TY - JOUR TI - Traffic Signal Settings Optimization Using Gradient Descent AU - Możejko, Marcin AU - Brzeski, Maciej AU - Mądry, Łukasz AU - Skowronek, Łukasz AU - Gora, Paweł TI - Traffic Signal Settings Optimization Using Gradient Descent AB - We investigate performance of a gradient descent optimization (GR) applied to the traffic signal setting problem and compare it to genetic algorithms. We used neural networks as metamodels evaluating quality of signal settings and discovered that both optimization methods produce similar results, e.g., in both cases the accuracy of neural networks close to local optima depends on an activation function (e.g., TANH activation makes optimization process converge to different minima than ReLU activation). VL - 2018 IS - Volume 27 PY - 2018 SN - 1732-3916 C1 - 2083-8476 SP - 19 EP - 30 DO - 10.4467/20838476SI.18.002.10407 UR - https://ejournals.eu/en/journal/schedae-informaticae/article/traffic-signal-settings-optimization-using-gradient-descent KW - traffic optimization KW - metamodels KW - activation functions KW - genetic algorithm KW - gradient descent