
Schedae Informaticae Vol. 24 (2015): 103–112
doi: 10.4467/20838476SI.15.010.3032

Multilinear Filtering Based on a Hierarchical Structure of
Covariance Matrices

Andrzej Szwabe, Paweł Misiorek, Michał Ciesielczyk
Institute of Control and Information Engineering

Poznań University of Technology
ul. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland

e-mail: firstname.lastname@put.poznan.pl

Abstract. We propose a novel model of multilinear filtering based on a hierar-
chical structure of covariance matrices – each matrix being extracted from the
input tensor in accordance to a specific set-theoretic model of data generaliza-
tion, such as derivation of expectation values. The experimental analysis results
presented in this paper confirm that the investigated approaches to tensor-based
data representation and processing outperform the standard collaborative filter-
ing approach in the ‘cold-start’ personalized recommendation scenario (of very
sparse input data). Furthermore, it has been shown that the proposed method is
superior to standard tensor-based frameworks such as N-way Random Indexing
(NRI) and Higher-Order Singular Value Decomposition (HOSVD) in terms of
both the AUROC measure and computation time.

Keywords: tensor-based data modeling, multilinear PCA, random indexing,
dimensionality reduction, multilinear data filtering, higher-order SVD.

1. Introduction

Tensor product, as enabling highly-expressive multi-modal data representations,
has been investigated by many authors as the basic component of algebraic structures
suitable for heterogeneous and multi-relational data representation [1–4]. Some of
these authors have pointed out the fundamental relation between the order of a tensor
and the ‘structuredness’ of data representation (originally having the form of a tuple
set) – the property that explains why the tensor product is the core of ‘the logic of
multilinear data representation’ [1].

104

On the other hand, the recent progress in tensor data processing [4] motivates work
on solutions that enable estimation of probability assigned to any tuple that may be
read from a multidimensional array (i.e., in a tensor) [3]. Obviously enough, to make
a tensor prediction-providing, not just storage-providing, some form of filtering of the
tensor’s fibres must be performed [2,5].

As we show in this paper, such a filtering should reflect variables’ covariances
visible in all the tensors that are flattened versions of the highest-order input tensor,
not only these visible in the highest-order input tensor itself. To address this require-
ment, we propose a hierarchical approach to multilinear data modelling as means for
robust, non-arbitral (‘variational’) fusion of heterogeneous data. It is worth stressing
that the use of a hierarchy of differently flattened tensors is a direct consequence of
the assumption of using multiple ‘interpretations’ of each tuple for construction of
multiple alternative input tensors.

2. Related work

In the context of multilinear data processing, the most widely known form of
per-mode tensor filtering is the projection of fibres laying along the given tensor
mode into a subspace spanned by the modes’ principal components – the projection
being the ‘workhorse’ of filtering based on Higher-Order Singular Value Decomposition
(HOSVD) [4,6] and Multilinear Principal Component Analysis [2]. However, so far no
theoretical basis for optimality of the multilinear dimensionality reduction heuristics,
as far as practical prediction quality, rather than some ‘technical’ criteria such as
Frobenius norm preservation, is concerned [4, 6].

As empirically observed covariance is a necessary (although not sufficient) condi-
tion for causality, it forms the origin of knowledge that may be obtained as a result
of pure observation [7]. Moreover, as one may realize, the core component of many
widely-known data processing methods involves the use of covariance/coincidence
matrix. The group of these method includes Reflective Random Indexing [8], Ran-
domized Singular Value Decomposition in its RSVD-RRI variant [9] and any method
based on the projection on the principal eigenvector such as PageRank [10]. Mo-
tivated by this observation, we aim at investigating the applicability of covariance
matrices as a potential means for prediction-oriented tensor per-mode processing –
obviously different to the analogical method based on the widely-known principle of
the projection into a subspace spanned by the most significant eigenvectors.

Many authors have stressed that a multi-way data representation has the obvious
advantage over any low-order representation of the same data: any low-order represen-
tation may be obtained as a result of ‘lossy’ (i.e., irreversible) summation/averaging
of appropriate entries of the ‘lossless’ multi-way (i.e., matrix-based or tensor-based)
representation of the same data (e.g., a matrix containing a set of vectors) [2, 11].
Therefore, representing input data in a multidimensional array (i.e., in a tensor) may
be seen as enabling ‘seeing’ the modelled data from a higher number of ‘perspectives’,
i.e., in a potentially more detailed way. On the basis of such a detailed, multi-way

105

data representation, many less detailed (i.e., ‘generalized’) representations of the same
data may be obtained. Such an operation of ‘neglecting’ the variance of one or more
tensor modes – obviously leading to obtaining a tensor of the order lower by one –
is referred to as tensor ‘flattening’ [2]. Although hierarchical tensor decomposition
methods have been already presented in some papers, the hierarchy that these works
deal with is the hierarchy of tensor decompositions [12, 13], not the hierarchy of dif-
ferently flattened tensors – the concept that is one of the key topics of the research
reported in this paper.

3. Tensor representation and processing

We assume that the input data are given as n-tuples, where n is a number of
attributes defining each event. In order to describe events in a format which enables
comparing them in quantitative way the weighed n-tuples have been chosen, which
may be described as follows:

Γ = (n,V(1), . . . ,V(n),Λ, ψ), (1)

where V(i), (i = 1, . . . , n), is a set of values which may be used as the i-th element
of an n-tuple, Λ is a set of n-tuples of the form (v(1), . . . , v(n)) where v(i) ∈ V(i), and
ψ : V(1) × · · · × V(n) → R is a function used to assign the weight. To model the set
of n-tuples as a multidimensional array (referred to as a tensor) one has to define
the tensor space T = I(1) ⊗ · · · ⊗ I(n) where I(i) is a basis of order |V(i)| = ni used
to index elements of set V(i). Finally, each set of n-tuples may be modelled as an
element of T . It is worth being stressed that a tensor space model that we consider
(following [1]) does not involve modeling of dual spaces.

In the presented framework we assume that ψ : V(1) × · · · × V(n) → {0, 1} and
ψ(v(1), . . . , v(n)) = 1 if and only if (v(1), . . . , v(n)) ∈ Λ. Then, input data may be
modelled as tensor T = [ti1,...,in]n1×···×nn with binary entries.

Tensor-to-tensor transformation. Using the tensor-to-tensor transformation
one may process the input tensor, usually of enormous size and sparsity, into a tensor
of reduced cardinality of each of the modes. In general, tensor-to-tensor transforma-
tion is made according to the formula:

T̃ = T ×1 U
(1) ×2 · · · ×n U (n), (2)

where T ×i U (i) is a tensor by matrix multiplication transforming tensor fibres of
i-th mode of tensor T into new fibres in the corresponding mode of output tensor
T̃ in such a way that the entries of a new fibre are just inner products of the old
fibre and columns of matrix U (i). In order to clarify what the tensor fibre is, it
is convenient to use the tensor unfolding concept, which is basically the Kronecker-
product-based matrix representation of the tensor (see [6] for unfolding definition).

106

In such an interpretation, the tensor fibre is just a column of the unfolding, and the
tensor-to-tensor transformation may be described in terms of matrix multiplications.

The entries of the result tensor of each tensor-to-tensor transformation may be
calculated as follows:

t̃j1,...,jn =
∑

i1∈I(1)
. . .

∑

in∈I(n)

ti1,...,inu
(1)
j1,i1

. . . u
(n)
jn,in

. (3)

Transformation of input tensor into a state tensor of reduced size. Due
to its multi-dimensional nature the input tensor suffers from its big size and high spar-
sity. In order to address these issues the proposed framework assumes the application
of the preliminary dimensionality reduction similar to N-way Random Indexing (NRI)
approach [3]. This step can be described as the tensor-to-tensor transformation using
ni×mi matrices U (i) (i = 1, . . . n), where ni and mi are the cardinalities of i-th mode
of the tensor before and after transformation, respectively. Each row of the transfor-
mation matrix (i.e, (u

(i)
k,1, · · · , u

(i)
k,mi

)) forms the random vector of specified length and
specified seed [8] – each entry of the vector is set to be equal to 0 or 1, and then the
vector is normalized using L1-norm. We denote the result of transforming the input
data using the matrices U (i) described above as state tensor X = [xi1,...,in]m1×···×mn

.
The proposed model assumes that before being used for the processing and query-

ing procedures the state tensor needs to be preprocessed according to two following
steps (i) scaling in order to get the probability distribution done as follows

xi1,i2,...,in :=
xi1,i2,...,in

ω
, (4)

where ω is the number of n-tuples used to build state tensor X, and (ii) preparing to
be used in L2-norm operations done by taking each entry square root value, i.e:

xi1,i2,...,in := (xi1,i2,...,in)1/2. (5)

State tensor querying. The state tensor querying procedure is aimed at re-
constructing the entries of the input tensor. In general, this procedure may be seen
as a tensor-to-tensor transformation (reverse to the state tensor creation step), but
due to practical reasons it is defined as a procedure of reconstructing the single en-
try of the input data tensor. For a given n-tuple γ = (k1, . . . , kn) the query tensor
Qγ = [qγi1,...,in]m1×···×mn

is constructed as a tensor of the same size as the state tensor.
Its entries are calculated according to the formula:

qγi1,...,in = (u
(1)
k1,i1

)1/2 · . . . · (u(n)kn,in
)1/2. (6)

Then, the result of the state tensor querying procedure is calculated as an inner
product of preprocessed state tensor X (according to (4) and (5)) and query tensor
Qγ , as follows:

t̃γ =
∑

1≤i1≤m1

. . .
∑

1≤in≤mn

xi1,...,inq
γ
i1,...,in

. (7)

The same querying procedure is applied to the filtered state tensor which is con-
structed according to the procedure described in the next section.

107

3.1. Covariance-based multilinear filtering

The proposed framework assumes the construction of filters for each tensor mode
which are calculated as the linear combination of covariance matrices determined
based on input state tensor X.

Extracting covariance data from the tensor data. It has to be stressed, that
different relations in data may be seen depending on the choice of attributes used to
model tensor modes. The construction of different tensors modelling the dependencies
between given mode elements may be done by building the most detailed tensor, i.e.,
the tensor involving the use of a maximum possible number of modes corresponding
to the set of all event attributes provided in the input data, and then consecutive
procedure of so-called tensor flattening (i.e., aggregating the tensor entries across
the mode being flattened/hidden). Specifically, operation of flattening the tensor
T = [ti1,...,in]n1×···×nn

over mode i leads to the new tensor T ′, such that:

T ′ = [t′i1,i2,...,ii−1,ii+1,...,in]n1×n2×...×ni−1×ni+1×...×nn ,

where
t′i1,i2,...,ii−1,ii+1,...,in =

∑

1≤j≤ni

ti1,i2,...,ii−1,ii+1,...,in .

For a data set given as n-tuples, the number of different tensors that may be used
in order to model the dependencies between the elements of a given mode is equal
to the number of different subsets of the set of remaining attributes, i.e, is equal to∑n−1
i=0

(
n−1
i

)
= 2n−1.

The set of all possible tensor flattening may be enumerated in the combinatorial
way using labels based on binary numbers of length equal to the maximum number
of modes. Let us assume that the most detailed state tensor, i.e., the tensor which in-
volves modelling of each attribute as a mode is labelled by the binary number 111 . . . 1
(equal to 2n − 1). The operation of flattening the i-th mode leads to the flipping the
bit at the i-th position of the binary code from 1 to 0. Finally, the totally flattened
tensor (i.e., the tensor flattened to a scalar which is the sum of all tensor cells) is
denoted by the binary number 000 . . . 0. We denote the flattenings of tensor X as Xj ,
where j corresponds to the flattening code (0 ≤ j ≤ 2n − 1). Each flattening except
the totally flatten tensor (i.e., the tensor flatten to the scalar), and flattenings to one
mode (i.e., to vectors), takes part in the procedure of filters’ construction.

Overall centring. In order to provide the covariance data about elements of
a given mode, each state tensor flattening has to be centred. The simplest way to
provide the covariance matrix is to centre across the tensor slices corresponding to
the elements of this mode. The centring operation is provided by the subtraction
of the mean of values in cells of a given tensor slice. However, this operation is not
regarded as a most effective data centring [11]. Instead, so-called overall centring
[11] should be used as the operation which leads to the minimum Frobenius norm of
the covariance matrix. The overall centring may be done by consecutive centring of
tensor fibres in each mode, i.e., for a given mode all fibres are centred and then this
procedure is repeated for the next mode and so on. Equivalently, the overall centring

108

operation for a given h-mode tensor Xj (h ≤ n) may be formulated in terms of the
inclusion-exclusion principle (see [11] for details). We denote the result of centring
procedure applied for flattening Xj as Xc

j .

Generation of covariance matrices. Using the data collected in each centred
tensor Xc

j we construct the matrices describing the relation among elements of the
given mode, as follows:

� the unfolding matrix Xc,(i)
j ∈ RJi×(J1×···×Ji−1×Ji+1×...Jn) is constructed, which

collects i-th mode fibres of centred state tensor Xc
j as columns,

� then, the symmetric matrix A(i)
j = [a

(i)
j]mi×mi

such that:

A
(i)
j = X

c,(i)
j

(
X
c,(i)
j

)T
(8)

is obtained as a matrix representing the covariance between random dimensions
used to enumerate the i-th mode. Finally, A(i)

j is the covariance matrix for
elements of i-th mode constructed from the j-th flattening of state tensor X.

The example illustrating the process of flattening and covariance matrix creation has
been presented in Table 1.

Table 1. Flattenings and covariance matrices for the 4-mode tensor describing
events concerning users (1st mode), items (2nd mode), time (3rd mode), and location
(4th mode).

Tensor modes Flattening code and symbol Covariance matrices

user,item,time,location 1111, X15 A
(1)
15 ,A(2)

15 ,A(3)
15 ,A(4)

15

user,item,time 1110, X14 A
(1)
14 ,A(2)

14 ,A(3)
14

user,item,location 1101, X13 A
(1)
13 ,A(2)

13 ,A(4)
13

user,time,location 1011, X11 A
(1)
11 ,A(3)

11 ,A(4)
11

item,time,location 0111, X7 A
(2)
7 ,A(3)

7 ,A(4)
7

user,item 1100, X12 A
(1)
12 ,A(2)

12

user,time 1010, X10 A
(1)
10 ,A(3)

10

user,location 1001, X9 A
(1)
9 ,A(4)

9

item,time 0110, X6 A
(2)
6 ,A(3)

6

item,location 0101, X5 A
(2)
5 ,A(4)

5

time,location 0011, X3 A
(3)
3 ,A(4)

3

Constructing the filter based on covariance matrices. For mode i the
optimal filter F (i) is constructed as a sum of an identity transformation and the
average of matrices A(i)

j . In particular, we have:

F (i) = Ii +
1

k

∑

j

A
(i)
j , (9)

109

where Ii is the identity matrix of size mi, and k is a number of covariance matrices
built for the i-th mode. We assume that before applying the filters the tensor X
is centred according to overall centring [11] approach. The filters F (i) are used in
order to transform centred tensor Xc into its filtered version X̃c according to the
formula: X̃c = Xc ×1 F

(1) ×2 · · · ×n F (n). At the next step the prediction tensor
X̃ is calculated as X̃ = X −Xc + X̃c. Finally, the tensor X̃ is used for calculating
the prediction results according to the querying procedure described by equations
(6) and (7). It has to be stressed that the prediction tensor may be additionally
transformed using the HOSVD approach [6] what leads to reduction of tensor size
and, as consequence, shortens the time needed for querying. The experimentation
part of the paper involves the evaluation of the presented method both with and
without the final HOSVD-based dimensionality reduction step.

4. Experiments

In this paper, we present an experimental verification of the proposed method
– Covariance-based Multilinear Filterning, referred to as ‘CMF ’ and ‘R-CMF ’ for
CMF enhanced by post-processsing based on HOSVD. The scope of the experiments
has been limited to a recommendation scenario that involves extreme data sparsity.
Although such a scenario is considered as challenging, it is also very common in the
area of e-commerce, as an online merchandising recommender system is frequently
provided with a few ratings per user [14].

In our experiments we followed the approach to the evaluation of a recommender
system proposed in [14]. We used one of the most widely referenced data sets – the
MovieLens ML100k set, which contains 100.000 ratings (in a 1 to 5 scale) for 1682
movies given by 943 unique users. Each above-average rating (i.e., equal to 4 or 5)
has been treated as an indication that a given user likes a given movie. Analogically,
below-average ratings have been treated as an indication that a given user dislikes
a given movie. In companion to the rating data, we used the information about each
movie’s genre (19 distinct values). As a result, the input data was modelled as a tensor
T with size equal to 2 × 943 × 1682 × 19 containing 100.000 non-zero entries. Finally,
we randomly divided the data set into a training set and a testing set. In order to
address the high sparsity scenario the rating data was divided according to a training
ratio equal to 0.1. The goal of the recommendation algorithm was to predict whether
each rating in the test set is positive (given user likes a given movie) or negative
(given user dislikes a given movie). Each recommendation quality measurement result
presented in this paper represents the averaged result of 50 individual experiments.

We have compared our method, both in terms of recommendation accuracy and
computational efficiency, with other methods presented in the relevant literature,
such as NRI [3], HOSVD [6], as well as with a baseline method based on typical
SVD-based collaborative filtering [15] (referred to as ‘2-mode CF ’). Additionally, we
have tested the method that is established on a concept of preliminary NRI-based
dimensionality reduction and vector space optimization based on HOSVD (herein

110

referred to as ‘NRI+HOSVD ’). For each of these methods we set all the necessary
parameters optimally in order to provide the best possible accuracy. In explicit, we
set the k-cut in 2-mode CF to 7, and the size of the final ‘core tensor’ in HOSVD
to (2 × 18 × 24 × 8). Additionally, we limited the size of the state tensor X to
(2× 64× 64× 19), and we used the random vector’s seed value to 4 (herein only the
dimensionality of modes representing the users and movies is reduced, as the size of
genres and likes/dislikes mode is comparatively small).

To obtain quantitative recommendation accuracy results, we have evaluated an
ordered list of user-item recommendations, generated by each of the algorithms, by
means of the AUROC measure [14]. The results presented in Table 2 clearly indi-
cate that, in a high data sparsity scenario, all of the tensor-based methods enable to
provide higher quality recommendations than a typical matrix factorization method
(probably due to the limitations of data representation model). As we have confirmed
experimentally, the HOSVD algorithm is more accurate (in terms of AUROC) than
the NRI based on simple random indexing. On the other hand, while it is possible to
provide high quality results using HOSVD on a full size input tensor, applying such
a procedure on a state tensor of reduced size does not lead to increased recommen-
dation quality. Finally, what is most important, we have shown that the proposed
algorithms based on CMF allow to obtain better results, as far as a small training
ratio is concerned, than all other methods used for comparison.

Table 2. The average AUROC results for all tested algorithms; the best and second
best result is correspondingly highlighted by bold and slanted font setting.

2-mode CF HOSVD NRI NRI+HOSVD CMF R-CMF
0.527 0.562 0.550 0.549 0.585 0.582

(±0.004) (±0.004) (±0.004) (±0.004) (±0.004) (±0.005)

The average execution times (single-threaded) for the compared tensor-based meth-
ods have been presented in Table 3. In methods based on NRI, in case of sparse data,
the complexity of such algorithms is dependent on the number of input tuples and
not on the size of the input tensor (as in the case of HOSVD) and may be flexibly
adapted to the amount of available computational resources. Thus, as it has been
shown, the NRI-based methods allow to significantly reduce the time needed to build
the model. On the other hand, the model query time depends on the final size of the
processed tensor. Due to the fact that, in general, it is not possible to achieve the
extent of dimensionality reduction as in the case of SVD using RI while providing
high quality results, the query execution times for methods based solely on NRI are
higher. Contrarily, combining NRI-based preprocessing with HOSVD-based vector
space optimization enables to reduce both the model construction time and query
time. Consequently, as shown in our experiments, the NRI+HOSVD and R-CMF
algorithms require, in total, the lowest execution times.

111

Table 3. The average execution times (in seconds); in each row, the best and second
best results are correspondingly highlighted by bold and slanted font setting.

HOSVD NRI NRI+HOSVD CMF R-CMF
Model build 48.6 9.0 9.1 9.1 9.2
Model query 28.7 77.7 20.9 77.7 20.9

Total 77.3 86.7 30.0 86.8 30.1

5. Conclusions

The paper contributes with a formal description of a novel tensor-based data rep-
resentation and processing framework. The core part of the framework is a novel
multilinear filtering method which involves the use of a hierarchical structure of co-
variance matrices extracted from the so-called state tensor. Based on the experiments
involving the use of widely-referenced data sets, we have analysed the performance
of the proposed method in the ‘cold-start’ personalized recommendation scenario.
Firstly, we have confirmed that each of the methods based on multilinear modelling
outperforms the standard collaborative filtering based on matrix factorization what
leads us to the conclusion that tensor-based data representation enables more effective
data representation. Secondly, we have shown that the use of filters based on the hi-
erarchical structure of covariance matrices built using various tensor flattenings (i.e.,
various data generalization), enables to extract additional dependencies in input data
what, in consequence, leads to a further performance improvement. Additionally, we
have confirmed that, as a result of application of dimensionality reduction techniques
(both based on RI and HOSVD), the proposed method may be effectively used for
large data sets and for multi-mode processing – without the common limitation of
3-mode structures processing [1].

Acknowledgement

This work is supported by the Polish National Science Centre, grant DEC-2011/01
/D/ST6/06788.

112

6. References

[1] Nickel M., Tresp V., An Analysis of Tensor Models for Learning on Structured
Data. In: Machine Learning and Knowledge Discovery in Databases. 8189 of
LNCS. Springer Berlin Heidelberg 2013, pp. 272–287.

[2] Lu H., Plataniotis K.N., Venetsanopoulos A.N., Multilinear principal component
analysis of tensor objects for recognition. In: 18th International Conference on
Pattern Recognition, ICPR 2006. vol. 2., 2006, pp. 776–779.

[3] Sandin F., Emruli B., Sahlgren M., Incremental dimension reduction of tensors
with random index. March 2011, pp. 240–56.

[4] Grasedyck L., Kressner, D., Tobler C., A literature survey of low-rank tensor
approximation techniques. GAMM–Mitteilungen, 2013, 36.1, pp. 53–78.

[5] Baldassarre L., Rosasco L., Barla A., Verri A., Multi-output learning via spectral
filtering. Machine learning, 2012, 87(3), pp. 259–301.

[6] De Lathauwer L., De Moor B., Vandewalle, J., A multilinear singular value
decomposition. SIAM J. Matrix Anal. Appl, 2000, 21, pp. 1253–1278.

[7] Pearl J., Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann, 1988.

[8] Cohen T., Schvaneveldt R., Widdows D., Reflective Random Indexing and indi-
rect inference: a scalable method for discovery of implicit connections. Journal
of Biomedical Informatics, 2010, 43(2), pp. 240–56.

[9] Ciesielczyk M., Szwabe A., RSVD-based Dimensionality Reduction for Recom-
mender Systems. International Journal of Machine Learning and Computing,
2011, 1(2), pp. 170–175.

[10] Brin S., Page L., The anatomy of a large-scale hypertextual web search engine.
Proceeding WWW7 Proceedings of the seventh international conference on World
Wide Web 7, 1998, 30(1-7), pp. 107–117.

[11] Kroonenberg P. M., Three-mode principal component analysis: Theory and ap-
plications. vol. 2. DSWO press; three-mode.leidenuniv.nl, 1983.

[12] Grasedyck L., Hierarchical singular value decomposition of tensors. SIAM Jour-
nal on Matrix Analysis and Applications, 2010, 31(4), pp. 2029–2054.

[13] Kolda T.G., Bader B.W., Tensor decompositions and applications. SIAM review,
2009, 51(3), pp. 455–500.

[14] Herlocker J.L., Konstan, J., Terveen L.G., Riedl, J., Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems, 2004,
22(1), pp. 5–53.

[15] Koren Y., Bell R., Volinsky C., Matrix factorization techniques for recommender
systems. Computer, 2009, 8, pp. 42–49.

