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Abstract. The use of machine learning methods in the case of incomplete

data is an important task in many scientific fields, like medicine, biology, or face

recognition. Typically, missing values are substituted with artificial values that

are estimated from the known samples, and the classical machine learning algo-

rithms are applied. Although this methodology is very common, it produces less

informative data, because artificially generated values are treated in the same

way as the known ones. In this paper, we consider a probabilistic representa-

tion of missing data, where each vector is identified with a Gaussian probability

density function, modeling the uncertainty of absent attributes. This represen-

tation allows to construct an analogue of RBF kernel for incomplete data. We

show that such a kernel can be successfully used in regression SVM. Experimen-

tal results confirm that our approach capture relevant information that is not

captured by traditional imputation methods.
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1. Introduction

The incomplete data problem exists in a wide range of scientific fields, like medical
diagnosis, clinical trials [1], psychology [2], or face recognition [3]. Inappropriate treat-
ment of incomplete data (in which certain feature values are missing for particular
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samples) may cause large error or even false classification [4], therefore the ability of
handling such a data is fundamental. One of the reasons for missing values in medical
data sets is bad health condition of the patient, which prevents from performing sen-
sitive and time-consuming examinations. In psychology, a client can refuse to answer
some of the questions. While, in face recognition, face can be partially occluded by
the other objects. Since classical learning algorithms cannot be directly applied to
incomplete data sets, their adaptations are necessary.

Usually, missing values are substituted with artificial values that are estimated
from the known samples. As a result, the complete data set is obtained and classical
machine learning methods can be applied [5]. The most straightforward candidates
for imputation are the mean values or medians (generated separately for each feature
based on known values). One could also use the mean value of k Nearest Neighbors
(kNN, see [6]). Such imputation techniques are easy to applied by the practition-
ers, but they produce less informative data, because artificially generated values are
treated in the same way as the known ones.

There are also non-deterministic imputation methods, which estimate a distribu-
tion of the incomplete data set and use it to sample values of unknown features [7].
Such a distribution can be generated with Expectation Maximization algorithm (EM,
see [8]) under some assumptions on missing data, however only if data are Missing
at Random (see the next section for details). This however is difficult to verify in
practice, therefore another possibility is to apply chained equations, which generate
multiple imputations. Such approach produces very good results, but on the same
time it increases the computational time, as many variants of the same data set need
to be generated and then analyzed (see [9] for more details).

Some of the classification and regression algorithms use data distribution directly,
without imputation stage. Such algorithms were proposed, among others, for logistic
regression [10], kernel methods [11, 12], or for the second order cone programming
[13]. Moreover, a few algorithms use raw incomplete data, without generating data
distribution and without imputation stage. One of such algorithms, proposed in [14],
trains Support Vector Machine (SVM) by scaling the margin with respect to known
features of incomplete samples. The other approach, presented by [15], constructs
the embedding mapping of feature-value pairs together with a classification objective
function.

Understanding the reasons why data are missing is important to correctly handle
the remaining data. If data are Missing Completely at Random (MCAR) then there
is no relationship between whether a data point is missing and any values in the data
set. Missing at Random (MAR) means that the absence of a feature is not related
to the missing data, but it is related to some of the observed data. In both cases,
the probability distribution on data space X can be estimated with EM algorithm.
In general, data might be neither MAR nor MCAR, but this case is more difficult to
handle and will not be considered in this paper.

In [16], the authors propose to create an analogue of classical Radial Basis Function
kernel (RBF), based on a Gaussian estimation of data distribution. Its basic idea relies
on modeling uncertainty of missing values with probability measures. After applying
some necessary transformations, such a probabilistic representation is pushed into
classical scalar product in L2 space, producing a kernel matrix in result.

In this paper, we examine this approach in the case of regression SVM method

Accepted, unedited articles published online and citable.  
The final edited and typeset version of record will appear in future



F 
I R

 S
 T

   
V I 

E W

25

(r-SVM). R-SVM [17] predicts the values of target feature from the set of input
features, while ignoring the errors smaller than a fixed distance ε > 0 (this provides
higher stability of prediction). We test this approach on data sets from UCI repository
[18], with artificially removed data. The experiments confirm that our approach is
more accurate than traditional imputation methods.

2. Model

Let (xi, yi)i ⊂ X ×R, where X ⊂ RN , be training data. In the simplest case of linear
functions f = 〈w, x〉 + b, where 〈·, ·〉 denotes a scalar product on X, r-SVM aims to
minimize:

L(w, b) =
1

2
‖w‖2 + C

∑

i

(ξi + ξ∗i )

subject to: 



yi − 〈w, xi〉 − b ≤ ε+ ξi
〈w, xi〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0,

where ξi and ξ∗i are the slack variables, which allow to define soft margin [17], see
Figure 1.

Figure 1. A schematic diagram of SVR.

The constant C > 0 determines the trade-off between the flatness of f and the
threshold up to which deviations larger than ε are tolerated. Usually, such optimiza-
tion problem can be solved in the dual form, where the arbitrary kernel functions
extends it to a nonlinear situation. Therefore, most of the effort goes into defining
an appropriate kernel mapping for a particular problem. In remaining part of this
section we define kernel mapping for incomplete data (based on [16]).

Accepted, unedited articles published online and citable.  
The final edited and typeset version of record will appear in future



F 
I R

 S
 T

   
V I 

E W

26

Let us assume that a data set X ⊂ RN is incomplete. Since we do not know the
values of vector x ∈ X on some coordinates Jx ⊂ {1, . . . , N}, we can define an affine
subspace x + Vx, where Vx := span(ej)j∈Jx and (ej)

N
j=1 denotes a canonical basis of

RN . More generally, we associate every missing data point x with an affine subspace
x+ Vx. We omit subscript x in Vx and Jx due to the clarity of the equations.

Following [16] our main idea is to obtain density estimation F of the data-set,
and then represent the missing coordinates via Fx+V , the conditional density of F on
x+V . Next we apply the regularization with gaussian kernel (that is the convolution
of the resulting density with N(0, γI). Thus the final embedding into a Hilbert space
L2 is given by

Φ : x+ V → F |x+V ∗N(0, γI).

Observe that in the case of complete data (that is when V = {0}), the above approach
yields the classical Gaussian kernel, since Φ(x) = δx ∗N(0, γI) = N(x, γI).

Since the method is strongly dependent on the initial density estimation for sim-
plicity of computations and to avoid possible overfitting we therefore consider the class
of Gaussian densities. Consequently, we assume that F = N(m,Σ) is a Gaussian es-
timation of X. To model the uncertainty on missing attributes of x, we calculate
a conditional density Fx+V of F on the affine subspace x+V of RN . It is well known
that the conditional density of Gaussian, is a Gaussian, and if we fix an orthonormal
base Q in V (which can be identified with orthonormal projection onto V ), then by
[16]

Fx+V (x+ y) = N(mV ,ΣV )(y) for y ∈ V,

where
ΣV := (QTΣ−1Q)−1,

mV := ΣV [QTΣ−1(m− x)].

This is a non-degenerate density in the space x+ V of dimension #J . However, this
conditional density can be identified with a degenerate Gaussian density N(mV ,ΣV )
on RN , where [16]:

mV := x+QmV , ΣV := QΣVQ
T .

This view on missing data as a degenerate normal density is better from our point of
view, as it allows simple formulas for the regularization.

To define an analogue of RBF kernel, we first compute a convolution between
Gaussian estimation of incomplete sample N(mV ,ΣV ) and N(0, γI), where γ > 0, to
avoid degenerated measures:

N(mV ,ΣV ) ∗N(0, γI) = N(mV ,ΣV + γI). (1)

Next, we apply a standard scalar product in L2 space for two samples x, y ∈ X:

〈N(mVx ,ΣVx), N(mVy ,ΣVy )〉γ = N(mVx −mVy ,ΣVx + ΣVy )(0)
= 1

(2π)N/2 det1/2(Σ̂)
exp(− 1

2‖mVx −mVy‖2
Σ̂

), , (2)

where Σ̂ := 2γI + ΣVx + ΣVy . This produces a kernel matrix for r-SVM method.
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This generalizes classical RBF kernel, because in case of complete samples x and
y, we get mVx = x, mVy = y and ΣVx = ΣVy = 0. In consequence Σ̂ = 2γ and

〈N(x, 0), N(y, 0)〉γ =
1

(2π)N/2 det1/2(2γ)
exp(− 1

4γ ‖x− y‖2),

what is similar to classical RBF kernel, except for different parametrization and nor-
malization.

3. Experimental results

We applied our probabilistic representation of incomplete data to r-SVM and com-
pared it with various imputation-based techniques. We considered imputation with
k-Nearest Neighbor (KNN-MV), k-Means Clustering Imputation (KMeans-MV), Sup-
port Vector Machines Imputation (SVMimpute-MV), and Multiple Imputation Chain-
ed Equations (Mice). In KNN-MV, the k nearest neighbors are found with Euclidean
distance and then they are used to impute the missing values [19]. KMeans-MV treats
instances from the same cluster as the nearest neighbors of each other and replace
missing coordinates, in a way similar to KNN-MV [20]. SVMimpute-MV sets the de-
cision attributes (target attribute) as the condition attributes (input attributes) and
the condition attributes as the decision attributes, and uses SVM regression to pre-
dict the missing condition attribute values [21]. Mice samples missing values jointly
from estimated probability distribution [9]. The parameters of the methods were the
same as those presented in [22]: k = 10, for KNN-MV; k = 10, iteration = 100 and
error = 100 for KMeans-MV; RBF kernel with C = 1.0, σ = 0.001 and no shrinking
for SVMimpute-MV. We used KEEL software [23], which does not support parameter
tuning for imputation methods. Therefore, we chose the values recommended by their
respective authors.

For experiment, we selected six data sets from UCI repository and KEEL data set
repository (see Table 1) and we considered two strategies of removing some of their
values. The first strategy simulated MCAR mechanism and removed a fixed percent-
age of features randomly (10%, 20%, and so on, till 80%). In the second strategy,
we defined a structural process of attributes removal satisfying MAR assumptions.
More precisely, we sampled N points x1, . . . , xN of data set X ⊂ RN and for every
x ∈ X we removed its i-th attribute with a probability exp(−t‖x−xi‖Σ)), where ‖x‖Σ
denotes the Mahalanobis norm of x with respect to Σ. The values of t were selected
to remove approximately 10%, 20%, 30%, . . . , 80% of coordinates. Covariance matrix
was computed as a sample covariance from training data.
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Data set #Instances #Attributes γγγ

Abalone 4177 8 2−4

Airfoil Self-Noise 1503 9 2−5

Concrete Compressive Strength 1030 9 2−5

Friedman 1200 5 2−4

Laser 993 4 2−6

Mortgage 1049 15 2−4

Stock Prices 950 9 2−4

Table 1. Summary of data sets. The column γ presents values of parameter γ in
Equation 1. We examined the range of γ ∈ {2−10, 2−9, . . . , 21} and selected γ, for
which the highest R2 score was obtained in case of complete data set. This strategy
was not adjusted for any particular method used in the experimental section.

We applied 5-fold cross-validation procedure, where a data set was divided into 5
equal subsets. In each run, r-SVM with kerenl (2) was train on 4 normalized subsets
and evaluated on the remaining fold. The results were averaged. We used C = 1,
ε = 0.1 and the value of kernel parameter γ shown in Table 1. We used Coefficient of
Determination (R2 score) as a performance measure:

R2 = 1− SSres

SStot
,

where SStot =
∑
i(yi − ȳ)2 is a total sum of squares (yi are the actual values and

ȳ is the mean of these values) and SSres =
∑
i(fi − yi)2 is residual sum of squares

(fi are the predicted values). Usually, the R2 score ranges from 0 to 1 and the best
possible score is 1. However, the R2 can be negative if the chosen model fits worse
than a horizontal line. In such cases, it means that the chosen model fits the data
poorly.
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Figure 2. R2 score obtained when removing attributes using MCAR (the first strat-
egy). The results for SVMimpute-MV are missing, because it requires at least one
complete sample in data set.
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Figure 3. R2 score obtained when removing attributes using MAR (the second
strategy).
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As expected, the prediction is usually more difficult, when more coordinates are
missing. The exception are observed when applying our method to Friedman and
Laser data sets, then R2 score is worse for complete data than for data with 10%–
50% of missing attributes. One can also observe that the performances of all methods
in the case of MCAR and MAR removing strategies are similar. This behavior was
expected in case of our method, because its performance strictly depends on density
estimation’s quality (since the use of EM in both strategies is theoretically justified,
there should be no significant difference between their results).

Visual inspection confirm that our method gave the best prediction in case of most
data sets. Its superiority is evident in case of Mortgage and Stock data, where only
our method achieves the results comparable to the result of complete data set. For
other data sets, the prediction task was more complicated and none of the methods
exceed the level of R2 = 0.3. One can observe that the advantage of our method
was more evident for data with 10%-20% of missing attributes than for data with
70%-80% of missing data. It was also expected, as it is extremely difficult to give
reliable estimation when there is so many missing values.

We analyzed the results of the classification task using a method proposed by
Demšar [24], specifically using the Friedman test with Nemenyi post hoc analysis.
It ranks the methods for each data set (and percentage of missing coordinates) sep-
arately, the best performing algorithm getting the rank of 1, the second best rank
2 etc. Each combination of data set and percentage of missing values is treated as
a separate test, giving one rank measurement per method. The analysis then consists
of two steps: (i) the null hypothesis is made that all methods perform the same and
the observed differences are merely random (the hypothesis is tested by the Friedman
test, which follows a χ2 distribution); (ii) having rejected the null hypothesis the
differences in ranks are analyzed by the Nemenyi test.

For a confidence level of p = 0.05 and given the 7 methods tested over 6 data sets
with different percentage of missing coordinates, the ”critical difference” was calcu-
lated as 0.998 (the difference in mean rank between a pair of methods must exceed
0.998 for the difference to be considered statistically significant). Figure 5 visualizes
the results of this analysis using the CD (critical difference) diagram proposed by
Demšar. The x-axis shows the mean rank over combinations of data set and per-
centage of missing values for each method. Methods are shown from left to right in
increasing (first to last) rank order. Groups of methods for which the difference in
mean rank is not significant are connected by horizontal bars.

As can be observed, the mean rank of our method is better than the others.
However, the difference between our method and KNN-MV cannot be considered
statistically significant in the case of all combinations of data set and percentage of
missing values. Nevertheless, our method is significantly better than all the others
when the percentage of missing values is at the level o 30% and 40%. This is visually
confirmed by the results in Figure 2-3.
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Figure 5. Analysis of statistically significant differences in the regression results.
The mean rank over all combinations of data set and percentage of missing values is
plotted on the x-axis for each method. Methods which are not significantly different
(for p = 0.05), in terms of mean rank, are connected. Some of the SVMimpute-MV
results are missing, therefore we did not took it into consideration in this analysis.
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4. Conclusion

We have presented a method that constructs an analogue of classical RBF kernel for
incomplete data. The ability of working with such a data is of practical importance,
because classical machine learning algorithms cannot be directly applied to data set
with missing values.

When comparing our method with existing imputation techniques, the mean rank
of our method is always better than the others. Moreover, the difference is significant,
when the percentage of missing values is at the level o 30% and 40%.

This confirms that our approach capture relevant information that is not captured
by traditional imputation methods, where the artificially generated values are treated
in the same way as the known ones.
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