2-fold axis of  symmetry 
we were talking about may only come from the presence of  a magnetic 
field; the latter cannot therefore have a 2fold axis of  symmetry 
perpendicular to its direction. (The same argument can be carried out 
by considering a circular circuit perpendicular to the magnetic field.  
It could be assumed that this circuit expands without changing its shape, 
causing an induction current.)

Cylindrical groups (a) and spherical groups (19) have, as a subgroup, 
symmetry (d), but the existence in these groups of  axes perpendicular 
between them shows that they are not appropriate to describe the 
symmetry of  the magnetic field. The magnetic field is therefore com
patible only with group (d) and its subgroups.7

The phenomenon of  magnetic rotational polarization additionally 
confirms this conclusion.8

The magnetically polarized body has the same symmetry as the 
magnetic field.

The phenomena of  magnetic dilatation of  iron reveal only the 
dissymmetry of  the cylindrical group (a), of  which (d) is a subgroup.

A large number of  crystals are characterized by groups of  symmetry, 
which are subgroups of  magnetic symmetry, e.g. apatite (L6, l6) / P6, C, 
gypsum, iron chloride, or amphibole (L2, l2) / P2, C. It is possible that 
these crystals were naturally magnetized as a result of  their structure. 
I tried unsuccessfully to determine this polarization through experiments.

Usually, the magnetic field is presented with an arrow; such a re 
presentation, often not leading to misunderstandings, is incorrect from 
a specific point of  view of  symmetry, because the magnetic field does not 
change as a result of  mirror reflection relative to the plane perpendicular 
to its direction and changes its sense on the mirror reflection relative to 

7 P. Curie (Curie 1884b, p. 418, 1893). Lord Kelvin conjectured that magnetiza-
tion was caused by a deformation of  a special medium. This deformation is simply 
a rotation, which in this very special medium causes the appearance of  a counteracting 
elastic moment. See: Translation of  Lectures of  Sir Thomson, Note of  M. Brillouin. This 
concept is completely consistent with the above symmetry.

8 To properly deal with the problem of  rotary polarization from the point of  
view of  symmetry, it is necessary to introduce elements of  symmetry characteristic 
for unlimited media that we did not talk about. For example, the body through which 
passes the circularly polarized light has a spiral axis of  isotropy.
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the plane containing its direction. In the case of  an arrow representation, 
it is exactly the opposite.

Group (e) has only an axis of  isotropy (L∞ l∞), not a double one. 
Group (e) is a subgroup common to four groups of  symmetry (a), (b), 
(c) and (d); it has conjoined dissymmetries of  all these four groups. 
Therefore, it is consistent with the existence of  phenomena whose 
characteristic symmetry is any characteristic symmetry of  the remaining 
four groups. The group has enantiomorphic dissymmetry.

Five groups (a), (b), (c), (d) and (e) are related to each other like 
symmetry types of  the same crystallographic system. If  we borrow the 
language of  crystallographers, then we will say that group (a) gives a full or 
holohedral symmetry of  the cylindrical system. Group (b) corresponds to 
holoaxial hemihedry (slanted hemihedry or enantio morphic hemihedry). 
Group (c) is hemimorphic hemihedry (hemihedry with unparallel walls). 
Group (d) is parahemihedry (hemihedry with parallel walls); Finally, group 
(e) corresponds to tetartohedry.(P8)

Although each group contains an infinite number of  recovery 
transformations, yet we can say that groups (b), (c) and (d) contain 
only half, and group (e) only a quarter of  the recovery transformations 
of  group (a).

The models shown in Figures 3, 4, 5, 6 and 7 use the orientation of  
the arrows to define subgroups, with the main axis of  the 4th degree, 
of  groups (a), (b), (c), (d) and (e).

Figure 3 [family (9), q = 4] shows the subgroup of  the cylindrical group 
(a); it is symmetry of  a simple prism with a square base. Four symmetry 
planes pass through the main axis, two of  the first type pass through 
arrows, the other two of  the seconds type are bisectors of  angles formed 
between the previous two. The locations of  double 2-fold axes L2 and 
L′2 and plane P4 perpendicular to the axis are shown in the Figure.

Figure 4 [family (8) enantiomorphic, q = 4] shows a subgroup of  
torsional symmetry (b); it is symmetry of  strychnine sulfate crystal.

Figure 5 [family (7), q = 4] shows a subgroup of  symmetry of  the 
electric field (c); there are four planes of  symmetry passing through the 
axis: it is exactly the type of  symmetry of  the calamine crystal which is 
both piezoelectric and pyroelectric.

Figure 6 [family (5), q = 4] shows a subgroup of  magnetic sym- 
me try (d); it is symmetry of  scheelite and erythrite crystals (translator’s 
note: CO3(AsO4)2 8H2O).
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Finally, Figure 7 [family (4) enantiomorphic, q = 4] shows a subgroup 
of  group (e), with an isotropic axis (penta-erythrite crystal). In Figure 7, 
the arrows at the bottom relate to the magnetic field dissymmetry, arrows 
at the top relate to the electric field dissymmetry. The combination 
of  these arrows leads to the idea of  torsional dissymetry, because 
the rotational motion around the axis in the direction of  the bottom 
arrows – at the same time moving parallel to the axis in the direction 
of  the top arrows – would describe the spiral.

5. Superposition of  causes of  dissymmetry  
in the same medium

When two phenomena of  a different nature coexist in the same medium, 
their dissymmetries add up. If  we superimpose the causes of  dissymmetry 
of  two of  the three groups (b), (c), (d), in such a way that the isotropy 
axes coincide, we will receive a group (e), because the axis of  isotropy 
will be the only element of  symmetry common to the two superimposed 
groups. Or, to put it differently, group (e) has conjoined dissymmetry of  
these three groups. So, putting together, as we start calling it, the causes 
of  the dissymmetry of  two out of  the three groups (b), (c), (d), we will 
obtain the characteristic dissymmetry of  the third group.

Suppose, for example, that we simultaneously apply to the body the 
electric field (c) and the magnetic field (d) with the same direction, then only the 
axis of  isotropy will remain; the presence of  an electric field excludes 
the existence of  a center and a plane of  symmetry perpendicular to the 
axis, and the presence of  a magnetic field enforces the disappearance 
of  symmetry planes containing the axis. Thus, the symmetry of  the 
system is symmetry (e) which is a subgroup of  symmetry (b): we will 
have torsional dissymmetry in the body. If  we take, for example, an iron 
wire and magnetize it along its length, then an electric current passing 
through it will cause the wire to twist (Wiedemann’s experiment).

Perhaps it is possible to create a medium capable of  exhibiting 
torsional polarization of  active bodies by applying an electric field 
and a magnetic field in the symmetric body. At least this would not be 
contradictory to the conditions of  symmetry. In the direction of  the axis, 
a superposition could occur of  the phenomenon of  magnetic rotational 
polarization (i.e. change of  sense along with the change in the direction 
of  light propagation) and the phenomenon of  ordinary rotational 
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polarization. Perpendicular to the axis, there could be obtained a pure 
phenomenon of  ordinary rotational polarization. Such a medium with 
enantiomorphic symmetry would perhaps still enable the realization 
of  certain dissymmetric chemical reactions or the separation of  the 
right and left substances in a racemic mixture or even depositing from 
a solution of  substances in a unique form with symmetric molecules, such 
as sodium chlorate which usually deposits in the form of  dissymmetric 
mixed right and left crystals.

On the contrary, the electric field or the magnetic field acting 
individually may not cause a dissymmetric reaction, because these 
phenomena are consistent with the existence of  a plane of  symmetry.

Let us assume that we will superimpose a torsional dissymmetry (b) 
and magnetic dissymmetry (d), we will again receive symmetry (e) which is 
a subgroup of  the symmetry of  the electric field (c).

Let us take a piece of  wire, magnetize it and twist it. When the 
twist occurs in the wire through which the electric current flows, an 
electromotive force appears if  it is arranged in a closed circuit (Wiede-
mann’s experiment).

Symmetry conditions show us that it may happen that bodies 
with dissymmetric molecules (capable of  ordinary rotation) will be 
dielectrically polarized when placed in a magnetic field.

Finally, let us assume that we apply torsional dissymmetry (b) and electric 
field (c); we will again have symmetry (e) which is a subgroup of  magnetic 
symmetry. The iron wire, through which the electric current flows, is 
magnetized in the direction of  its length when it is twisted (Wiedemann’s 
experiment).

The conditions of  symmetry allow us to imagine that the body with 
dissymmetric molecules maybe will undergo magnetic polarization after 
placing it in the electric field.

Hall Effect

Let us apply an electric field (c) and a magnetic field (d) in the same 
medium, with the direction of  both fields at a right angle to each other. 
In this situation, the only element of  symmetry common to both fields 
is the symmetry plane containing the direction of  the electric field and 
perpendicular to the direction of  the magnetic field. Therefore, for the 
entire symmetry we will have plane P [group 4].
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On both sides of  the plane, the phenomena will have to be symmetric, 
but in the plane, the symmetry no longer indicates the existence of  
any constraints. Consider, for example, three orthogonal axes and 
a rectangular metal plate perpendicular to axis O x which passes through 
the center of  its shape, and whose sides are parallel to the other axes 
O y and O z. If  the current flows through the plate along axis z, then 
it cannot be an electromotive force along axis y, because plane z O x  
is a plane of  symmetry for the electric current and the plate. If  there is  
no electric current, but along axis x perpendicular to the plate there 
is a magnetic field, then there can be no current along axis y, because 
axis x is 2fold axis for the field and the plate, and furthermore there is 
a center of  symmetry. If  we now have both a magnetic field along axis x 
and electric current along axis z, then the axis, the center, and the plane 
of  symmetry disappear and nothing obstructs anymore, from the point 
of  view of  symmetry, the electromotive force to appear along axis y.

The theory of  heat propagation and electricity in crystalline bodies 
(Stokes, Thomson, Minnigerode, Boussinesq) shows that for certain 
crystalline media, the so-called rotation coefficients must be taken into 
account. This applies to crystals from family (5) (Lq lq) / Pq and (6)  
(Lq lq) / πq  and their subgroups (1), (2), (3) and (4). These crystals have, 
at most, one axis of  degree q normal to the plane of  simple symmetry 
or alternative symmetry of  degree q, where q is any integer number. The 
magnetically polarized body has symmetry (d) (L∞ l∞) / P∞  which is the 
limiting case of  groups (5) and (6) for q = ∞. All crystals that, according 
to the theory, can have rotation coefficients have as a type of  symmetry 
one of  the subgroups of  magnetic symmetry.

The theory built for crystalline bodies perfectly applies for magnetic 
symmetry, and the existence of  rotational coefficients explains all the 
peculiarities of  Hall’s phenomenon, without the need to introduce into 
the theory of  conductivity anything other than the symmetry of  the field.

If  the electricity is to come to the center of  the metal disk located 
perpendicular to the magnetic field and if  this electricity is collected 
uniformly on the edges of  the disk, then the lines described by the 
electric flux must be spirals (Boltzmann).9

9 It is very interesting that the crystals for which the theory of  Stokes was cre-
ated turned out to be refractory, whereas C. Soret unsuccessfully studied the impact 
of  rotation coefficients in gypsum on thermal conductivity. The Hall phenomenon was 
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Pyroelectric and piezoelectric phenomena

Pyroelectric crystals by necessity have the symmetry of  the subgroup 
of  the electric field symmetry group, because the heating, by conjecture 
homogeneous, does not introduce any dissymmetry by itself. Piezo-
electric crystals are more numerous than pyroelectric crystals. In fact, 
they include all these pyroelectric ones and also crystals that under the 
influence of  mechanical load assume only the symmetry lesser than 
the symmetry of  the electric field. For example, the blend (tetrahedral 
crystal) and quartz have symmetries that are not subgroups of  the 
electric field. The quartz has symmetry 2L3, 3(L2 L′2), a double 3-fold 
main axis and three 2-fold axes, non double perpendicular to this axis. 
For example, by squeezing along the 2-fold axis, cylindrical dissymmetry 
(a) is added to this of  quartz; everything that remains as elements 
of  symmetry is (L2 L′2), a 2-fold non double axis which can become 
the direction of  electrical polarization.

It can also be demonstrated in the same way that by squeezing in the 
direction perpendicular to both the 2-fold axis and to the 3-fold axis, 
polarization will be created along the 2fold axis and that the coefficients 
that affect the characteristics of  these two modes of  polarization 
generation are equal and have opposite signs. So, we can predict some 
special features of  this phenomenon; but these symmetry conditions 
are not the only ones that occur in the general theory.10

6. Relationships between characteristic symmetries  
of  different media

We thought that the non-crystalline material with no rotational force 
does not introduce by itself  whatever dissymmetry into the system; 

observed only in the case of  metals, and gypsum is a dielectric. Rotation coefficients 
would be perhaps perceptible upon using a crystallized metallic body exhibiting the 
necessary dissymmetry, but I do not think that we currently have the right substance 
to conduct an experiment.

The theory of  thermal conductivity in crystals is presented in the latest arti-
cle by C. Soret (Soret 1893, pp. 241–259). Lord Kelvin was the first to notice that  
Hall’s phenomenon provided evidence of  the existence of  rotational coefficients 
(Thomson 1882). 

10 The complete general theory of  piezoelectric properties of  crystals was devel-
oped by W. Voigt (Voigt 1890; Riecke, Voigt 1892). 
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we adopted by default the same assumption for the medium which fills 
the empty spaces of  the material. This quite natural, but completely 
heuristic assumption is necessary. It shows well that we cannot get the 
concept of  absolute symmetry; we must arbitrarily choose symmetry 
for a specific medium and deduce the symmetry of  other media. 
What is more, this relative symmetry is the only one that interests us. 
For example, if  the whole system moves at a certain velocity and we 
consider in it a certain body A, then in general it will be useful to us to 
know the symmetry of  body A relative to the system without taking 
into account the conjoined dissymmetry arising from the motion of  
the entire system.

Let us assume that in electricity we know only the general phenomena 
of  static electricity, dynamic electricity, magnetism, electromagnetism 
and induction, then nothing will tell us exactly what kind of  symmetry 
should be assigned to the electric field and the magnetic field. For 
example, for the magnetic field, we could choose symmetry (c) (which 
we assigned above to the electric field) and, reasoning as we did, we 
necessarily would have to take as symmetry of  the electric field group 
(d) (which we assigned above to the magnetic field). In such a system, 
there would be no absurdity or contradiction with our initial hypothesis 
on total symmetry of  matter.

General phenomena of  electricity and magnetism, therefore, show 
us only the relationship between the symmetries of  the electric field 
and the magnetic field, so that if  we accept (c) for the symmetry 
of  one, we must accept (d) for the symmetry of  the other and vice 
versa. To remove this indeterminacy, it is necessary to introduce other 
phenomena, electrochemical phenomena or contact electricity, pyro- 
or piezoelectric phenomena and even Hall phenomenon or magnetic 
rotational polarization.

The dimensions of  electrical and magnetic quantities give an example of  
indeterminacy quite comparable to the one that we just cited for symmetry 
of  electric and magnetic media. General phenomena of  electricity and 
magnetism similarly are not able to remove this indeterminacy; to eliminate 
it, other phenomena should be taken into account, e.g. electrochemical 
phenomena.11

11 An attempt in this direction has already been made by M. Abraham (Abraham 
1893).
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7. Concluding remarks
The characteristic symmetries of  phenomena are undeniably the subject 
of  general interest. From the point of  view of  applications, we see that 
the conclusions that we can draw from the reflections on symmetry are 
of  two types.

The first are some negative conclusions; they are a response to an 
undeniably true statement: there is no effect without a cause. The effects are the 
phenomena which always require some dissymmetry in order that they 
can occur. If  this dissymmetry does not exist, then the phenomenon is 
impossible. This often stops us from wandering in search of  phenomena 
impossible to realize.

Reflections on symmetry still allow us to formulate a second kind 
of  conclusions, those of  a positive nature, but which do not give the 
same certainty as those of  a negative nature. They correspond to the 
statement: there is no cause without any effects. The effects are phenomena 
that may occur in a medium showing some dissymmetry; we have 
valuable hints here to discover new phenomena, but these predictions 
are not accurate predictions, such as those of  thermodynamics. We have 
no idea about the order of  the magnitude of  the anticipated phenomena; 
we also only have an imperfect idea of  their exact nature. This last 
remark shows that we must avoid drawing categorical conclusions from 
negative experience.

Consider, for example, a tourmaline crystal which has symmetry that 
is a subgroup of  electric field symmetry. We come to the conclusion 
that such a crystal can be electrically polarized. Let us place the crystal 
in the electric field with the axis at 90° to the field. The polarization 
does not manifest itself  in any way, there is no noticeable torque acting 
on the crystal and one could think that the crystal is not polarized or if  
the polarization exists, it is smaller than the one that could be measured. 
However, the polarization exists and for it to appear, the experiment 
should be modified, e.g. through homogeneous heating of  the crystal 
which does not change anything in its symmetry.
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Commentary to the English translation
Andrzej Ziółkowski

1. Footnotes to the main text

P1. The definition of  symmetry outlined by Pierre Curie in several para-
graphs below is neither clear nor precise. It can probably be best 
described as intuitive. On the one hand, it refers to the classic definition 
of  symmetry, limited to geometric objects (figures, solids), having its 
source in ancient Greece. On the other hand, Pierre Curie creatively 
wipes the trail here to a very general contemporary understanding of  
the concept of  symmetry as a universal property of  comprehensive 
application. The work initiated by Pierre Curie was successfully 
completed by German mathematician Hermann Weyl who was the 
first to formulate the contemporary definition of  the concept of  
symmetry as a certain universal philosophical category characterizing 
the organizational structure of  all systems existing in the universe 
(Weyl 1952, p. 3):

[…] Starting with a slightly unclear concept of  symmetry 
= harmony of  proportions, in these four lectures gradually, 
first, it is developed the geometric concept of  symmetry… 
to finally get to the general idea underlying all these 
special systems, namely the invariability of  configuration 
of  elements when subjecting them to a certain group of  
automorphic transformations. […]

According to Weyl, the quintessence of  symmetry is 
property of  the invariance of  the object (of  any kind) 
when subjecting it to a certain set (group) of  automorphic 
transformations.

A general, very capacious contemporary definition of  symmetry which 
the author of  the present Commentary would formulate is as follows:

Definition of  Symmetry
Symmetry is the invariance (stability, durability, constancy, 
isotropy) of  some feature (geometric, physical, biological, 
informational, etc.) of  an object (an object can be a geometric 
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system, a material object, a natural phenomenon, a physical 
law, a social relation, a process running in time, a physical 
field, etc.) after subjecting it to transformations from a certain 
set (transformations can be shifts, mirror images, rotations, 
changes in order, etc.) with respect to which the symmetry 
is considered.

As shown by this definition, infinitely many different types of  symmetry 
exist, depending on the category of  objects considered, the type of  
object features analyzed and the types of  transformations which the 
objects may be subjected to. With respect to some feature, an object 
may be simultaneously symmetric due to one type of  transformation 
and dissymmetric due to another type of  transformation. With respect 
to another feature, the same object may yet be symmetric relative to 
both previously considered types of  transformations. The feature 
of  symmetry is therefore a very comprehensive and rich concept.

A precise mathematical definition of  symmetry can be found in 
Appendix B entitled Symmetry, in the book of  Jan Rychlewski, Dimensions 
and Similarity (Rychlewski 1991b, pp. 171–184). In the Appendix, 
a concise outline of  the general formal language of  symmetry (quantitative 
model of  symmetry) is presented, applicable for the examination of  any 
situation in which the concept of  symmetry occurs. The key elements 
of  the mathematical apparatus of  algebraic theory of  symmetry defined 
in Appendix B and discussed in examples are the concepts of: Γ-sets, 
orbits, orbit markers, invariants and invariant functions. The algebraic 
theory of  symmetry is a versatile tool enabling the analysis of  all types 
of  symmetry. In Appendix B, important results of  the symmetry 
theory are briefly presented, such as the ornament principle (expressing 
the deepest property of  complex symmetric objects in the simplest 
way), the representative theorem for symmetric objects, the theorem on 
the symmetry of  causes and effects of  physical laws, and the theorem on the 
invariant extension of  any function.

The full mathematical theory of  symmetry was developed in Jan 
Rychlewski’s Symmetry of  causes and effects (Rychlewski 1991a) of  which 
Appendix B is a very compact synopsis and motivation.

A mathematically precise contemporary definition of  material 
symmetries, along with definitions of  the necessary related concepts, 
is recalled in the Final Comments section of  the present Commentary.
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P2. In the light of  the modern definition of  symmetry, it can be 
guessed that by recovery operations the author understands, as for the 
essence, operations leaving a given system (object) unchanged, which 
are nowadays called symmetry operations. However, in all his work, the 
author uses the concept of  recovery operations in a broader sense, 
namely, that of  certain sets of  operations of  a special type (e.g. rotations, 
mirror reflections, etc.), and also subsets of  specific operations that 
do not lead to a change (e.g. of  shape) of  a given object (e.g. rotations  
by 90°), i.e. actual symmetry operations. For this reason, it was decided to 
use a literal translation of  the original phrase, i.e. ‘recovery operations’, 
in the belief  that this would prevent misunderstanding.

P3. From the broader context, it can be guessed that by displacement 
the author understands not only classic linear displacement, but also 
angular displacement, i.e. rotations. Thus, by recovery (symmetry) operation of  
the first type the author understands operation of  the linear displacement 
or angular displacement, i.e. rotation. Also from the context, one can 
guess that by the recovery operation of  the second type the author understands 
the mirror reflection operation. The author’s definition of  a mirror image 
operation as ‘…symmetric transformation in the right sense…’ is, in the light 
of  the modern definition of  symmetry, inaccurate.

It is worth noting that the difficulties the reader may have with the 
correct understanding what types of  symmetry are discussed originate 
apparently from a certain methodological error which is frequent 
even nowadays when defining various types of  symmetry. Namely, 
transformations of  a symmetry element, relative to which symmetry  
of  the object is examined (e.g. inversion axis, alternating axis, mirror 
reflection of  triad of  the coordinate axes, etc.), are discussed rather 
than transformations of  the object the symmetry of  which is examined 
when submitting it to a specific type (group) of  transformations. 
A substantively correct, contemporary definition of  symmetry gives 
a hint on how to ensure precision and clarity in determining the 
type of  symmetry under examination. Following it, one should talk 
about the inversion, mirror reflection, twisting or change of  order 
of  an object whose symmetry is being examined, and not about the 
inversion, mirror reflection, etc. of  the symmetry element relative to 
which a given transformation operation possibly leading to symmetry  
is executed. Even if  the latter is ‘simpler’ due to, for example, brevity  
of  expression.
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P4. As a standard, we imagine a rotational axis of  symmetry as 
a straight line (line segment) around which the rotation is made. However, 
there are situatitons (shapes of  objects) when the up-down orientation 
of  the item relative to the rotation axis is important. A typical example 
is that of  a pyramid with a polygon base mentioned by Pierre Curie.  
If  the tip of  the pyramid points up and the pyramid is rotated around 
its axis, then its shapes will coincide at some specific angles. Similarly,  
if  the tip of  the pyramid points down and the pyramid is rotated, then its 
shapes will also coincide at specific angles. However, at no rotation angle 
of  the pyramid around its axis will the shape of  the pyramid with the 
tip up coincide with the shape of  the pyramid with the tip down. To be 
able to distinguish and describe such situations, the concept of  polar axes 
was introduced, i.e., axes whose sense relative to the object examined in 
terms of  its symmetry is important. Pierre Curie says that such axes are 
of  a ‘different type’ even though they actually concern the same axes and 
the same transformation types, e.g. rotations. The difference between 
axes Lq and lq is graphically illustrated in Figure S1.

L∞

l∞≠L∞
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Fig. S1. Graphic illustration of  the difference between axes of  symmetry Lq and lq.
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In crystallography, also today, many concepts of  various ‘types’ 
of  symmetry axes are used, e.g. inversion axis, alternating axis, roto-
inversion axis, etc. The difference between the first two is graphically 
illustrated in Figure S2.
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Axis of symmetry
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mirror 

reflexion

Center of 
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Fig. S2. Illustration of  the principles of  constructing the inversion and the alternating axes 
from the original (primary) axis of  symmetry.

P5. The text often uses two names of  the types of  symmetry axes; 
these are the 2-fold axis (axe binaire) and the double axis (axe doublé) which 
can be easily mistaken.

The 2-fold symmetry axis means that when an object is rotated around 
it by 180°, the original shape and the shape after rotation coincide (the 
shape of  the object is invariant). The double axis of  symmetry means that 
when an object is turned upside down relative to it, rotated by 180°, the 
original shape and the shape after rotation coincide; see also Figure S1. 
Thus, completely different sets of  recovery (symmetry) operations are 
associated with the 2-fold axis and the double axis. The literature often 
mentions that upon changing the sense of  the axis, the object remains 
invariant. This expression is in principle incorrect, although illustrative, 
because it is the object whose symmetry is examined that is subjected 
to transformations in order to find out whether it is symmetric when 
subjecting it to a specific type of  transformation.

It is also worth noting that the frequently used term ‘repeatability’ 
means rotation operation around a certain axis of  symmetry.

P6. One of  the basic resources used in crystallography is the widely 
accepted Table of  32 crystallographic classes containing a list of  all possible 
symmetry point groups of  crystals (i.e. symmetries with respect to such 
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elements of  symmetry as center of  symmetry, plane of  symmetry and symmetry axis). 
The admissible transformations are three-dimensional rotations, inversions 
and mirror reflections; whereas in accordance with the theorem on 
crystallographic restrictions, crystals can only have 2, 3, 4 and 6-fold symmetry 
axes. Crystallographic classes were divided into seven crystallographic 
systems, with the division being based on sets of  symmetry groups with one 
or more common elements of  symmetry. Naturally, this is not the only 
possible classification and division. Presented in Pierre Curie’s work, 
Table 1 makes a division of  a certain set of  objects analogous to the 
above- described standard division of  crystals into classes and families 
with respect to elements of  symmetry and groups of  symmetry of  these objects. 
However, the set of  objects Curie considered is qualitatively broader than 
crystals (it contains physical fields), and the set of  symmetry elements 
and the set of  symmetry transformations considered are also broader.

By analogy, Curie’s crystallographic class corresponds to the standard 
crystallographic system, while Curie’s family corresponds to the standard 
crystallographic class.

The classic Table of  32 crystallographic classes concerns static geo - 
metric systems and discrete transformation operations that lead to 
invariance, i.e. in relation to which systems are symmetric (static 
crystallographic shapes are recovered through the discrete value of  the 
angle of  rotation around the axis of  symmetry, etc.). Table 1. includes 
geometric systems in motion – kinematic, e.g. rotating, as is the case with 
a magnetic field or a sphere with vortical fluid. In Table 1., Curie takes into 
account continuous transformations that can lead to symmetry (invariance) 
of  objects (rotation by any angle, even infinitely small, recovers shape). 
Continuous symmetry transformations lead to the concept of  limiting 
groups of  symmetry. The heuristic approach and non-standard elements 
contained in Table 1 proved to be creative and cognitively inspiring, and 
initiated the process of  generalizing the concept of  symmetry which led to 
the understanding of  its deepest essence and developing a contemporary 
definition of  symmetry formulated half  a century later by Herman Weyl.

In order to highlight the relations between standard crystallographic 
systems and the symmetry classes distinguished by Pierre Curie, an extra 
column was added to Table 1. by the translator with specific international 
denotations of  Curie’s families, i.e. those of  Hermann-Mauguin (H-M) 
classification. Table 3.2.1.3 (the 47 crystallographic face and point forms, 
names, eigensymmetries, and occurrence in the crystallographic point 
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groups (generating point groups)), Figure 3.2.1.1 (the 47 crystal forms 
that crystals may take) and Table 3.2.1.4 (names and symbols of  32 
crystal classes) presented in the work of  (Hahn et al. 2016) were very 
helpful in establishing these denotations.

P7. Enantiomorphic figures – from the Greek enantios meaning 
‘opposite’. Two objects, e.g. flat shapes and/or geometric solids, are 
enantiomorphic when they are mirror images of  each other (are formed 
by a mirror reflection). As this definition implies, there can be only two 
objects (figures) which are mutually enantiomorphic. It also follows 
from the definition above that all enantiomorphic objects are congruent 
objects (they have the same size and shape).

The feature of  enantiomorphism determines the way in which two 
enantiomorphic objects are formed, and thus how they are related 
to each other, but it does not determine whether or how they are 
symmetric. Enantiomorphic figures may or may not be symmetric due  
to some set of  transformations other than mirror reflection. The feature 
of  enantiomorphism does not specify (says nothing about) whether  
two flat enantiomorphic figures are right and/or lefthanded figures or 
whether two three-dimensional enantiomorphic objects (e.g. orthogonal 
triad) are right- and/or left-handed objects. Determination whether 
enantiomorphic objects are symmetric (superimposable on each other) 
due to rotation transformations requires further examination. In crys-
tallography or mineralogy, two crystallographic systems may or may 
not be symmetric due to a set of  rotations in three-dimensional space.  
In order to indicate that some enantiomorphic crystallographic systems 
are not symmetric due to rotations (they are not superimposable on 
each other due to some set/class of  rotations), facets are often placed 
on the drawings of  such systems to illustrate the type of  dissymmetry.

Dissymmetric enantiomorphic objects (non superimposable on each 
other by rotation) are called chiral objects – from the Greek word kheir 
meaning ‘hand’). The concept was proposed by Kelvin in 1894:

[…] I call any geometric figure or group of  points, “chiral”, 
and say that it has chirality, if  its image in a plane mirror, 
ideally realized, cannot be brought to coincide by itself  […] 
(Lord Kelvin, 1894).

The study of  various types of  chiral objects is currently a subject 
of  very lively scientific interest, e.g., in pharmacological chemistry, 
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since chiral molecules with the same chemical composition can exhibit 
radically different effects on the human body depending on their 
handedness (threedimensional configuration of  the internal structure). 
The contemporary definition of  symmetry indicates that one should be 
careful when qualifying objects as chiral. For example, flat models of  
the left and right ‘hands’ obtained by mirroring them against a mirror 
plane set perpendicular to the model plane are chiral due to two-dimensional 
rotations limited to the model plane in which these models lie. By rotating 
them only in the model plane (two-dimensional rotations), they cannot 
be superimposed on each other to coincide. However, these models are 
not chiral due to three-dimensional rotations, e.g. transforming the ‘left’ model 
by rotating it by 180° going outside the model plane allows this model 
to be superimposed on the ‘right’ model to coincide, so the models are 
then superimposable, cf. Figure S3.

Rotation of the object in the model plane (2D) does 
not allow recovery of the original shape, but rotation 
by 1800 going outside the model plane (3D) allows 
recovery of the original shape.

Model plane

M
irr

or
 p

la
ne

Rotation 
1800

   Translation allows the recovery of 
the original shape.

Model

plane Model

planeMirro
r

plane

x x
Translation

Fig. S3. Graphical illustration of  the ambiguity of  the definition of  the chirality of  an object, 
in the case of  two-dimensional objects, due to the possibility of  bringing the mirror image 
(Kelvin definition) into conformity with the original. Depending on the mutual alignment 
of  the mirror plane and model plane and the class of  admissible recovery (rotation) 

transformations, the same object can be qualified as chiral or not.

The mutual orientation of  the mirror plane and the model plane is 
also important. When the mirror image plane is parallel to the model 
plane, then the flat model of  the hand and its mirror image can be 
brought to coincidence by simple translation, so according to Kelvin’s 
definition, such objects are not chiral.

Let us further consider a coordinate system in three-dimensional 
space (triad of  versors). When the versors are indistinguishable, e.g. 
all are in black, then a person who has not seen how two triads were 
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formed will not be able to tell their left- or right-handedness, and 
therefore determine whether they are chiral or not. This is because 
two orthogonal triads always can be superimposed on each other to 
coincide by rotation in three dimensions. However, when the individual 
versors are distinguishable, for example due to color differences, then 
it will be possible to determine whether two triads are chiral (one is 
right- and the other is left-handed), because it will be either possible 
to superimpose all versors by three-dimensional rotation so that they 
coincide in geometric position and colors (non-chiral triads) or not 
(chiral triads).

The examples considered above show that the deepest essence of  
chirality is not in the geometrical characteristics formulated by Lord 
Kelvin as its defining distinguishing feature, but in some permutational 
(ordering) features of  the internal structure of  an enantiomorphic pair. 
It seems to be natural to extend the concept of  chirality to include 
the dissymmetry of  the ordering of  any two systems built with the 
same components. Take, for example, isomers of  a molecule with 
four different types of  ligands. We will have possibility of  four (four!) 
factorial orders of  the internal structure of  such a molecule. In general, 
two isomers with a specific ordering of  structure – in view of  some 
property – can be dissymmetric or symmetric with respect to a certain 
pair of  indices that characterize the internal structure, and therefore 
exhibit chirality or not. A similar situation occurs in the case of  internal 
symmetry (with respect to a pair of  indices) of  the components of  the 
fourth-order tensor.

The present discussion suggests the need and possibility of  con-
structing a more precise and general new definition of  chirality, in which 
the existence of  dissymmetry of  a tensor characterizing the internal structure of  
an object, e.g. with respect to a pair of  specific indices, should be adopted 
as a defining indicator of  chirality.

The above observation also provides a hint as to how a rational 
categorization and naming of  chiral objects can be introduced using the 
concept of  internal (permutational) symmetry of  tensors.

The property of  chirality and the various physico-chemical effects 
associated with it provide spectacular experimental evidence of  the 
validity of  the statement formulated by Pierre Curie that it is dissymmetry 
that generates the occurrence of  a phenomenon.
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P8. The equivalents between the contemporary international de-
notations of  Hermann-Mauguin’s (H-M) convention and Friedel’s 
convention (using the concepts of  Holoedria, Hemiedria, Tetartoedria, etc.) 
can be found, for example, in Table 3.2.1.4 (Hahn et al. 2016).

2. Final Comments

It is worth pointing out a few reference works that can facilitate un-
derstanding and help promote the use of  the results of  Pierre Curie’s 
work for one’s own needs.

Free Textbook for College-Level Mineralogy Courses (Anonim 2022) 
and Mineralogy, Lecture Notes (Nelson 2017) both provide clear and 
concise information on the current state of  knowledge, contemporary 
crystallographic nomenclature, as well as graphic illustrative materials, 
e.g. three-dimensional models of  various crystallographic shapes, photos 
of  minerals and numerous other very helpful information.

Other very helpful descriptive and graphical explanations of  
terms and concepts relating to symmetry, including the concept  
of  limiting point groups introduced by Pierre Curie, as well as non-standard, 
innovative kinematic elements defining the limiting point groups of  
symmetry, can be found in an article by A.V. Szubnikow (Szubnikow 
1956, English translation (1988)). Figures 1 and 2 from Szubnikow’s 
article with a geometric interpretation and a schematic representation  
of  limiting point groups were adapted in Figures S4 and S5. The following 
equivalence relations apply between the denotations of  limiting axial 
groups of  symmetry introduced by Pierre Curie in Section 4 of  the 
translated work and the nominal Hermann-Mauguin (H-M) international 
denotations: (a) ↔ ∞/m m,  (b) ↔ ∞ 2, (c) ↔ ∞ m, (d) ↔ ∞/m,  
(e) ↔ ∞. The symmetry of  the electric field iso ∞ m (a stationary 
cone), the symmetry of  the magnetic field is ∞/m (a rotating cylinder).  
The symmetry ∞ ∞ m denotes isotropy (a stationary sphere).

All limiting symmetry groups contain the same common element of  
symmetry, i.e. the axis of  symmetry of  an infinite degree.

The elements of  symmetry of  limiting symmetry groups are as follows: 
the group of  a rotating cone (∞) has a symmetry axis of  an infinite degree, 
the group of  a stationary cone (∞ m) has a symmetry axis of  an infinite 
degree and an infinite number of  planes of  symmetry containing the 
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axis of  symmetry, the group of  a rotating cylinder (∞/m) has a symmetry 
axis of  an infinite degree, one transverse plane of  symmetry and a center 
of  symmetry, the group of  a twisted cylinder (∞ 2) has a symmetry axis of  
an infinite degree and an infinite number of  transverse 2fold axes of  
symmetry, the group of  a stationary cylinder (∞/mm) has a symmetry axis 
of  an infinite degree, an infinite number of  transverse and longitudinal 
planes of  symmetry, an infinite number of  transverse 2fold axes  
of  symmetry and a center of  symmetry, the group of  a sphere with no sym- 
metry planes and no center of  symmetry (∞ ∞) has an infinite number of  
symmetry axes of  an infinite degree; it is a sphere with all diameters 
twisted to the right or left; the group of  a stationary sphere(∞ ∞ m)has 
an infinite number of  symmetry axes of  an infinite degree, an infinite 
number of  symmetry planes, and a center of  symmetry.

It is worth noting that attempts to describe the symmetry of  crys- 
tallographic systems using second-order symmetric tensors, as 
encountered in crystallographic literature, cannot be successful in the 
light of  current knowledge.

A correct tensorial description of  the symmetry (anisotropy) classes 
of  elastic properties of  three-dimensional (3D) materials considered 
in the mechanics of  continuous media, i.e. the external symmetries  
of  Hooke’s tensor with respect to the group of  orthogonal tensors 
Q (QT Q = I)  describing rotations and mirror reflections, can be 
found in the work of  (Kowalczyk-Gajewska, Ostrowska-Maciejewska 

∞m ∞2∞/m

∞∞m∞∞

∞ ∞/m m

Fig. S4. Geometric interpretation of  the limiting point groups of  symmetry; an adaptation 
of  Figure 1 from the work of  Szubnikow (Szubnikow 1956, English translation (1988)).
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2009). Equivalence (correspondence) relations between the classes of  
symmetry of  crystallographic systems and the classes of  symmetry 
of  linear-elastic materials (Hooke’s tensor symmetry classes) can be 
identified, see Table P1.

The material symmetries of  elastic properties of  two-dimensional 
(2D) materials can be correctly described using second-order symmetric 
tensors. Such a description can be found in the work of  (Blinowski  
et al. 1996).

Sandra Forte and Maurizio Vianelllo (Forte, Vianello 1996) proved in 
1996 that there exists a maximum of  8 classes of  symmetry for a linearly 
elastic material (Hooke’s tensor). It should be remembered that Forte 
and Vianelllo’s findings are valid if  and only if  the tensor describing 
the material properties – here: the Hooke’s tensor – has the following 
internal symmetries: (~ )1234 2143 3412

ijkl jikl klijH H H< > < > < >= = = =H H H  i,k, l  
1,2,3, where Hijkl  denote the components of  the Hooke’s tensor in any 
fixed tensorial basis.

The material model, e.g. the Hooke’s tensor, should not be confused 
with a real body, e.g. crystalline material. The Hooke’s tensor is a model 
of  linearelastic behavior and its symmetries reflect the symmetries 
of  such behavior. However, the Hooke’s tensor is used to model the 
behavior of  crystalline materials and, for example, amorphous materials, 
as long as the behavior of  a given material in a certain range of  loadings 
can be considered as linear and elastic with a good approximation. 

∞m ∞2∞/m

∞∞ m∞∞

∞ ∞/m m

Fig. S5. Schematic graphical illustration of  limiting point groups of  symmetry; adaptation 
of  Figure 2 from the work of  Szubnikow (Szubnikow 1956, English translation (1988)).
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The division into crystallographic systems is based on identification 
of  certain common elements of  symmetry characterizing the internal 
structure of  crystalline materials. Nothing prevents the symmetries of  the 
Hooke’s tensor from coinciding to some extent with the symmetries of  
crystallographic systems. However, it can be expected that the symmetries 
of  the Hooke’s tensor will be broader (richer) than the symmetries 

Table P1. Equivalence relations between classes of  symmetry of  crystallographic 
systems and classes of  symmetry of  elastic properties of  linearly elastic materials 
(external symmetries of  the Hooke’s tensor).

No.
Cl. of  symmetry  

of  crystallo- 
-graphic system

No.
Class  

of  material 
symmetry

Notes

1. triclinic 1. anisotropy
2. monoclinic 2. monoclinic
3. orthorhombic 3. orthotropic
4. tetragonal 4. tetragonal
5.

trigonal
(rhombohedral)

5.

trigonal

In recent studies, the 
symmetries of  trigonal 
and hexagonal systems are 
increasingly adopted as 
a single crystallo-graph-
ic system (hexagonal).6. hexagonal –

–

6.

transversely 
isotropic

Transversely isotropic 
(cylindrical) symmetry is, 
in the nomenclature in-
troduced by Pierre Curie, 
the limiting symmetry of  
rhombohedral system. 
The classical systematics 
of  crystallographic sys-
tems does not contain this 
symmetry.

7. cubic 7. cubic

–

8.

isotropy

Isotropy is the limiting 
symmetry of  a cubic (reg-
ular) system, absent in the 
classical systematics of  
crystallographic systems.
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of  crystallographic systems (from the point of  view of  a linear-elastic 
behavior), because the Hooke’s tensor generally enables a description of  
a wider range of  materials than just crystalline materials. Reality confirms 
this, because crystallographic systems do not include Curie’s limiting 
symmetries, while the symmetries of  the Hooke’s tensor do.

3. Mathematical definitions of  symmetries  
used in materials research

Below are recalled some mathematically precise, modern definitions 
of  internal symmetries (due to permutations of  indices) and of  external 
symmetries (due to rotations and mirror reflections in threedimensional 
space) of  a set of  tensors of  order p, along with definitions of  related 
concepts. These types of  symmetries are currently most often used 
to characterize the symmetry of  material properties in their tensorial 
description. More information on this subject can be found in Janina 
Ostrowska-Maciejewska’s book (Ostrowska-Maciejewska 2007).

Definition S1. A permutation operation σ× on tensor T is a linear mapping 
defined with the following rule

... ... ( ) ( ) ( ): ... ... ,

( ), ( ), ... , ( ) , , ,
12 1 2 12 1 2

1 2
p p p σ σ σ p

p

σ T σ T

σ σ σ σ p σ

          

    

T T e e e T e e e

T T 

 

(S.1)

where σ (1), σ (2). ... , σ(p) is a preset permutation of  the first p natural 
numbers 1, ... , p, and T1,2,..., p  are components of  tensor T of  p-th order 
in the tensorial basis  ...1 2 p  e e e . A permutation of  a tensor means 
change in the order of  components of  its tensorial basis.

The permutation operation can be interpreted, in a completely 
equivalent manner, as a permutation of  the components of  the tensor 
representation written down in a fixed basis,

( ) ( )... ( )( ), ( ),..., ( ) ... ,1 2 1 21 2 p
σ σ σ p pσ σ σ σ p T        T T e e e 

 
(S.2)

For permutation operations σ of  a tensor, it is convenient to introduce 
the following more compact notation ( ( ) ( ) ... ( )( ), ... , ( ) 1 21 σ σ σ pσ σ σ p       T T T 

( ( ) ( ) ... ( )( ), ... , ( ) 1 21 σ σ σ pσ σ σ p       T T T . When it is known from the context that the order of  
only two indices changes, it is convenient to specify only those indices 
that are changed, e.g. in the case of  fourth-order tensors T<4,2> instead 
of  T<1,4,3,2>.
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The permutation operation is an automorphism, i.e. it is a reversible, 
linear transformation of  tensor space p  on itself  ( : )nap pσ   .

The set of  all permutation transformations operating in the space of  
tensors of  a fixed order constitutes the group ( )σ , cf. Definition S9, 
which allows introducing the concept of  the internal symmetry of  tensors. 
The size of  this group is finite and equals p! elements, for example, for 
tensors of  the 4-th order there are 4! = 24 elements in this group.

Definition S2. An internal symmetry group of  tensor pT   is a subset 
of  the permutation group σ , whose elements satisfy the condition

                { ; }, .σ σ σ σσ σ    T TT T                        (S.3)

The tensors T satisfying the condition are called (internally) symmetric 
tensors with respect to permutations σσ  T .

A tensor T is (internally) symmetric over a pair of  indices (α, β), if  equality 
holds,  ,

... ..... .. ... ..... .., ~β α
α β β αT T  T T , i.e. when the elements of  the 

tensor T representation in any fixed basis when swapping the places 
of  indices (α, β) are the same. In the case of  fourth-order tensors, the 
symmetry with respect to permutation operation < 1,3,2,4 > × means 
that , , , , , ,1 2 3 4 1 3 2 4    T T T , i.e. Tijkl → Tikjl  in any fixed basis.

Definition S3. A tensor is absolutely (internally) symmetric when the group 
of  its symmetries is the entire set of  permutations σ σT  .

Definition S4. A set of  second-order tensors Q with properties,

{ ; , det }2 1T T     Q QQ Q Q 1 Q       (S.4)

is a group and is called the group of  orthogonal tensors.

Definition S5. A subset of  orthogonal tensors for which

{ ; , det( ) },2 1T     Q QQ 1 Q     (S.5)

is a group and is called a proper (special) orthogonal group or rotational group. 
In the literature, this group is often denoted by the symbol SO3, in the 
case of  a three-dimensional Euclidean space generating the considered 
tensor space.

Definition S6. An external symmetry group of  tensor pT     is the subset 
of  all orthogonal tensors Q that satisfy the following condition
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{ ; },    T TQ Q T T     
...( ... )ia jb kc ab cQ Q Q T TQ . (S.6)

Tensors T satisfying the condition are called (externally) symmetric with 
respect to orthogonal transformations TQ  .

Definition S7. A tensor is isotropic when its group of  external symmetry 
is the whole set of  orthogonal tensors T =  , cf. (S.4).

Definition S8. A tensor is hemitropic (also called proper-isotropic) when 
its external symmetry group is the entire set of  proper orthogonal tensors  

T  ,  cf. (S.5).

Note. The above definitions clearly show that the symmetry property 
is a property of  a tensor treated as an integrated entity composed of  
a basis and a representation (a matrix of  components in a given basis), 
and not only a matrix of  tensor components.

Example. If  a fourth-order tensor has three internal symmetries   
T ≡ T<1,2,3,4> = T<2,1,3,4>, T = T<1,2,4,3>, T = T<3,4,1,2> and all its eigenvalues 
are non-negative, then it is called a Hooke’s tensor. The tensor is used 
to describe (model) the elastic properties of  a linearly elastic material. 
The external symmetries of  the Hooke’s tensor, that is, its invariance 
when subjected to the operation of  orthogonal tensors Q from certain 
subsets determine the symmetries of  the material modeled with its help.

The concept of  a group is one of  the most important concepts 
widely used in building theories (models) of  real physical phenomena.

Definition S9. A group is an algebraic structure G ≡ ({G}, ◊) consisting 
of  a non-empty set of  elements {G}, and an operation "◊" that  
assigns an element from {G} to any pair of  elements from {G} 
( : ( , ) { } { } { })g h G G g h G      , when the operation ◊ satisfies the 
following axioms

, ,
( ) ( ) ( ) ,

( ) , ( )
1 2 3

1 2 3 1 2 3g g g G

e G g G g G h G

i g g g g g g

ii e g g e g iii g h h g e


   

    

       


   

       
(S.7)

i.e. the operation ◊ is associative (i), there exists a neutral element of  the 
group (ii), for each element of  the group there exists an inverse element (iii).
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A group is called commutative (Abelian Group) when the operation 
◊ is commutative 

,
( )

g h G
iv g h h g
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