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A b s t r a c t. This paper addresses three kinds of binary operational semantics,

called here Urquhart-style semantics, for basic substructural logics. First, we

discuss the most basic substructural logic GL introduced by Galatos and Ono

and its expansions with structural axioms and their algebraic semantics. Next,

we provide one kind of Urquhart-style semantics, whose frames form the same

structures as algebraic semantics, for those substructural logics and consider

powers and limitations of this kind of semantics in substructural logic. We then

introduce another kind of Urquhart-style semantics, whose canonical frames are

based on prime theories, for DL, the GL with distributivity, and some of its
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for negations. Similarly, we consider powers and limitations of these two kinds

of semantics in substructural logic.
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1 Introduction

Using binary accessibility relations, for modal and intuitionistic logics a relational se-

mantics called Kripke semantics was first introduced by Kripke [26, 27, 28]. Since then,

lots of semantics called Kripke-style semantics have been introduced as its generaliza-

tions. (One common feature of these semantics is that they all have forcing relation 
 for

evaluation.) One interesting generalization is Urquhart’s operational semantics (briefly

Urquhart semantics) for relevant implication (see [38, 39, 40]). This semantics, called

‘(join) semi-lattice semantics,’ has the following standard clauses for extensional conjunc-

tion, disjunction, and implication: For arbitrary sentences ϕ, ψ and any x ∈ A, a carrier

set,

(1) x 
 ϕ ∧ ψ if and only if (iff) x 
 ϕ and x 
 ψ;

(2) x 
 ϕ ∨ ψ iff x 
 ϕ or x 
 ψ; and

(→U) x 
 ϕ→ ψ iff y 
 ϕ entails x ∗ y 
 ψ, for every y ∈ A.

However, many well-known substructural logics can not have semantics with these

three conditions since one is unable to prove completeness for those logics using such

semantics. The reasons are as follows: First, while the conditions (1) and (2) force the

distributivity law, substructural logics with extensional conjunction and disjunction, in

general, need not prove it. Namely, such semantics cannot be provided for non-distributive

substructural logics. Second, such semantics cannot be established for distributive sub-

structural logics in general. Because there are distributive substructural logics for which

one cannot provide such semantics. The most well-known example is the system R (Rel-

evance logic), which is one of the most famous relevance logics denoted by T (Ticket

entailment logic), R and E (Entailment logic). While those three conditions force the

sentence

(α) ((ϕ→ (ψ ∨ χ)) ∧ (ψ → χ))→ (ϕ→ χ)

to be true in R, this sentence is not a theorem of R (see [16, 40]).1 Because of this,

Restall ([33] presented two ways to deal with the problem in substructural logic: One is

to provide an evaluation different from (2) and to keep (→U) for implication, like Fine

[17, 18]. The other is to keep (2) and instead to provide an evaluation different from

(→U), like Routley and Meyer [34, 35, 36].

Urquhart semantics is regarded as an operational and relational semantics (see [49]).

This semantics is operational in the sense that it provides model structures with binary

1Note that Urquhart already knew this fact when he [40] first introduced the operational semantics.
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operation ∗ in place of binary relation R for accessibility.2 This semantics is relational

in the sense that it has forcing relations for evaluations like Kripke semantics. Urquhart

first introduced (→U) as the evaluation clause for implication. Since then, many similar

semantics having (→U) have been introduced for substructural logics. As far as the author

knows, there are at least two routes in such introduction.

One is to have a clause for disjunction different from (2) as Restall presented as the

first way. For instance, using (→U) but with a clause for disjunction different from (2),

Humberstone [25] established an operational semantics for R+, the positive part of R;

Došen [9, 10] provided groupoid frames based on uni-residuated lattice-ordered groupoids,

briefly urlogs, for other substructural logics; and Ono [32] considered similar frames for

modal and substructural logics. The other is to have (2) and instead to accept formulas

such as (α) as provable formulas. This provides logics generated by the semilattice seman-

tics, i.e., Urquhart Semantics. For example, Urquhart [41] himself introduced a sequent

system for the R proving such formulas, called UR by Standefer [37], and proved com-

pleteness; Charlwood [4, 5] presented a natural deduction system for UR; in particular,

Standefer [37] presented an axiomatic system for UR and provided an overview of recent

work on operational models building on Urquhart semantics. Moreover, Montagna and

Ono [29], Montagna and Sacchetti [30, 31], and Yang [43, 48, 50] provided linearly ordered

such frames for fuzzy logics such as MTL (Monoidal t-norm logic) and UL (Uninorm

logic). (Note that the formulas such as (α) are provable in these fuzzy logics.)

Yang [50] called semantics with (→U) Urquhart-style semantics (US semantics briefly)

in honor of the inventor of (→U) Urquhart. Following him, we henceforth call such

semantics US semantics. Here we note that powers and limitations of these US semantics

in providing completeness results for basic substructural logics3 have not yet been fully

investigated and so they have not yet been fully elucidated. For instance, semantics with

all of (1), (2), and (→U) are not working as semantics to provide completeness results for

distributive basic substructural logics in general, whereas such semantics are still working

as semantics to provide completeness results for basic substructural fuzzy logics as linearly

ordered substructural logics. Moreover, they can still work as semantics to establish

completeness results for some non-associative distributive basic substructural non-fuzzy

logics. But these facts have not yet been exactly addressed. In order to overcome such

deficiencies, we introduce three kinds of US semantics, based on the Urquhart evaluation of

implication (→U), for basic substructural logics and discuss their powers and limitations.

For this, in Section 2, we first discuss the most basic substructural logic GL and its

2In Kripke semantics, the clause for implication is defined using the relation R below:

(→RK
) x 
 ϕ→ ψ iff xRy and y 
 ϕ entail y 
 ψ, for each y ∈ A.

3Basic substructural logics denote substructural logics with some or all of the structural axioms as-

sociativity, exchange, contraction, expansion, left weakening and right weakening, see [21, 49]. Other

substructural logics can be regarded as expansions of those logics.
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expansions with structural axioms and their algebraic semantics.4 This is a preliminary

work for our investigation of three kinds of US semantics for basic substructural logics.

In Section 3, we address one kind of US semantics in the first way, i.e., semantics having

a clause for disjunction different from (2) and deal with powers and limitations of such

semantics. To be more precise, Section 3.1 introduces one sort of US semantics, called here

nuclear US semantics, for basic substructural logics introduced in Section 2. This kind of

semantics can be also called algebraic Urquhart-style semantics (briefly AUS semantics)

because frames for such logics form the same structures as algebraic semantics.5 The

nuclear US semantics is as powerful as algebraic semantics in the sense that algebraically

complete basic substructural logics are complete on nuclear US semantics. However,

this reduction cannot be applied to semantics irreducible to algebraic semantics such

as Routley–Meyer semantics for R in [16]. We consider such powers and limitations in

Section 3.2.

In Section 4, we address two kinds of US semantics in the second way, i.e., semantics

having all of the conditions (1), (2), and (→U) and deal with powers and limitations of

such semantics. To be more concrete, Section 4.1 introduces another US semantics having

all the conditions for some distributive basic substructural logics. We call this kind of

semantics Urquhart–Fine-style semantics since it is based on the Urquhart semantics with

Fine-style interpretation of the intensional conjunction (or fusion). This semantics can be

also called prime US semantics since it is working for prime theories (with parameters).

Section 4.2 extends this semantics to the semantics with star operations for negations

for those logics with the axioms for de Morgan laws. Similarly we introduce star-based

Urquhart–Fine-style semantics. These two sorts of semantics are less powerful than AUS

semantics in that they can be applied to restricted distributive basic substructural logics.

However, these semantics instead use all the standard clauses (1), (2), and (→U) and so

the models are easier to work with. Thus, they are more powerful than AUS semantics in

that most people working for semantics of a formal system would be familiar with these

standard clauses and thus such semantics are more intuitive to them. In Section 4.3, we

more exactly deal with such powers and limitations of these two sorts of semantics.

We finally note that basic substructural logics, in general, do not prove formulas such

as (α). Our investigation is to provide US semantics for such logics. This means that

while Urquhart and his supporters have investigated logics built on Urquhart semantics,

this paper conversely addresses US semantics for substructural logics rejecting formulas

4We first used the term “structural rules” in place of “structural axioms” since they are all usually

called structural rules although they can be all presented as axioms. One reviewer pointed out that GL

has a structural rule related to exchange. I agree his opinion and so I changed it into “structural axioms.”
5The notion ‘algebraic Urquhart-style semantics’ first called ‘algebraic Kripke-style semantics’ by Yang

[44] so as to express US semantics having the same structures as algebraic semantics. Here we instead call

such semantics AUS semantics since various sorts of relational semantics are called Kripke-style semantics

and we just want to denote one sort among them.
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such as (α).

2 Preliminaries: logics and algebraic semantics

The term (pointed) residuated lattice-ordered unital groupoids (briefly, (p)rlu-groupoid)-

based logics denote substructural logic systems having semantics based on (p)rlu-groupoids,

where a groupoid with unit and its residua interpret the intensional conjunction and impli-

cation connectives ‘&,’ ‘→,’ and ‘ .’ The system GL of Galatos and Ono [21] is the weak-

est logic in this framework. One can base this logic and its expansions on a propositional

countable language having Fm (a set of sentences), inductively constituted from VAR (a

set of propositional variables); connectives &,∨,∧,→, ; constants 1, (0,); and defined

connectives (df1) ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ); (df2) ϕ! ψ := (ϕ  ψ) ∧ (ψ  ϕ);

((df3) ∼ ϕ := ϕ→ 0; (df4) −ϕ := ϕ 0.)

Notice that 0, df3, and df4 are the additional constant and the definitions of two nega-

tion connectives for substructural logic systems based on prlu-groupoids. A consequence

relation ` is henceforth provided using axiom systems.

Definition 2.1. ([6, 7, 21]) The axioms and rules below are for GL:

ϕ→ (ϕ ∨ ψ), ψ → (ϕ ∨ ψ) (∨-introduction, ∨-I)

((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ) (∨-elimination, ∨-E)

((ϕ χ) ∧ (ψ  χ))→ ((ϕ ∨ ψ) χ) (∨-elimination, ∨-E )

((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ)) (∧-introduction, ∧-I)

(ϕ ∧ ψ)→ ϕ, (ϕ ∧ ψ)→ ψ (∧-elimination, ∧-E)

ϕ→ (1→ ϕ) (Push)

1→ (ϕ→ ϕ) (R′)

1 (1)

ϕ→ ((ϕ ψ)→ ψ) (assertion , ASl )

ϕ→ (ψ → (ψ&ϕ)) (&-adjunction,,-Adj)

ϕ, ψ ` ϕ ∧ ψ (adjuction, adj)

ϕ→ ψ, ϕ ` ψ (modus ponens, mp)

ψ → χ ` (ϕ→ ψ)→ (ϕ→ χ) (prefixing, pf)

ϕ→ ψ ` (ψ → χ)→ (ϕ→ χ) (suffixing, sf)

ϕ ` (ϕ→ ψ)→ ψ (ASl)

ψ → (ϕ→ χ) ` (ϕ&ψ)→ χ (residuation, res)

ϕ→ (ψ → χ) ` ψ → (ϕ χ) (permutation , per )

ϕ ψ ` ϕ→ ψ (symmetry, symm)

We call a logic L′ an axiomatic expansion (briefly expansion) of a logic L if it is

obtained from L by adding either new constants or connectives and their corresponding

axioms. If these logics have the same language, then we call L′ an extension of L.
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Definition 2.2. (i) (Non-distributive logics) Consider the following structural ax-

ioms:

e ϕ&ψ → ψ&ϕ exchange

a (ϕ&ψ)&χ↔ ϕ&(ψ&χ) associativity

c ϕ→ (ϕ&ϕ) contraction

p (ϕ&ϕ)→ ϕ expansion

i ϕ→ (ψ → ϕ) left weakening

o 0→ ϕ right weakening

For any α ⊆ {e, a, c, p, i, o}, GL is expanded by the basic structural axioms in α.

GLα is said to be a non-distributive basic substructural logic since it does not require

the axiom for distributivity.

(ii) (Distributive logics) DL is GL plus:

• (ϕ ∧ (ψ ∨ χ))→ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ)) (distributivity, D).

Similarly DL is expanded by the basic structural axioms in α, i.e., DLα is a GLα
with (D). By DLα\aic , we denote a GLα\{a,i} with (D) or a GLα\{a,c} with (D).6 The

systems denoted by DLα and DLα\aic are said to be distributive basic substructural

logics expanding DL since they require the axiom for distributivity.

(iii) (De Morgan distributive logics) dmDLα is a DLα with 0, df3, df4, and the axioms:

• ∼ (ϕ ∧ ψ)→ (∼ ϕ ∨ ∼ ψ) (strong de MorganI∼, sdmI∼),

• −(ϕ ∧ ψ)→ (−ϕ ∨ −ψ) (sdmI−),

• (∼ ϕ ∧ ∼ ψ)→ ∼ (ϕ ∨ ψ) (sdmII∼),

• (−ϕ ∧ −ψ)→ −(ϕ ∨ ψ) (sdmII−).

By dmDLα\aic , we denote DLα\aic with 0, df3, df4, (sdmI∼), (sdmI−), (sdmII∼),

and (sdmII−). The systems denoted by dmDLα and dmDLα\aic are said to be de

Morgan distributive basic substructural logics expanding DL since they require the

axioms for de Morgan negation properties.

For convenience, we denote the sets of substructural logics defined above as follows.

Definition 2.3. (i) GLs = {GLα : α ⊆ {e, a, c, p, i, o}}.

(ii) DLs = {DLα : α ⊆ {e, a, c, p, i, o}}; DLs− = {DLα\aic : α ⊆ {p, i, o, e} or α ⊆
{p, c, o, e}}.

6As the results in Section 4 will show, DLa,i and DLa,c both do not prove sentences such as (α), whereas

their related semantics satisfy such sentences. So here we drop such distributive basic substructural logics.
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(iii) dmDLs = {dmDLα : α ⊆ {e, a, c, p, i, o}}; dmDLs− = {dmDLα\aic : α ⊆ {p, i, o, e}
or α ⊆ {p, c, o, e}}.

(iv) Ls = GLs ∪ DLs ∪ dmDLs.

A logic is called finitary if all its deduction rules are finite. Since L ∈ Ls has finite

deduction rules, it is finitary.

One can easily prove the following proposition.

Proposition 2.4. (i) (cf, [6, 8]) Let ϕ1 be ϕ ∧ 1. GL proves:

(1) (ϕ&(ϕ→ ψ))→ ψ

(2) ((ϕ ψ)&ϕ)→ ψ

(3) ψ → χ ` (ϕ ψ)→ (ϕ χ) (Pf )

(4) ϕ→ ψ, ψ → χ ` ϕ→ χ (transitivity, T )

(5) ϕ ` ϕ1 (adju)

(6) ϕ→ ψ ` (χ&ϕ)→ (χ&ψ) (&-monotonicity,,-mon1)

(7) ϕ→ ψ ` (ϕ&χ)→ (ψ&χ) (&-monotonicity,,-mon2)

(8) ψ → (ϕ χ) ` ϕ→ (ψ → χ) (per 2)

(9) (ϕ&ψ)→ χ ` ψ → (ϕ→ χ) (res2)

(10) ϕ→ ψ ` ϕ ψ (symm2)

(ii) GL with 0, df3, and df4 proves:

(1) ϕ→ − ∼ ϕ (double negation introduction−∼, DNI−∼)

(2) ϕ→ ∼ −ϕ (DNI∼−)

(3) (∼ ϕ ∨ ∼ ψ)→ ∼ (ϕ ∧ ψ) (weak de MorganI∼, wdmI∼)

(4) (−ϕ ∨ −ψ)→ −(ϕ ∧ ψ) (wdmI−)

(5) −(ϕ ∨ ψ)→ (−ϕ ∧ −ψ) (wdmII−)

(6) ∼ (ϕ ∨ ψ)→ (∼ ϕ ∧ ∼ ψ) (wdmII∼)

(7) ϕ→ ψ ` ∼ ψ → ∼ ϕ (contraposition∼, CP∼)

(8) ϕ→ ψ ` −ψ → −ϕ (CP−)

(iii) DL, i.e., the GL with (D), proves:

(1) (ϕ ∧ (ψ ∨ χ))↔ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))

(2) (ϕ ∧ (ψ ∨ χ))! ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))

(iv) Let dmDL be the DL with 0, df3, df4, (sdmI∼), (sdmI−), (sdmII∼), and (sdmII−).

dmDL proves:

(1) −(ϕ ∧ ψ)↔ (−ϕ ∨ −ψ) (dmI∼)

(2) −(ϕ ∨ ψ)↔ (−ϕ ∧ −ψ) (dmI−)

(3) −(ϕ ∧ ψ)! (−ϕ ∨ −ψ)

(4) −(ϕ ∨ ψ)! (−ϕ ∧ −ψ)
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(5) ∼ (ϕ ∧ ψ)↔ (∼ ϕ∨ ∼ ψ) (dmII∼)

(6) ∼ (ϕ ∨ ψ)↔ (∼ ϕ∧ ∼ ψ) (dmII−)

(7) ∼ (ϕ ∧ ψ)! (∼ ϕ ∨ ∼ ψ)

(8) ∼ (ϕ ∨ ψ)! (∼ ϕ ∧ ∼ ψ)

Remark 2.5. Proposition 2.4 (i) to (iv) show the following.

1. (i) (4), (6), and (7) ensure that GL satisfies transitivity and monotonicity.

2. (ii) ensures that GL with 0, df3, and df4 satisfies contraposition, double negation

introduction, and weak forms of de Morgan laws.

3. (iii) ensures that DL satisfies distributivity.

4. (iv) ensures that dmDL satisfies de Morgan laws.

A theory of L is a set of sentences such that T `L ϕ entails ϕ ∈ T . In a theory T on

L ∈ Ls, a proof is defined as a sequence of sentences σ, where each element is either an

axiom of L, a member of T , or follows from preceding elements of σ using a rule of L.

T `L ϕ means that there exists a proof of ϕ in T on L.7

For convenience, as propositional connectives and as algebraic operators we ambigu-

ously use ‘∨,’ ‘∧,’ ‘∼,’ and ‘−’.

Now we introduce suitable algebraic structures for substructural logics.

Definition 2.6. An rlu-groupoid is an algebra (A, ∗, 1,∧,∨, \, /), where (A, ∗, 1) is

a groupoid with unit; (A,∧,∨) is a lattice; and b ≤ a\c iff a ∗ b ≤ c iff a ≤ c/b, for all

a, b, c ∈ A (residuation). A prlu-groupoid is an rlu-groupoid with an arbitrary element

0.

Since the system GL is characterized by the set of rlu-groupoids, rlu-groupoids are

henceforth called GL-algebras.

Definition 2.7. (i) (GLα-algebras) Suitable algebraic (in)equations for the struc-

tural axioms introduced in Definition 2.2 (ii) are defined as follows:

• a ∗ b ≤ b ∗ a, for all a, b ∈ A (eA)

• (a ∗ b) ∗ c = a ∗ (b ∗ c), for all a, b, c ∈ A (aA)

• a ∗ a ≤ a, for all a ∈ A (pA)

• a ≤ a ∗ a, for all a ∈ A (cA)

• a ≤ 1, for all a ∈ A (iA)

• 0 ≤ a, for all a ∈ A (oA).

7This implies that T is closed under the rules of L and contains theorems of L.
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Thus, for any α ⊆ {eA, aA, pA, cA, iA, oA}, we define GLα-algebras as GL-algebras

with their corresponding (in)equations. If α = ∅, then GLα-algebras are just GL-

algebras.

(ii) (DLα-algebras) A DLα-algebra is a distributive lattice-ordered GLα-algebra. In par-

ticular, a DLα\aic-algebra is a DLα-algebra dropping either (aA) and (iA) or (aA) and

(cA).

(iii) (dmDLα-algebras) Let the negation operations ∼ and − be defined as follows: for

all a ∈ A, (df3A) ∼a := a\0 and (df4A) −a := 0/a. A dmDLα-algebra is a pointed

DLα-algebra satisfying (df3A), (df4A), and de Morgan properties8, i.e., (dmIA∼ ) ∼
(a ∧ b) = (∼ a ∨ ∼ b), (dmIA− ) −(a ∧ b) = (−a ∨ −b), (dmIIA∼ ) ∼ (a ∨ b) = (∼ a

∧ ∼ b), and (dmIIA− ) −(a ∨ b) = (−a ∧−b). In particular, a dmDLα\aic-algebra is a

dmDLα-algebra dropping either (aA) and (iA) or (aA) and (cA).

(iv) By L-algebras, we say all the algebras introduced in (i) to (iii).

For an L-algebra A, an A-evaluation is defined as a map v : Fm → A such that

v : Fm→ A satisfying: v(#(ϕ1, . . . , ϕn)) = #A(v(ϕ1), . . ., v(ϕn)), where # ∈ {&, ∨, ∧,

→,  , 1, 0} and #A ∈ {∗, ∨, ∧, \, /, 1, 0}. A sentence ϕ is said to be an A-tautology

in case 1 ≤ v(ϕ) for all A-evaluation v. An A-evaluation v is said to be an A-model of

a theory T in case 1 ≤ v(ϕ) for all ϕ ∈ T . Mod(T, A) denotes the set of all A-models

of T . A sentence ϕ is said to be a semantic consequence of T on a class of L-algebras

K, denoted by T |=K ϕ, in case Mod(T ∪ {ϕ},A) = Mod(T,A) for each A ∈ K. A is

said to be an L-algebra in case A is a semantic consequence of T on {A} whenever ϕ is

L-provable in any T . MOD(L) denotes the set of L-algebras. For simplicity, instead of

T |=MOD(L) ϕ, we write T |=L ϕ.

Theorem 2.8. (Strong completeness) For a theory T on L ∈ Ls and a sentence ϕ, it

holds that T `L ϕ iff T |=L ϕ.

Proof. The claim is obtained as a corollary of Theorem 2.1.25 in [8]. 2

3 Semantics I: AUS semantics

In this section, one kind of US semantics, called AUS semantics, is introduced for Ls,

i.e., all the systems introduced in Section 2 (see Definition 2.3 (iv)), and its powers and

limitations are discussed.

8In order to emphasize that dmDLα-algebras satisfy de Morgan laws, we introduce de Morgan prop-

erties as equations satisfying de Morgan laws.
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3.1 Nuclear US semantics for Ls

AUS semantics as Urquhart-style semantics being equivalent to algebraic semantics can

be introduced for Ls. To verify this, we introduce one sort of such semantics called here

nuclear US semantics, which is based on Urquhart’s operational evaluation of implication9

and nuclear completion. For this, we first introduce several Kripke frames, some of which

are already introduced in [44, 45, 49].

Definition 3.1. (i) (Kripke frames [44]) A structure F = (F, 1,≤) is said to be a

Kripke frame if ≤ is a partial order on the carrier set F and 1 is a special element

in F . We call the elements of F states of information.

(ii) (Operational Kripke frames [45]) A Kripke frame F = (F, 1,≤, ∗) is said to be an

operational Kripke frame (briefly OK frame) if (F, 1, ∗) forms a groupoid with unit.

(iii) (Residuated operational Kripke frames [49]) A residuated OK frame is an OK frame,

where the sets {c : a ∗ c ≤ b} and {c : c ∗ a ≤ b} have suprema, denoted by a\b and

b/a, respectively, for every a, b ∈ F .

(iv) (GL frames [49]) A GL frame is a residuated OK frame, where ≤ is lattice-ordered

on F .

(v) (L frames) A GL frame is said to be pointed if it has an element 0. For any

α ⊆ {eA, aA, pA, cA, iA, oA}, a (pointed) GL frame is said to be (pointed) GLα
frame if it has the α additionally. A GLα frame is said to be a DLα frame if ≤ is

distributive lattice-ordered, and a pointed DLα frame is said to be a dmDLα frame

if it satisfies (df3A), (df4A), and de Morgan laws. All these frames are said to be L

frames.

Remark 3.2. We recall the facts associated with Definition 3.1 mentioned in [49].

1. The definition (i) is for the intuitionistic logic H.

2. (ii) shows that frames take groupoid operations in place of binary relations for acces-

sibility.

3. (iii) is important to give AUS semantics for Ls because the suprema provide left and

right divisions, which are operations corresponding to two implication connectives.

4. (iv) shows that the operations meet and join are defined as inf and sup, respectively,

on a lattice.

9More exactly, we consider a generalization of Urquhart’s evaluation of implication because, while

Urquhart considered only one implication in [40], we introduce two implications here.
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5. (v) shows that the additional structural properties of α for L frames are provided by

groupoid operations.

For an evaluation on an L frame, we need to introduce closure operators.

Definition 3.3. (Closure operators) Given a partially ordered set F , a function cl :

F → F is said to be a closure operator on F if it satisfies: for any a, b ∈ F , a ≤ cl(a)

(increasing); clcl(a) = cl(a) (idempotent); if a ≤ b, then cl(a) ≤ cl(b) (monotone). For an

element a ∈ F , if a = cl(a), a is called closed. Fcl denotes the class of all closed elements

of F , called closure set.

Let F be a partially ordered groupoid (po-groupoid briefly). A nucleus on F is a

function h : F → F such that h is a closure operator on (F,≤) satisfying h(a) ∗ h(b) ≤
h(a ∗ b), where ∗ is a groupoid operator on F . Residuated OK frames are po-groupoids.

By virtue of nuclear completions, it is verified that one can embed L frames into complete

L frames.

Proposition 3.4. Every L frame is embeddable into a complete L frame.

Proof. For GLα and DLα frames, see Proposition 1 in [49] and Proposition 4 in [44],

respectively. Here we consider dmDLα frames. Let F be a residuated lattice. First we

recall the definition of its embeddable residuated lattice F+:

1. For any F ⊆ F , N(F ) denotes the intersection of all sets H satisfying: (I) F ⊆ H,

(II) H is closed downwards, and (III) for any G ⊆ H, there exists sup(G) in F
entails sup(G) ∈ H. One can ensure that N is a closure operator. The domain of

F+ is {F : F ⊆ F such that N(F ) = F}, the N -closed subsets of A.

2. The definitions of the operations of F+ are given as follows: F ∨ G = N(F ∪ G);

F ∧G = F ∩G; and F ◦G = N(F ∗G) such that F ∗G = {a∗ b : a ∈ F and b ∈ G},
where ∗ is the groupoid operator of F . In addition, we have a residuated pair (\, /)
as follows: F\G = {c ∈ F : ∀a ∈ F , a ∗ c ∈ G} and G/F = {c ∈ F : ∀a ∈ F ,

c∗a ∈ G}. The definition ensures thatN is a nucleus on (F+,⊆) since for F,G ∈ F+,

N(F ) ◦N(G) = F ◦G ⊆ N(F ◦G).

3. 1+ = {c ∈ F : c ≤ 1} and 0+ = {c ∈ F : c ≤ 0} are the constants in F+.

For the distributivity in F+, see Proposition 4 in [44]. For the de Morgan laws in F+,

we further note that two negations are defined as follows:

4. ∼ F = F\0+ and −F = 0+/F .
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One has to prove: ∼ (F ∧ G) = (∼ F ∨ ∼ G), ∼ (F ∨ G) = (∼ F ∧ ∼ G),

−(F ∧G) = (−F ∨ −G), and −(F ∨G) = (−F ∧ −G). For the first case, we verify that

∼ (F ∩ G) = N(∼ F ∪ ∼ G). Since for x ∈ F and y ∈ G, ∼ (x ∧ y) = ∼ x ∨ ∼ y and

thus ∼ (F ∩ G) = ∼ F ∪ ∼ G, one can easily prove its left-to-right direction. For its

reverse direction, we note that Lemma 3.33 in [20] ensures that F\G and G/F are in F+

for any F,G ∈ F+ since N is a nucleus on F+. This means that F\G = N(F\G) and

G/F = N(G/F ). Then, since F ∩ G ⊆ F,G and thus ∼ F , ∼ G ⊆ ∼ (F ∩ G), we can

ensure that ∼ F ∪ ∼ G ⊆ ∼ (F ∩G). Then, since ∼ (F ∩G) ∈ F+ and thus N(∼ F ∪
∼ G) ⊆ N(∼ (F ∩ G)) = ∼ (F ∩ G), we can obtain that N(∼ F ∪ ∼ G) ⊆∼ (F ∩ G).

The proof for the other cases is analogous.

Therefore, if F is an L frame, then so is F+. 2

Given a po-groupoid F and a nucleus N on P(F), if all N -closed sets are closed down-

ward, N is said to be a downward nucleus. For any set F , any downward nucleus N on

P(F ), and any evaluation v from sentences to closed subsets of F , an evaluation on an L

frame is given as a forcing 
 between the states of information and the propositional vari-

ables, constants, and any sentences satisfying the below conditions. For all propositional

variables p,

(p-closure) N(v(p)) = v(p);

(AHC) b ≤ a and a 
 p entail b 
 p;
(
) a 
 p iff a ∈ v(p),

for constants 1, 0,

(1) a 
 1 iff a ∈ N(v(1));

((0) a 
 0 iff a ∈ N(v(0)), if frames are pointed,) and

for any sentences,

(&) a 
 ϕ&ψ iff a ∈ N(v(ϕ) ∗ v(ψ));

(∨) a 
 ϕ ∨ ψ iff a ∈ N(v(ϕ) ∪ v(ψ));

(∧) a 
 ϕ ∧ ψ iff a 
 ϕ and a 
 ψ;

(→) a 
 ϕ→ ψ iff for every b ∈ F , b 
 ϕ entails b ∗ a 
 ψ;

( ) a 
 ϕ ψ iff for every b ∈ F , b 
 ϕ entails a ∗ b 
 ψ.

A pair (F ,
), where F is an L frame and 
 is an evaluation on F , is said to be an L

model. For an L model (F ,
), a state of information a ∈ F and a sentence ϕ, a forces ϕ

means that a 
 ϕ. ϕ is said to be true in (F ,
) in case 1 
 ϕ; valid in the frame F in

case ϕ is true in (F ,
) for any evaluation 
 on F . If all axioms of L are valid in F , an

L frame F is said to be an L frame; if F is an L frame, an L model (F ,
) is said to be

an L model.
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Lemma 3.5. (i) (HL, Hereditary lemma) Given an L frame F , all states of infor-

mation a, b ∈ F , and a sentence ϕ, a 
 ϕ and b ≤ a entail b 
 ϕ.

(ii) v(ϕ) is closed for any L model and for any sentence ϕ.

Proof. See Lemma 1 in [49] for the proof for (i) and (ii). 2

Given a downward nucleusN on P(F ) and closed setsG,H (⊆ F ), we defineG∪NH :=

N(G∪H), G∗N H := N(G∗H), and X\G and G/X as in Proposition 3.4. The following

proposition shows an important connection between algebraic semantics and nuclear OK

semantics for Ls.

Proposition 3.6. Let F be (F, 1, (0, ) ≤, ∗).

(i) F is an L frame in case it is the reduct of an L-algebra A.

(ii) The structure P(F)N = (P(F )N , ∗N , ∪N , ∩, \, /, N({1}), (N({0}))) forms an

L-algebra in case F is an L frame.

(iii) (F ,
) is an L model and a 
 ϕ iff a ∈ v(ϕ) for each sentence ϕ and for each a ∈ A,

in case F is the reduct of an L-algebra A and v is an evaluation in P(A)N .

Proof. See Proposition 2 in [49] for the proof for (i), (ii), and (iii). 2

Now the soundness and completeness for Ls are provided as follows.

Lemma 3.7. ([49]) 1 
 ϕ→ ψ iff for any a ∈ F , a 
 ϕ entails a 
 ψ.

Proposition 3.8. (Soundness) ϕ is valid in each L frame in case `L ϕ.

Proof. The validity of the axioms (sdmI∼), (sdmI−), (sdmII∼), and (sdmII−) is

proved here as examples. For (sdmI∼), one needs to verify 1 
 ∼ (ϕ ∧ ψ) → (∼ ϕ

∨ ∼ ψ). By Lemma 3.7, for any state of information a ∈ F one may instead assume that

a 
 ∼ (ϕ ∧ ψ) and prove that a 
 ∼ ϕ ∨ ∼ ψ. By the condition (∨) and Proposition 3.6

(iii), we assume that a ∈ v(∼ (ϕ ∧ ψ)) and show that a ∈ N(v(∼ ϕ) ∪ v(∼ ψ)). Note

that a ∈ v(∼ (ϕ ∧ ψ)) iff a ∈ v((ϕ ∧ ψ)→ 0) iff a ∈ v(ϕ ∧ ψ)\0+ iff a ∈ ∼ (v(ϕ) ∩ v(ψ)).

Then, since ∼ (v(ϕ) ∩ v(ψ)) = ∼ v(ϕ) ∪ ∼ v(ψ) ⊆ N(∼ v(ϕ) ∪ ∼ v(ψ)), one can obtain

that a ∈ N(v(∼ ϕ) ∪ v(∼ ψ)). The proof for the other strong forms of de Morgan laws

is analogous. 2

Theorem 3.9. (Strong completeness) Let T be a theory on L, ϕ a sentence, and L a

set of all L frames. T `L ϕ in case T |=L ϕ.
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Proof. Suppose contrapositively that T is a theory on L and ϕ is a sentence such that

T 6`L ϕ. Theorem 2.8 assures that one can construct an L-algebra A and an evaluation v

on A such that 1 ≤ v(χ) for all χ ∈ T and v(ϕ) < 1. Then, the complete embeddability

of Theorem 6.29 in [20] further ensures that N({1}) ⊆ N({v(ψ)}) and N({1}) 6⊆ N(v(ϕ))

in P(A)N . Thus, for an evaluation v′ in P(A)N , one has that for any χ ∈ T , 1 ∈ v′(χ)

and 1 6∈ v′(ϕ) by Proposition 3.6; therefore, T 6|=L ϕ. 2

Remark 3.10. Since every L frame forms its corresponding L-algebras, the semantics

constructed by these frames are AUS semantics.

3.2 Powers and limitations

The AUS semantics introduced in Section 3.1 is the most powerful of the known US se-

mantics so far in the sense that it covers all the basic substructural systems introduced

in Definition 2.3. As is shown above, this semantics is as powerful as algebraic semantics

in the sense that algebraically complete basic substructural logics are complete on this

semantics and vice versa. Associated with it, we note that such semantics have been

introduced for some of them (but not all of them). For instance, Humberstone [25] intro-

duced such semantics for R+; Došen [9, 10] introduced (semi-lattice-ordered) groupoid

frames for logics based on urlogs and their extensions with structural axioms; Venema

[42] generalized Došen’s work to substructural logics with two implications→, and two

constants >, 1; and Yang [44, 49] introduced AUS semantics for R and its neighbors, and

GLα.

Especially the nuclear US semantics for Ls addressed in Section 3.1 is valuable in

the following two senses: First, this semantics is fully operational in the sense that it

provides operational evaluations for disjunction ∨ and intensional conjunction & as well

as two implications →, (see (→), ( ), (∨) and (&) above). However, the semantics

introduced by Humberstone [25], Došen [10] and Venema [42] are not in the sense that

they do not provide operational evaluations for ∨ and &. The following first two are the

evaluations by Humberstone [25] the last two are by Došen [10] and Venema [42].

(∨H) a 
 ϕ ∨ ψ iff there are b, c ∈ A such that a = b+ c, b 
 ϕ and c 
 ψ.

(&H) a 
 ϕ&ψ iff there are b, c, d ∈ A such that d+ a = b ∗ c, b 
 ϕ and c 
 ψ.

(∨D) a 
 ϕ ∨ ψ iff there are b, c ∈ A such that either b 
 ϕ, c 
 ψ and b ∩ c ≤ a, or

a 
 ϕ, or a 
 ψ.

(&F ) a 
 ϕ&ψ iff there are b, c ∈ A such that b 
 ϕ, c 
 ψ, and b ∗ c ≤ a.10

10This operational-relational evaluation was first introduced by Fine [17]. So we used the index “F” in

honor of the inventor, Fine.
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This implies that the nuclear US semantics faithfully follows Urquhart’s idea of semantics

based on operations.

Second, regarding the first, as Standefer mentioned on operational semantics in [37],

the nuclear US semantics philosophically provides a natural interpretation of connectives

in terms of information.11 (Note that to avoid ontological commitment many philosophi-

cal logicians prefer the term “states of information” or “situations” to the term “possible

worlds”.) Let the elements of the domain be states of information. A state of information

a verifies an implication, denoted by→, whenever any state of information b verifying the

antecedent results in a state of information combining b with a in order, denoted by b ∗ a,

verifying the consequent; A state of information a verifies another implication, denoted by

 , whenever any state of information b verifying the antecedent results in a state of infor-

mation combining a with b in order, denoted by a∗b, verifying the consequent;12 and such

relations of verification can be naturally extended to conjunction, intensional conjunction,

and disjunction. This means that it provides a more intuitive way to understand connec-

tions between states of information forcing a sentence in a logic. In particular, it provides

interpretations of states of information verifying intensional conjunction and disjunction

based on nuclear completions.

In addition, regarding the second, on disjunction and intensional conjunction the nu-

clear US semantics provides simpler interpretations than other US semantics. As one can

see, (∨) and (&) are simpler than (∨H), (&H), (∨D) and (&F ) since they just requires the

nuclear operator N . In fact, to provide semantics based on nuclear completions is not my

own idea. Such semantics has a long history. For instance, semantics based on nuclear

completions such as Beth, Dragalin, phase, and quantale semantics were introduced for

intuitionistic and linear logics [1, 2, 11, 12, 22, 53]. In particular, for non-distributive

substructural logics, Restall [33] considered semantics with the evaluations (&) and (∨),

each of which is based on nuclear operation N , in Section 3.1. However, his semantics

has Routley–Meyer-style evaluations for implications below.13

(→R) x 
 ϕ→ ψ iff for all y, z ∈ A, Rxyz and y 
 ϕ entail z 
 ψ,

( R) x 
 ϕ ψ iff for all y, z ∈ A, Ryxz and y 
 ϕ entail z 
 ψ.

11As one reviewer pointed out, this interpretation originated with Urquhart [38, 39, 40], and it was

emphasized by Humberstone [25].
12These two interpretations of implications show that states of information obtained by intensional

conjunction need not commutative. For instance, the state of information that I have a breakfast and

go to school is different from the state of information that I go to school and have a breakfast since here

‘and’ means ‘and then.’
13In his semantics, one is not easy to catch the intuitive meanings of Rxyz and Ryxz in the conditions.

The most natural interpretations of R are that Rxyz := x ∗ y = z and Rxyz := x ∗ y ≤ z, which are

operational and operational-relational ones, respectively. The first one is related to Urquhart’s evaluation

of implication and the second to Fine’s evaluation of implication. For more details on these interpretations,

see [13, 14, 15, 49].
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This shows that the nuclear US semantics is the first introduction of US semantics based

on nuclear completions for all the basic substructural logics in Definition 2.3.14

However, AUS semantics has an obvious limitation. Because it does not have its

own semantics distinguished from algebraic semantics and so is not very interesting in

novelty. As its natural consequences, we can say the following two limitations of nuclear

US semantics. First, the reduction of AUS semantics to algebraic semantics cannot be

applied to frames irreducible to algebraic structures. For instance, the nuclear semantics

cannot be applied to the Routley–Meyer semantics for the relevance logic R introduced

in [16] since the interpretations of R based on fusion operation such as Rxyz := x ∗ y = z

and Rxyz := x ∗ y ≤ z cannot be applied to the R in [16]: The semantics for R has the

postulate (p) Rxxx. According to these definitions, one has x ∗ x = x and x ∗ x ≤ x, and

so (pA). However, the algebraic structures for R do not require (pA). Namely, it causes a

problem of overgeneration. This shows that the postulates for Routley–Meyer semantics

for R interpreted by Rxyz := x ∗ y = z and Rxyz := x ∗ y ≤ z do not provide related

algebraic structures and so do not frame structures, see [49].

Second, this semantics is very limited in providing set-theoretic completeness for basic

substructural logics. For set-theoretic completeness, we in general need canonical evalu-

ation. However, as Yang mentioned in [51], while the standard canonical evaluation can

be defined as

(CES) x 
can ϕ iff ϕ ∈ x,

it does not work for basic substructural logics in general. Because of this, he instead

introduced basic substructural logics with the nucleus connective N , called substructural

nuclear image-based logics, and defined the canonical evaluation as follows

(CEN) x 
can ϕ iff Nϕ ∈ x.

Then he provided a set-theoretic completeness for them.15 This implies that one has some

difficulties in establishing set-theoretic completeness for the basic substructural logics in

Definition 2.3. Namely, nuclear US semantics does not provide set-theoretic completeness

results for the basic substructural logics. These two are the limitations of AUS semantics

we can say in this paper.

14Recently, Galatos and Jipsen [19] introduced residuated frames providing relational semantics based

on nuclear relations for basic substructural logics. This semantics is interesting in that the residuated

frames are based on ternary relations, whereas their corresponding semantics are based on algebras, i.e.,

rlu-groupoids. However, it is slightly different from traditional relational semantics in the sense that,

while evaluations in relational semantics are in general provided by forcing relations, evaluations in their

semantics are not.

Hartonas [23, 24] also introduced relational semantics based on closure operators for propositional lat-

tice logics as non-distributive propositional logics. However, the semantics in [23] deals with implications

using ternary relations and the semantics in [24] does not deal with them.
15See [51] for more details.
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4 Semantics II, III: (Star-based) Urquhart–Fine-style

semantics

As mentioned in Section 1, Urquhart semantics does not work for distributive substruc-

tural logics in general. But the reason of its failure is not in the distributivity itself but in

some properties, in particular associativity, of intensional conjunction &. We verify this

fact by introducing the Urquhart semantics with a variant of Fine’s evaluation of & for

DLs− in Section 4.1. US semantics for some distributive substructural logics may have

star operations for negations introduced in Routley–Meyer semantics for relevance logics.

However, this fact has not yet been elucidated exactly. We investigate this by introducing

similar semantics with two operations for negations for dmDLs− in Section 4.2. In Section

4.3, we finally consider powers and limitations of these two kinds of semantics.

4.1 Prime US semantics for DLs−

One can deal with Urquhart–Fine-style semantics for DLs− introduced in Definition 2.3

(ii). To verify this, we introduce one sort of such semantics called here prime US seman-

tics, which has an operational and relational interpretation of &, and prime theories based

on parameterized disjunctions in place of closed theories.16 We first introduce Urquhart-

Fine frames (briefly UF frames) as GL frames on distributive lattices in honor of Urquhart

and Fine, the inventors of basic idea of the prime US semantics.

Definition 4.1. (i) (UFα frames) Let UF frame be an GL frame, where ≤ forms

a distributive lattice order. For any α ⊆ {eA, aA, pA, cA, iA, oA}, a (pointed) UF

frame is said to be a (pointed) UFα frame if it has the α additionally.

(ii) (UFα\aic frames) By UFα\aic frame, we denote a UFα frame, where α ⊆ {eA, pA, cA,

oA} or α ⊆ {eA, pA, iA, oA}.

For any set F , an evaluation v is a map from propositional variables to elements of

F . This evaluation is extended to an evaluation on a UFα\aic frame, which is given as a

forcing 
 between the states of information and the propositional variables, constants,

and any sentences satisfying: For all propositional variables p,

(
) a 
 p iff a ≤ v(p);

(AHC) a 
 p and b ≤ a entail b 
 p, and

for constants 1, 0

(1) a 
 1 iff a ≤ 1;

((0) a 
 0 iff a ≤ 0, if frames are pointed;) and

16Since DLα has a more general form of deduction theorem containing parameters like GLα, it also

requires prime theories containing parameters. For more general deduction theorems, see [7, 8, 47].
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for any sentences,17

(&) a 
 ϕ&ψ iff there exist b, c ∈ F such that a ≤ b ∗ c, b 
 ϕ, and c 
 ψ;

(∧) a 
 ϕ ∧ ψ iff a 
 ϕ and a 
 ψ;

(∨) a 
 ϕ ∨ ψ iff a 
 ϕ or a 
 ψ;

(→) a 
 ϕ→ ψ iff for every b ∈ F , b 
 ϕ entails b ∗ a 
 ψ;

( ) a 
 ϕ ψ iff for every b ∈ F , b 
 ϕ entails a ∗ b 
 ψ.

UFα\aic models, validity, and Uα\aic frames and models are defined as in Section 3.1.

First, the following lemmas, which can be easily proved, are introduced.

Lemma 4.2. (HL) For a UFα\aic frame F , for all states of information a, b ∈ F , and

for any sentence ϕ, b ≤ a and a 
 ϕ entail b 
 ϕ.

Lemma 4.3. 1 
 ϕ→ ψ iff for any a ∈ F , a 
 ϕ entails a 
 ψ.

Proposition 4.4. Let F = (F, 1, (0, ) ≤, ∗) be a UFα\aic frame and v be an evaluation

in F . Then (F ,
) is a UFα\aic model and for every sentence ϕ and for every a ∈ A, one

has: a 
 ϕ iff a ≤ v(ϕ).

Proof. The induction steps for ϕ = ψ ∨ χ, ϕ = ψ&χ, ϕ = ψ → χ, and ϕ = ψ  χ

need to be considered. The interesting case is ϕ = ψ&χ because the proof for the other

ones are already well known. Let ϕ be ψ&χ. The condition (&) assures that a 
 ψ&χ

iff one can construct b, c ∈ F such that b 
 ψ, c 
 χ, and a ≤ b ∗ c, so by the induction

hypothesis, iff one can construct b, c ∈ F such that b ≤ v(ψ), c ≤ v(χ) and a ≤ b ∗ c.
Therefore, one obtains a ≤ b ∗ c ≤ v(ψ) ∗ v(χ) = v(ψ&χ). For the other direction, let

a ≤ v(ψ) ∗ v(χ) = v(ψ&χ). Take b = v(ψ) and c = v(χ). One obtains b 
 ψ, c 
 χ and

a ≤ b ∗ c; hence a 
 ψ&χ. 2

Proposition 4.5. (Soundness) ϕ is valid in every UFα\aic frame in case `DL
α\aic

ϕ.

Proof. As examples, the validity of (e), (p), (c), (i), and (o) is proved here.

(e): One has to verify 1 
 (ϕ&ψ) → (ψ&ϕ). Lemma 4.3 ensures that for every a ∈ F ,

we may assume a 
 ϕ&ψ and prove a 
 ψ&ϕ. Let a 
 ϕ&ψ. The condition (&),

monotonicity, and Lemma 4.3 ensure that there exist b, c ∈ F such that a ≤ b ∗ c ≤
v(ϕ) ∗ v(ψ). By (eA), one has v(ϕ) ∗ v(ψ) ≤ v(ψ) ∗ v(ϕ). Thus, by Proposition 4.4, one

obtains that a 
 ψ&ϕ.

(c): As above, for every a ∈ F , we assume a 
 ϕ and prove a 
 ϕ&ϕ. Let a 
 ϕ. Then,

one has a ≤ v(ϕ) by Proposition 4.4 and so a ≤ a ∗ a ≤ v(ϕ) ∗ v(ϕ) by the monotonicity

17Fine defined a ternary relation Rabc of semantics for relevance logics as a ∗ b ≤ c in [17] and stated

that one can use Rabc as a “relativized inclusion (written by b ≤a c) with the sense that c is as strong as

b relative to a.” Note that ‘≤’ in (&) is order reversed (compare with ≤ in Fine’s definition (&F )).
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and (cA). Therefore, one has a 
 ϕ&ϕ by the condition (&) and Proposition 4.4.

(p): For every a ∈ F , assume a 
 ϕ&ϕ. We need to prove a 
 ϕ. The condition (&) and

Lemma 4.3 ensure that one can construct b ∈ F such that a ≤ b ∗ b ≤ v(ϕ) ∗ v(ϕ). By

(pA), one has v(ϕ) ∗ v(ϕ) ≤ v(ϕ). Thus, one obtains a 
 ϕ by Proposition 4.4.

(i): The proof is analogous to that of (p).

(o): For every a ∈ F , let a 
 0. We prove a 
 ϕ. Using Proposition 4.4 and (oA), one

obtains a 
 ϕ. 2

This proposition ensures that UFα\aic frames are UFα\aic frames.

Now, by a definition of canonical UFα\aic frames, set-theoretic completeness of DLs−

is provided. We fix DLα\aic as a non-associative distributive basic substructural logic

dropping left weakening or contraction.

Let a DLα\aic-theory be a theory on DLα\aic and ∇(p, q, ~r) be a set of sentences with two

propositional variables p, q and a sequence (possibly either empty, or finite, or countable

infinite) of other variables ~r called parameters. We define ϕ∇ψ as follows:

ϕ∇ψ :=
⋃
{∇(ϕ, ψ, ~χ : ~χ ∈ Fm}.

We write ϕ ∨ ψ in place of ϕ∇ψ if there are no parameters in the set ∇(p, q, ~r). If T ` ϕ
or T ` ψ for a theory T and for any pair ϕ, ψ of sentences such that T ` ϕ∇ψ, T is called

∇-prime; T is just called prime if ∇ = ∨. A logic L has the prime extension property,

for brevity PEP, with respect to ∇ if for each theory T and sentence ϕ such that T 6`L ϕ,

there is a ∇-prime theory T ′ such that T ⊆ T ′ and T ′ 6`L ϕ. ∇ is called a p-disjunction

in L if it satisfies:

(PD, p-protodisjunction) ϕ `L ϕ∇ψ and ψ `L ϕ∇ψ, and

(PCP, proof by cases property) T, ϕ `L χ and T, ψ `L χ entail T, ϕ∇ψ `L χ.

L is called p-disjunctional if it has ∇ which is a p-disjunction in L.

First, the following is a fact following from Theorem 2.7.23 and Remark 2.7.24 in [8].

Fact 4.6. Let L be a finitary logic, T a theory, and ϕ, ψ and χ sentences. Then the

following are equivalent.

(i) ∇ is a p-disjunction in L.

(ii) L satisfies the PEP with respect to ∇.

Moreover we note the following fact.

Fact 4.7. (Theorem 2.7.20, [8]) For a finitary weakly implicative logic L18, the follow-

ing are equivalent.

18A logic L is called a weakly implicative logic if the following are elements of L: (R) `L ϕ→ ϕ; (MP )

ϕ → ψ, ϕ `L ψ; (T ) ϕ → ψ, ψ → χ `L ϕ → χ; and (sCngi#, symmetrized congruence) ϕ ↔ ψ `L
#n(~χ, ϕi) → #n(~χ, ψi) for each n-nary connective #, a part of L, and each i ≤ n. For more details, see

[8].
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(i) L is p-disjunctional.

(ii) The lattice Th(L), the set of all theories of L, is distributive.

Then since DLα\aic is a finitary weakly implicative distributive logic and so Th(DLα\aic)

is distributive, we have the following as a corollary.

Corollary 4.8. DLα\aic satisfies the PEP with respect to ∇.

Let T be a ∇-prime DLα\aic-theory. The canonical UFα\aic frame determined by T is

defined as a structure F = (Fcan, 1can, (0can, ) ≤can, ∗can), where Fcan is the set of ∇-prime

DLα\aic-theories extending T , 1can is the least ∇-prime theory extending T with {1}, (0can
is the least ∇-prime theory extending T with {0},) ≤can is ⊇ restricted to Fcan, and ∗can
is defined as follows: a ∗can b := {ϕ&ψ : for some ϕ ∈ a, ψ ∈ b}, where ∗can satisfies

groupoid properties corresponding to UFα\aic frames on (Fcan, 1can,≤can). A canonical

UFα\aic frame is partially ordered since the partial ordering of the canonical UFα\aic frame

depends on ≤can restricted on Fcan.

Let vcan be a canonical evaluation function from sentences to the least sets of sentences,

i.e, vcan(ϕ) = {ϕ}. A canonical evaluation is defined:

(2) a 
can ϕ iff ϕ ∈ a.

Lemma 4.9. 1can 
can ϕ→ ψ only if for every a ∈ Fcan, a 
can ϕ entails a 
can ψ.

Proof. By (2), one can instead prove that ϕ → ψ ∈ 1can only if for every a ∈ Fcan,

ϕ ∈ a entails ψ ∈ a. Suppose that ϕ→ ψ ∈ 1can and ϕ ∈ a. We need to prove that ψ ∈ a.

One has ϕ&(ϕ → ψ) ∈ a ∗can 1can = a by the definition of ∗can. Using Proposition 2.4

(i) (1), one further has (ϕ&(ϕ → ψ)) → ψ ∈ 1can and so (ϕ&(ϕ → ψ)) → ψ ∈ a; hence

ψ ∈ a by (mp). 2

Lemma 4.10. The forcing relation 
can canonically defined is an evaluation.

Proof. Consider first the conditions for any propositional variables p.

For (
), one has to verify:

a 
can p iff a ≤can vcan(p).

By (2), we instead prove that p ∈ a iff a ⊇ vcan(p). Since vcan(p) = {p}, the claim directly

follows.

For (AHC), one has to verify:

b ≤can a and a 
can p entail b 
can p.
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By (2), we instead assume that b ⊇ a and p ∈ a and prove that p ∈ b. Since b ⊇ a,

clearly p ∈ b.
Consider next the conditions for constants 1, 0.

For (1), one has to verify:

a 
can 1 iff a ≤can 1can.

By (2), we prove that 1 ∈ a iff 1can ⊆ a. This follows from the definition of 1can.

For (0), one has to verify:

a 
can 0 iff a ≤can 0can.

The proof is similar to that of (1).

Finally consider the conditions for any sentences ϕ, ψ.

For (&), one has to verify:

a 
can ϕ&ψ iff there exist b, c ∈ Fcan such that a ≤can b ∗can c, b 
can ϕ, and c 
can ψ.

By (2), we instead prove that ϕ&ψ ∈ a iff there exist b, c ∈ Fcan such that b ∗can c ⊆ a,

ϕ ∈ b, and ψ ∈ c. (=⇒) Let ϕ&ψ ∈ a. Take b as the least ∇-prime theory extending 1can
with {ϕ} and c as the least ∇-prime theory extending 1can with {ψ}. Then, b ∗can c is the

least ∇-prime theory including ϕ&ψ; therefore, b∗canc ⊆ a. (⇐=) Let there be b, c ∈ Fcan
such that b ∗can c ⊆ a, ϕ ∈ b, and ψ ∈ c. The definition of ∗can assures ϕ&ψ ∈ b ∗can c;
therefore, ϕ&ψ ∈ a since b ∗can c ⊆ a.

For (∨), one has to verify:

a 
can ϕ ∨ ψ iff a 
can ϕ or a 
can ψ.

We verify that ϕ ∨ ψ ∈ a iff ϕ ∈ a or ψ ∈ a. (=⇒) From the fact that a is ∇-prime and

so is prime in case ∇ = ∨, it follows. (⇐=) It is obtained using the axioms ϕ→ (ϕ∨ψ),

ψ → (ϕ ∨ ψ) and the rule (mp).

For (∧), one has to verify:

a 
can ϕ ∧ ψ iff a 
can ϕ and a 
can ψ.

We verify that ϕ ∧ ψ ∈ a iff ϕ ∈ a and ψ ∈ a. (=⇒) It is obtained using the axioms

(ϕ ∧ ψ)→ ϕ, (ϕ ∧ ψ)→ ψ and the rule (mp). (⇐=) It follows from the rule (adj).

For (→), one has to verify:

a 
can ϕ→ ψ iff for every b ∈ Fcan, b 
can ϕ entails b ∗can a 
can ψ.

We prove that ϕ→ ψ ∈ a iff for every b ∈ Fcan, ϕ ∈ b entails ψ ∈ b ∗can a. (=⇒) Suppose

that ϕ → ψ ∈ a and ϕ ∈ b. We prove that ψ ∈ b ∗can a. By the definition of ∗can, one

can have ϕ&(ϕ → ψ) ∈ b ∗can a. Moreover, by Proposition 2.4 (i) (1) and Lemma 4.9,

one further has that ψ ∈ b ∗can a. (⇐=) Suppose contrapositively that ϕ→ ψ 6∈ a. One
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has to prove that there is a ∇-prime theory b such that ϕ ∈ b but ψ 6∈ b ∗can a. Take b′ as

the least DLα\aic-theory, which extends 1can with {ϕ} and satisfies b′ ∗can a = {β : there

exists a ∈ a and T ` (ϕ&a)→ β}. Clearly, ϕ ∈ b′ and ψ 6∈ b′ ∗can a. (Otherwise, for some

α ∈ a, T ` (ϕ&α)→ ψ and so T ` α→ (ϕ→ ψ); therefore, ϕ→ ψ ∈ a, a contradiction.)

Moreover, by Corollary 4.8, the PEP with respect to ∇ assures that one is capable of

obtaining a ∇-prime theory b such that b′ ⊆ b and b ∗can a = {β : there exists α ∈ a and

T ` (ϕ&α)→ β}. Hence, one further has ϕ ∈ b and ψ 6∈ b ∗can a.

For ( ), one has to verify:

a 
can ϕ ψ iff for every b ∈ F , b 
can ϕ entails a ∗can b 
can ψ.

The proof is similar to that of (→). 2

Then, we can show the strong completeness of DLα\aic , using Lemma 4.10 and the PEP

with respect to ∇.

Theorem 4.11. (Strong completeness) Let T be a DLα\aic-theory, ϕ a sentence, and

UFα\aic a set of all UFα\aic frames. T `DL
α\aic

ϕ in case T |=UF
α\aic

ϕ.

It is well known that Urquhart semantics in [40] does not work for the system R

because it validates sentences such as (α) in Section 1, which is not a theorem in R (see [16,

33]). In Urquhart semantics, the groupoid operation ∗ requires identity, commutativity,

associativity, and idempotence. In fact, by taking conditions for ∗ weaker than or a little

different from the ∗ in Urquhart semantics, we can give such a result. Here we finally

verify this fact.

Example 4.12. (1) A UF{a,c} model (F ,
) validates (α) ((ϕ → (ψ ∨ χ)) ∧ (ψ →
χ))→ (ϕ→ χ), i.e., 1 
 ((ϕ→ (ψ ∨ χ)) ∧ (ψ → χ))→ (ϕ→ χ).

(2) A UF{a,i} model (F ,
) validates (β) (ϕ→ (ψ ∨ χ))→ ((ψ → χ) (ϕ→ χ)).

Proof. (1): The condition (∧) and Lemma 4.3 assure that one may instead suppose

that a 
 ϕ → (ψ ∨ χ) and a 
 ψ → χ and prove that a 
 ϕ → χ. Let a 
 ϕ → (ψ ∨ χ)

and a 
 ψ → χ. By the condition (→), we additionally suppose that b 
 ϕ and verify

that b ∗ a 
 χ. Using the suppositions and (→), one is capable of obtaining b ∗ a 
 ψ ∨ χ
and so either b ∗ a 
 ψ or b ∗ a 
 χ by the condition (∨). We need to consider the case

b ∗ a 
 ψ. Using (→), one can have that (b ∗ a) ∗ a 
 χ since a 
 ψ → χ. Then, by (aA),

one moreover has b ∗ (a ∗ a) 
 χ. Therefore, using Lemma 4.2, one obtains that b ∗ a 
 χ
since a ≤ a ∗ a by (cA).

(2): Similarly one may instead suppose that a 
 ϕ → (ψ ∨ χ) and prove that a 

(ψ → χ)  (ϕ → χ). Let a 
 ϕ → (ψ ∨ χ). By the condition ( ), we additionally

suppose that b 
 ψ → χ and verify that a ∗ b 
 ϕ → χ. To verify this, we also suppose

that c 
 ϕ and prove that c ∗ (a ∗ b) 
 χ. Using the suppositions and (→), one is capable
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of obtaining c ∗ a 
 ψ ∨ χ and so either c ∗ a 
 ψ or c ∗ a 
 χ by (∨). First, consider the

case c∗a 
 ψ. Since b 
 ψ → χ, using (→) one has that (c∗a)∗b 
 χ and so c∗(a∗b) 
 χ
by the condition (aA). Second, consider the case c ∗ a 
 χ. Since 1 
 χ→ χ, using (→),

one has that (c ∗ a) ∗ 1 
 χ. Then, since b ≤ 1 by (iA), using Lemma 4.2 one moreover

get (c ∗ a) ∗ b 
 χ; therefore, c ∗ (a ∗ b) 
 χ. 2

(1) shows that UF models with associativity and contraction as weaker conditions

for ∗ validate (α) and (2) shows that UF models with associativity and left weakening

as different conditions for ∗ validate (β). Note that the distributive basic logic systems

DL{a,c} and DL{a,i} do not prove (α) and (β), respectively, in Example 4.12. Therefore,

UF{a,c} and UF{a,i} models do not work for their corresponding logics. This means that

UFα models, where {a, c} ⊆ α ⊆ {e, a, c, p, i, o} or {a, i} ⊆ α ⊆ {e, a, c, p, i, o}, do not

work for their corresponding DLα logics.

Open Problem: A UF{a} model can be introduced similarly. We do not know whether

this model can work for the logic DL{a}. This remains an open problem.

4.2 Star-based prime US semantics for dmDLs−

We can consider star-based Urquhart–Fine-style semantics for dmDLs− introduced in

Definition 2.3 (iii). As one sort of this semantics, we introduce star-based prime US

semantics for dmDLs−. For this, we first introduce pointed UFα\aic frames with star

operations for negations as dmUFα\aic frames.19

Definition 4.13. (dmUFα\aic frames) A UFα\aic frame with 0 is said to be a pointed

UFα\aic frame. A dmUFα\aic frame is a pointed UFα\aic frame with two unary operations

× and +.

An evaluation on a dmUFα\aic frame is given as in Section 4.1 but with the additional

conditions below. For every sentence ϕ,

(∼) a 
 ∼ ϕ iff a× 6
 ϕ;

(−) a 
 −ϕ iff a+ 6
 ϕ.

Note that the conditions for (∼) and (−) are new ones for the negations ∼ and

−, respectively, satisfying de Morgan laws. Moreover, dmUFα\aic models, validity, and

dmUα\aic frames and models are defined as in Section 4.1.

Now we prove soundness for dmDLs−.

Proposition 4.14. (Soundness) ϕ is valid in each dmUFα\aic frame in case `dmDL
α\aic

ϕ.

19In order to express two star operations for two negations, we introduce the notations × and + in

place of the notation ∗ used in relevance logic because this notation was already used to express groupoid

operations.
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Proof. We must consider the axioms (sdmI∼), (sdmI−), (sdmII∼), and (sdmII−). As

its example, we verify the validity of (sdmI∼). To verify 1 
 ∼ (ϕ ∧ ψ)→ (∼ ϕ ∨ ∼ ψ),

for every a ∈ F , one can suppose a 
 ∼ (ϕ∧ψ) and prove a 
 ∼ ϕ ∨ ∼ ψ. The condition

(∼) ensures that a 
 ∼ (ϕ ∧ ψ) iff a× 6
 ϕ ∧ ψ and thus iff a× 6
 ϕ or a× 6
 ψ iff a 

∼ ϕ or a 
 ∼ ψ; therefore, a 
 ∼ ϕ ∨ ∼ ψ by (∨). The proof for the other axioms is

analogous. 2

For completeness results for dmDLs−, let T be a ∇-prime dmDLα\aic-theory. The

canonical dmUFα\aic frame determined by T is defined as a structure: F = (Fcan, 1can,

0can, ≤can, ∗can, ×can, +
can), where (Fcan, 1can, 0can, ≤can, ∗can) are defined as in Section 4.1

and the canonical operations ×can, +
can are defined as follows:

(×can) ∼ ϕ ∈ a iff ϕ 6∈ a×; and

(+can) −ϕ ∈ a iff ϕ 6∈ a+.

As above, clearly a canonical dmUFα\aic frame is partially ordered.

Next, as (2) in Section 4.1, we define a canonical evaluation.

Lemma 4.15. The forcing relation 
can canonically defined is an evaluation.

Proof. It suffices to consider the conditions (∼) and (−).

For (∼), one has to verify:

a 
can ∼ ϕ iff a× 6
can ϕ.

By (2), one may instead verify that ∼ ϕ ∈ a iff ϕ 6∈ a×. The claim follows from the

definition (×can).

The proof for (−) is analogous to that of (∼). 2

This lemma ensures that the (F ,
can) canonically defined is a dmUFα\aic model. Thus,

we can prove the strong completeness of dmDLα\aic , using Lemma 4.15 and the PEP with

respect to ∇.

Theorem 4.16. (Strong completeness) Let T be a dmDLα\aic-theory, ϕ a sentence,

and dmUFα\aic a set of all dmUFα\aic frames. T `dmDL
α\aic

ϕ in case T |=dmUF
α\aic

ϕ.

Note that for a negation to be a de Morgan negation it requires classical contraposition

and double negation elimination as well as contraposition, double negation introduction,

and de Morgan laws (see [16]). By adding their corresponding axioms and postulates, we

can extend dmDLα\aic logics and dmUFα\aic frames to logics and frames with de Morgan

negations. This means that we can introduce star-based semantics with negations weaker

than de Morgan negations. The same can be done in Routley-Meyer models as well.
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Remark 4.17.

1. We may consider dmDLα\aic logics dropping the constant 0, df3, and df4. For their

basic logic, we can introduce the negations ∼ and − as primitive connectives and

add (CP∼), (CP−) in Proposition 2.4 (ii), and (sdmI∼), (sdmI−), (sdmII∼), and

(sdmII−) as the additional axioms to DL, the GL with (D). Let us call this system

wdmDL. Then, in order to provide UF frames for wdmDL, called henceforth wd-

mUF frames similarly, we need to consider ∼ and − as primitive negation operators

and (CPA) a ≤ b entails ∼ b ≤ ∼ a and −b ≤ −a and de Morgan laws as the

additional conditions for wdmUF frames for wdmDL, the basic wdmDLα\aic logic.20

2. Note that for the logic wdmDL and its corresponding wdmUF frames in 1, we need

not add (DNI−∼) and (DNI∼−) and their corresponding frame properties because in

order to validate these two double negation introductions we must have the additional

conditions (− ∼) a+× ≤ a and (∼ −) a×+ ≤ a, respectively.21 This means that for

(DNI−∼) and (DNI∼−), we need the conditions (− ∼) and (∼ −), respectively.22

3. 1 and 2 show that the logical principles contrapositions and strong de Morgan laws

are minimal conditions for a distributive logic with negations to have star-based

semantics.

4.3 Powers and limitations

Prime US semantics is less powerful than AUS semantics in that it cannot cover non-

distributive systems introduced in Section 2. However, prime US semantics is still very

powerful in the sense that it can cover a lot of distributive logics, even though not all

of them. To verify this, we considered the Urquhart–Fine-style semantics for DLs−.

Especially this semantics addressed in Section 4.1 is valuable in the following several

senses: First, the Urquhart–Fine-style semantics is also very powerful in an another sense

that frames for DLs− need not have the same structures as algebraic semantics for DLs−.

As is shown in Section 4.1, this semantics only requires operational(-relational) properties

of the groupoid operator ∗ for intensional conjunction and implications. Note that it

20The star operations ×, + validate (CP∼) and (CP−), respectively. For instance, for (CP∼), one can

assume that 1 
 ϕ → ψ and verify that 1 
 ∼ ψ → ∼ ϕ. To prove this, for any state of information a,

one may further assume that a 
 ∼ ψ and verify that a 
 ∼ ϕ. Then, since b 
 ∼ ϕ iff b× 6
 ϕ by (×),

we instead assume that a× 
 ϕ and prove that a× 
 ψ. Since a× = a× ∗ 1 
 ϕ&(ϕ→ ψ), we have that

a× 
 ψ as above. Therefore, we need (CP∼) and (CP−) as axioms.
21For instance, consider (DNI−∼). To validate this, one can assume that a 
 ϕ and verify that

a 
 − ∼ ϕ. Then, using (− ∼), we have that a+× 
 ϕ. Thus, since a+× 
 ϕ iff a+ 6
 ∼ ϕ iff a 
 − ∼ ϕ
by (−) and (∼), we further obtain a 
 − ∼ ϕ.

22Note that dmUF frames for dmDL do not require these conditions because (DNI−∼) and (DNI∼−)

can be validated without introducing the conditions (− ∼) and (∼ −), respectively.
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does not require any operational evaluations for extensional conjunction and disjunction.

Therefore, we can think of this semantics as minimal US semantics.

Second, regarding the first, the Urquhart–Fine-style semantics is independent of alge-

braic semantics and moreover provides its own set-theoretic models for DLs−. Note that

many logicians who work on semantics of formal logic systems are familiar with prime the-

ories rather than closed theories. They are also interested in having set-theoretic models

because of their familiarity with sets. By use of set-theoretic models instead of algebraic

models, one could have a more intuitive grasp on the structures of the logic. Therefore,

the Urquhart–Fine-style semantics would be very useful to such people because of its

set-theoretic consideration.

Third, like the nuclear US semantics this semantics philosophically provides a natural

interpretation of connectives in terms of information too. The only difference between

them is in disjunction and intensional conjunction. The nuclear US semantics requires

operational interpretations based on nuclear completions on those connectives, whereas

the Urquhart–Fine-style semantics requires an operational-relational interpretation on

intensional conjunction and does not require any operational interpretation on disjunction,

i.e., it just requires primeness on it. In this sense, this semantics is simpler than the nuclear

US semantics and so philosophers and logicians may more easily understand their intuitive

meanings as combinations of information.

However, it has a clear limit because it does not work for basic substructural logics in

general, even distributive such logics in general. Related to this, we can say the following

two limitations of Urquhart–Fine-style semantics. First, as a natural consequence, it

covers less logics than the nuclear US semantics. Note that Kripke semantics has been

widely used for the propositional intuitionistic logic H since it is easier to handle H than

other semantics such as Beth, Dragalin, and topological semantics. But it covers less

logics than those semantics (see [3]). Similarly, Urquhart–Fine-style semantics is easier to

handle DLs− than nuclear US semantics but the former semantics covers less logics than

the latter semantics.

Second, it is not fully operational. As is well-known, the Urquhart semantics for

the relevant implication is fully operational. Similarly, the nuclear US semantics is also

fully operational as seen in Section 3. However, the evaluation of the intensional con-

junction (&) is operational and relational. In this sense, Urquhart–Fine-style semantics

does neither fully support nor fully follow Urquhart’s operational idea. In the context of

operational semantics, we need to introduce the Urquhart semantics with an operation

evaluation of intensional conjunction.23

Interestingly, these two limitations instead provide a motivation for new researches.

Related to this, we note that Urquhart motivated logicians to introduce logic systems

based on semilattice semantics. As mentioned in Section 1, such logic systems have been

23This is an interesting future work.
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introduced. The logics such as UR, URW, UT and UTW, which are called operational

logics by Standefer [37], are good examples. Similarly we may investigate logic systems

based on Urquhart–Fine-style semantics as logics proving sentences such as (α).

Star-based Urquhart–Fine-style semantics is a particular kind of Urquhart–Fine-style

semantics applied to dmDLs−. Thus this semantics has powers and limitations similar to

Urquhart–Fine-style semantics when we compare it with nuclear US semantics. In par-

ticular, as the 3 in Remark 4.17 shows, star-based Urquhart–Fine-style semantics verifies

what are the minimal conditions for a distributive logic with negations to have star-based

semantics. This is one important contribution of this star-based Urquhart–Fine-style

semantics. Moreover, this semantics provides operational evaluations to negations and

so follows the idea of operational semantics with respect to negations. Finally, we note

that star-based Urquhart–Fine-style semantics is less powerful than Urquhart–Fine-style

semantics in general in the sense that it can only cover dmDLs−. Instead, star-based

Urquhart–Fine-style semantics is more useful than Urquhart–Fine-style semantics to peo-

ple who are interested in semantics with star operations for negations. These are the

powers and limitations of star-based Urquhart–Fine-style semantics we can say in this

paper.

5 Concluding remarks

We investigated three kinds of US semantics for basic substructural logics and their dis-

tributive extensions. We in particular considered powers and limitations of these three

kinds of semantics.

As the class of logics satisfying reflexivity, transitivity, modus ponens, and tonicity,

Yang and Dunn [52] studied implicational tonoid logics. Then, since all the logic systems

introduced in Definition 2.3 satisfy those properties, they are also concrete implicational

tonoid logics. We will consider this more exactly in a subsequent paper.

Note that fuzzy extensions of basic substructural logics have been introduced as basic

fuzzy logics (see [6, 7, 8, 46, 47]). We can introduce US semantics for these extensions. But

this paper has not enough space to do it. We also anticipate another paper to investigate

powers and limitations of US semantics for basic substructural fuzzy logics.
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