Allen M. M., Stanier R. Y. (1968) Growth and division of some unicellular blue-green algae. J. Gen. Microbiol. 51: 199–202 Aizawa K., Miyachi S. (1986) Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria. FEMS Microbiology Reviews. 2: 215–233 Andrés F. Barajas-Solano, Guzmán-Monsalve A., Viatcheslav Kafarov (2016) Effect of Carbon–Nitrogen Ratio for the Biomass Production, Hydrocarbons and Lipids on Botryoccus braunii UIS 003. Chem. Engg. Transactions. 49: 247–252 Bernard J., Finkle, Appleman D. (1952) The effect of magnesium concentration on growth of Chlorella. Plant Physiol. 28: 664–673 Bischoff H. W., Bold H. C. (1963) Phycological Studies IV: Some soil algae from Enchanted Rock and related algal species. Univ Texas Publ. pp. 6318: 1–95 Cheng Y., Lu Y., Gao C., Wu Q. (2009) Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy  Fuels 23: 4166–4173 Cho H. U., Kim Y. M., Choi Y. N., Xu X., Shin D. Y., Park J. M. (2015) Effects of pH control and concentration on microbial oil production from Chlorella vulgaris cultivated in the effluent of a low-cost organic waste fermentation system producing volatile fatty acids. Bioresour. Technol. 184: 245–250 Franklin S.E., Mayfield S.P. (2004) Prospects for molecular farming in the green alga Chlamydomonas reinhardtii. Curr. Opin. Plant Bio. 7:150–165 Ge S., Champagne P., Plaxton W. C., Leite G. B., Marazzi F. (2017) Microalgal cultivation with waste streams and metabolic constraints to triacylglycerides accumulation for biofuel production. Biofuels, Bioproducts and Biorefining 11: 325–343 Ghirardi M. L., Zhang L., Lee J. W., Flynn T., Seibert M., Greenbaum E., Melis A. (2000) Microalgae: a green source of renewable hydrogen. Trends Biotechnol. 18: 506–511 Golueke C. G., Oswald W. J., Gotaas H. B. (1957) Anaerobic digestion of algae. Appl. Microbiol. 5: 47–55 Guillard R. R., Ryther J. H. (1962) Studies on marine planktonic diatoms I. Cyclotella nana Hustedt and Detonula confervacea (Cleve). Gran. Can. J. of Microbiol. 8: 229–239 Gutierrez L. F., Ratti C., Belkacemi K. (2008) Effects of drying method on the extraction yields and quality of oils from Quebec Sea buckthorn (Hippophae rhamnoides L.) seeds and pulp. Food Chem. 106: 896–904 Hare P. D., Cress W. A., Van-staden J. (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell. Environ. 21: 535–554 Hasegawa P. M., Bressan R. A., Zhu J. K., Bohnert H. J. (2000) Plant cellular and molecular response to high salinity. Physiol Plant Mol. Biol. 51: 463–499 Hoque M. A., Okuma E., Banu M. N. A., Nakamura Y., Shimoishi Y., Murata Y. (2007) Exogenous proline mitigates the detrimental effects of salt stress more than the betaine by increasing antioxidant enzyme activities. J. Plant Physiol. 164: 553–561 Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Darzins A. (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant J. 54: 621–639 Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Darzins A. Illman M., Scragg A. H., Shales S. W. (2000) Increase in Chlorella Strains Calorific Values when Grown in Low Nitrogen Medium. Enz. and Microbial. Technol. 27: 631–635 Imran P., Kaumeel C., Tonmoy G., Chetan P., Rahulkumar M., Sandhya M. (2015) Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077. Bioresour. Technol. 193: 315–323 Jeng Chen J., Li Y., Lai W. (2014) Application of experimental design methodology for optimization of biofuel production from microalgae. Biomass and Bioenergy 64: 11–19. Jingya L., Changhao L., Christopher Q. Lan, Dankui L. (2018) Effects of sodium bicarbonate on cell growth, lipid accumulation, and morphology of Chlorella vulgaris. Microb. Cell Fact. 17: 111–121 Kandhro A., Sherazi S. T. H., Mahesar S. A., Bhanger M. I., Younis T. M., Rauf A. (2008) GC-MS quantification of fatty acid profile including trans FA in the locally manufactured margarines of Pakistan. Food Chem.109: 207–211 Kong W., Song H., Cao Y., Yang H., Hua S., Xia C. (2011) The characteristic of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation. Afr. J. Biotechnol. 10: 11620–11630 Kuan Chen C., Ming R., Kimberly L. Ogden (2013) Statistical optimization of culture media for growth and lipid production of Chlorella protothecoides UTEX 250. Bioresor. Technol 128: 44–48 Liu Z. L., Saha B. C., Slininger P. J. (2008) Lignocellulosic biomass conversion to ethanol by Saccharomyces In: Bioenergy, ASM Press, Washington, DC. 17–36 Liu Huang J., Sun Z. (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour. Technol. 102: 106–110 Luveshan R., Abhishek G., Ismail R., Faizal B (2014) The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresource Technol. 168: 127–135 Marchetti J. M., Miguel V. U., Errazu A. F. (2007) Possible Methods For Biodiesel Production. Renew. Sus. Energy Rev. 11: 1300–1311 Martinez M. R., Chakroff R. P., Pantastico J. B. (1975) Direct phytoplankton counting techniques. Philippine agriculturist. 59: 43–50 Olmstead I. L., Hill D. R., Dias D. A., Jayasinghe N. S., Callahan D. L., Kentish S. E., Martin G. J. (2013) A quantitative analysis of microalgal lipids for optimization of biodiesel and omega-3 production. Biotechnol. Bioeng. 110: 2096–2104 Pablo C. Giordano, Alejandro J. Beccaria, Héctor C. Goicoechea. (2014) Rational design of a culture medium for the intensification of lipid storage in Chlorella sp. Performance evaluation in air-lift bioreactor. Bioresour. Technol. 158: 269–277 Piorreck M., Baasch K.H., Pohl P. (1984) Biomass Production, Total Protein, Chlorophylls, Lipids and Fatty Acids of Fresh Water Green and Blue-Green Algae under Different Nitrogen Regimes. Phytochem. 23: 207–216 Plackett R.L., Burman J.P. (1946) The design of optimum multifactorial experiments. Biometrika 33: 305–325 Ramírez López C., Chairez I., Fernández Linares L. (2016) A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26. Bioresour. Technol. 212: 207–216 Rodriguez A. (2011) Enhancement of Lutein Production in Chlorella sorokiniana (chorophyta) by improvement of culture conditions and random mutagenesis. Mar. Drugs 9: 1607–1624 Rekha S., Gajendra P. Singh, Vijendra K. Sharma (2011) Comparison of Different Media Formulations on Growth, Morphology and Chlorophyll Content of Green Alga, Chlorella Vulgaris. Intl. J. of Pharma and Bio Sciences. 2: 506–516 Sivaramakrishnan R., Incharoensakdi A. (2018) Utilization of microalgae feedstock for concomitant production of bioethanol and biodiesel. Fuel 217: 458–466 Sivaramakrishnan R., Incharoensakdi A. (2017) Production of methyl ester from two microalgae by two-step transesterification and direct transesterification. Environ. Sci. Pollut. Res. 24: 4950–4963 Shay E.G. (1993) Diesel fuel from vegetable oils: Status and Opportunities. Biomass Bioenergy 4: 227–242 Stein J (ED.) (1973) Handbook of Phycological methods. Culture methods and growth measurements. Cambridge University Press. 448 pp. Takagi M., Watanabe K., Yamaberi K., Yoshida Y. (2000) Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl. Microbiol. Biotechnol. 54: 112–117 Tiwari K., Kumar A., Raheman H. (2007) Biodiesel production from Jatropha curcas with high free fatty acids: an optimized process. Biomass Bioenergy 31: 569–575 Tornabene T. G., Holzer G., Lien S., Burris N. (1983) Lipid Composition Of The Nitrogen Starved Green Alga Neochloris oleoabundans. Enzyme Microb. Technol. 5: 435–440 Turcotte, G., Kosaric, N. (1989) The effect of C/N ratio on lipid production by Rhodosporidium toruloides ATCC 10788. Biotechnol. Lett. 9: 637–642 Van der Laaka W. W. M., Raven R. P. J. M., Verbong G. P. J. (2007) Strategic Niche Management for Biofuels: Analysing Past Experiments for Developing New Biofuel Policies. Energy Policy 35: 3213–3225 Venkatraman L. V., Becker E. W. (1985) Biotechnology and utilization of algae – The Indian experience. Central Food Technological Research Institute, Mysore, India. WalneP.R. (1970) Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria, and Mytilis. Fish. Invest. 26: 162 Wu Q., Miao X. (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97: 841–846 Xin L., Hong-ying H., Ke G., Ying-xue S. (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 101: 5494–5500 Xiong W., Chunfang G., Dong Y., Chao W., Qingyu W. (2010) Double CO2 fixation in photosynthesis–fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour. Technol. 101: 2287–2293 Yang F., Long L., Sun X., Wu H., Li T., Xiang W. (2014) Optimization of Medium Using Response Surface Methodology for Lipid Production by Scenedesmus sp. Mar. Drugs. 12: 1245–1257 Zarrouk C. (1966) Contribution a l’étude du cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de spirulina maxima (setch et gardner) geitl. paris: Faculte des Sciences, Universite de Paris.