Aeby E., Palioura S., Pusnik M., et al. (2009a) The canonical pathway for selenocysteine insertion is dispensable in Trypanosomes. Proc. Natl. Acad. Sci. USA 106: 5088–92. https://doi.org/10.1073/pnas.0901575106  Aeby E., Seidel V., Schneider A. (2009b) The selenoproteome is dispensable in bloodstream forms of Trypanosoma brucei. Mol. Biochem. Parasitol. 168: 191–193. https://doi.org/10.1016/j.molbiopara.2009.08.007  Aeby E., Ullu E., Yepiskoposyan H., et al. (2010) tRNASec is transcribed by RNA polymerase II in Trypanosoma brucei but not in humans. Nucleic Acids. Res. 38: 5833–5843. https://doi.org/10.1093/nar/gkq345  Allmang C., Wurth L., Krol A. (2009) The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochim. Biophys. Acta 1790: 1415–23. https://doi.org/10.1016/j.bbagen.2009.03.003  Bonilla M., Krull E., Irigoín F., et al. (2016) Selenoproteins of African trypanosomes are dispensable for parasite survival in a mammalian host. Mol. Biochem. Parasitol. 206: 13–19. https://doi.org/10.1016/j.molbiopara.2016.03.002  Bordo D., Bork P. (2002) The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations. EMBO Rep. 3: 741–746 Bouzaidi-Tiali N., Aeby E., Charrière F., et al. (2007) Elongation factor 1a mediates the specificity of mitochondrial tRNA import in T. brucei. EMBO J. 26: 4302–12. https://doi.org/10.1038/sj.emboj.7601857  Bulteau A. L., Chavatte L. (2015) Update on Selenoprotein Biosynthesis. Antioxid. Redox. Signal. 23: 775–794. https://doi.org/10.1089/ars.2015.6391  Carlson B. A., Xu X. M., Kryukov G. V., et al. (2004) Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase. Proc. Natl. Acad. Sci. USA 101: 12848–12853. https://doi.org/10.1073/pnas.0402636101  Carnes J., Anupama A., Balmer O., et al. (2015) Genome and Phylogenetic Analyses of Trypanosoma evansi Reveal Extensive Similarity to T. brucei and Multiple Independent Origins for Dyskinetoplasty. PLoS Negl. Trop. Dis. 9:e3404. https://doi.org/10.1371/journal.pntd.0003404  Cassago A., Rodrigues E. M., Prieto E. L., et al. (2006) Identification of Leishmania selenoproteins and SECIS element. Mol. Biochem. Parasitol. 149: 128–134. https://doi.org/10.1016/j.molbiopara.2006.05.002  Colpo C. B., Monteiro S. G., Stainki D. R., Colpo E. T. B, Henriques G. B. (2005) Infecção natural por Trypanosoma evansi em cães. Ciên. Rur. 35, 717–719 Costa F. C., Oliva M. A. V, De Jesus T. C. L., et al. (2011) Oxidative stress protection ofTrypanosomes requires selenophosphate synthase. Mol. Biochem. Parasitol. 180: 47–50. https://doi.org/10.1016/j.molbiopara.2011.04.007 Desquesnes M., Dargantes A., Lai D-H, et al. (2013) Trypanosoma evansi and Surra: A Review and Perspectives on Transmission, Epidemiology and Control, Impact, and Zoonotic Aspects. Biomed. Res. Int. 2013: 1–20. https://doi.org/10.1155/2013/321237  Dikiy A., Novoselov S. V., Fomenko D. E., et al. (2007) SelT, SelW, SelH, and Rdx 12: Genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry 46: 6871–6882. https://doi.org/10.1021/bi602462q  Duarte D. P., Tavares K. C. S., Lazarrotto C. R., et al. (2014) Genetic Profile of Two isolates of Trypanosoma evansi from Southern Brazil with different parasitaemias. Biotemas 27: 73–80. https://doi.org/10.5007/2175-7925.2014v27n3p73 Geslain R., Aeby E., Guitart T., et al. (2006) Trypanosoma seryltRNA synthetase is a metazoan-like enzyme with high affinity for tRNASec. J. Biol. Chem. 281: 38217–38225. https://doi.org/10.1074/jbc.M607862200   Grab D. J., Bwayo J. J. (1982) Isopycnic isolation of African trypanosomes on Percoll gradients formed in situ. Acta Trop. 39: 363–366 Itoh Y., Chiba S., Sekine S. I., Yokoyama S. (2009a) Crystal structure of human selenocysteine tRNA. Nucleic Acids Res. 37: 6259–6268. https://doi.org/10.1093/nar/gkp648  Itoh Y., Sekine S. ichi, Matsumoto E., et al. (2009b) Structure of Selenophosphate Synthetase Essential for Selenium Incorporation into Proteins and RNAs. J. Mol. Biol. 385: 1456–1469. https://doi.org/10.1016/j.jmb.2008.08.042  Jensen R. E., Simpson L., Englund P. T. (2008) What happens when Trypanosoma brucei leaves Africa. Trends Parasitol. 24: 428–431 Joshi P. P., Shegokar V. R., Powar R. M., et al. (2005) Human trypanosomiasis caused by Trypanosoma evansi in India: the first case report. Am. J. Trop. Med. Hyg. 73: 491–5 Kumar R., Jain S., Kumar S., Sethi K., Kumar S., Tripathi B. N. (2017) Impact estimation of animal trypanosomosis (surra) on livestock productivity in India using simulation model: current and future perspective. Vet Parasitol Reg Stud Reports 10: 1–12 Koonin E. V., Aravind L., Leipe D. D., Iyer L. M. (2004). Evolutionary history and higher order classification of AAA ATPases. J. Struct. Biol. 146 (1–2): 11–31. doi:10.1016/j.jsb.2003.10.010  Lanham S. M., Godfrey D. G. (1970) Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp. Parasitol. 28: 521–534. https://doi.org/10.1016/0014-4894(70)90120-7  Leinfelder W., Forchhammer K., Zinoni F., Sawers G., Mandrand-Berthelot M. A., Böck A. (1988) Escherichia coli genes whose products are involved in selenium metabolism. J. Bacteriol. 170(2): 540–6  Lobanov A. V., Gromer S, Salinas G., Gladyshev V. N. (2006) Selenium metabolism inTrypanosoma: Characterization of selenoproteomes and identification of a Kinetoplastida-specific selenoprotein. Nucleic Acids Res. 34: 4012–4024. https://doi.org/10.1093/nar/gkl541  Lun Z. R., Fang Y., Wang C. J., Brun R. (1993) Trypanosomiasis of domestic animals in China. Parasitol. Today 9: 41–45  Mangiapane E., Pessione A., Pessione E. (2014) Selenium and selenoproteins: an overview on different biological systems. Curr. Protein. Pept. Sci. 15: 598–607 Mariotti M., Salinas G., Gabaldón T., Gladyshev V. N. (2019) Utilization of selenocysteine in early-branching fungal phyla. Nat. Microbiol. 4(5): 759–765 Mueller E. J., Oh S., Kavalerchik E., et al. (1999) Investigation of the ATP binding site of Escherichia coli aminoimidazole ribonucleotide synthetase using affinity labeling and site-directed mutagenesis. Biochemistry 38: 9831–9839. https://doi.org/10.1021/bi990638r  Papp L. V, Lu J., Holmgren A., Khanna K. K. (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid. Redox. Signal. 9: 775–806. https://doi.org/10.1089/ars.2007.1528  Richardson J. B., Lee K. Y., Mireji P., et al. (2017) Genomic analyses of African Trypanozoonstrains to assess evolutionary relationships and identify markers for strain identification. PLoS Negl. Trop. Dis. 11:e0005949. https://doi.org/10.1371/journal.pntd.0005949  Salah A. A., Robertson I., Mohamed A. (2015) Estimating the economic impact of Trypanosoma evansi infection on production of camel herds in Somaliland. Trop. Anim. Health Prod. 47: 707–714. https://doi.org/10.1007/s11250-015-0780-0 Sculaccio S. A., Rodrigues E. M., Cordeiro A. T., et al. (2008) Selenocysteine incorporation in Kinetoplastid: Selenophosphate synthetase (SELD) from Leishmania major and Trypanosoma brucei. Mol. Biochem. Parasitol. 162: 165–171. https://doi.org/10.1016/j.molbiopara.2008.08.009  Silva R. A. M., Seidl A., Ramirez L., Dávila A. M. R. (2002) Trypanosoma evansi e Trypanosoma vivax: Biologia Diagnóstico e Controle. Embrapa Pantanal, Corumbá, Mato Grosso, Brazil 141 Tuntasuvan D., Jarabrum W., Viseshakul N., et al. (2003) Chemotherapy of surra in horses and mules with diminazene aceturate. Vet. Parasitol. 110: 227–233.https://doi.org/10.1016/S0304-4017(02)00304-7  Ventura R. M., Takeda G. F., Silva R. A. M. S., et al. (2002) Genetic relatedness among Trypanosoma evansi stocks by random amplification of polymorphic DNA and evaluation of a synapomorphic DNA fragment for species-specific diagnosis.Int. J. Parasitol. 32: 53–63. https://doi.org/10.1016/S0020-7519(01)00314-9