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Gianluca PAOLINI

INVARIANT UNIVERSALITY FOR PROJECTIVE

PLANES

A b s t r a c t. We continue the work of [1, 2, 3] by analyzing the equivalence

relation of bi-embeddability on various classes of countable planes, most notably

the class of countable non-Desarguesian projective planes. We use constructions

of the author from [13] to show that these equivalence relations are invariantly

universal, in the sense of [3], and thus in particular complete analytic. We also

introduce a new kind of Borel reducibility relation for standard Borel G-spaces,

which requires the preservation of stabilizers, and explain its connection with the

notion of full embeddings commonly considered in category theory.

1 . Introduction

Definition 1.1. A plane is a system of points and lines satisfying:

(A) every pair of distinct points determines a unique line;
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(B) every pair of distinct lines intersects in at most one point;

(C) every line contains at least two points;

(D) there exist at least three non-collinear points.

A plane is projective if in addition:

(B’) every pair of lines intersects in exactly one point.

A plane is simple1 if except for a finite number of points every point is incident with at

most two non-trivial lines (i.e. lines containing more than two points).

The class of simple planes and the class of (non-Desarguesian) projective planes are

first-order classes, and so we can regard them as standard Borel spaces, and use invariant

descriptive set theory to analyze the complexity of analytic equivalence relations defined

on them. We recall that a binary relation R defined on a standard Borel space X is called

analytic (or Σ1
1), if it is an analytic subset of the product space X × X, i.e., it is the

projection of a Borel set B ⊆ Y ×X ×X, for some Polish space Y .

The main tool used to compare equivalence relations is Borel reducibility. If E and

F are two equivalence relations on the standard Borel spaces X and Y , we say that E

Borel reduces to F (and write E ≤B F ) if there is a Borel map f : X → Y witnessing that

xE y ⇐⇒ f(x)F f(y), for every x, y ∈ X. We can take the statement “E Borel reduces

to F” as a formal way of saying that E is not more complicated than F , as any set of

complete invariants for F includes a set of complete invariants for E. When E ≤B F and

F ≤B E, the complexity of E and F is considered the same, and we say that E and F

are Borel bi-reducible (in symbols, E ∼B F ).

In [9] the authors proved that the bi-embeddability relation ≡Gr on countable graphs

is a complete analytic equivalence relation. That is, ≡Gr is a ≤B-maximum among all

analytic equivalence relations. It follows that ≡Gr is strictly more complicated than any

isomorphism relation between countable structures, and so it can be argued that the

problem of classifying countable graphs up to bi-embeddability is highly intractable.

In [4] the authors proved that the bi-embeddability relation on countable graphs is

analytic complete in a very strong sense: every analytic equivalence relation is Borel bi-

reducible with the restriction of ≡Gr to some Lω1ω-subclass of the standard Borel space

of countable graphs. Such property reappeared thereafter in [3], where it was considered

in a more general framework and called invariant universality — the definition given in

[3] is stated for all analytic equivalence relations (not only for those defined on spaces of

countable structures).

Next, the work of [3] was continued by Calderoni et al., who proved invariant univer-

sality for the bi-embeddibility relation on several Lω1ω-classes, which include countable

1The notion of simple plane is not standard and we use it for lack of a better name.
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groups (cf. [2, Theorem 3.5]), and countable fields of fixed characteristic p 6= 2 (cf. [1,

Theorem 5.12]). The main technique used in [1] and [2] requires to have a Borel reduction

from the bi-embeddability relation between graphs to the bi-embeddability relation on

the class under consideration, and the possibility to explicitly describe the automorphism

group of each structure in the image of the reduction – this technique is taken from [3].

In [13] the author proved the Borel completeness of both the class of simple planes and

the class of non-Desarguesian projective planes. That is, the isomorphism relation on both

of those classes of planes is a ≤B-maximum for all orbit equivalence relations arising from a

Borel action of S∞, the Polish group of permutations on N. In each case he defined a Borel

reduction from the isomorphism relation between countable graphs to the isomorphism

relation between the class under consideration. Furthermore, the constructions have the

remarkable additional property of preserving automorphism groups. As we point out in

the last section, this feature is common to many categorical construction which give a

full embedding between two Lω1ω-class, and can be adapted to define a Borel reduction

between the isomorphism relations defined on the corresponding standard Borel spaces.

Our aim in this paper is twofold:

1. To study the bi-embeddability relation on the classes of countable planes consid-

ered in [13], with the stipulation that the bi-embeddability relation between planes

coincide with the bi-embeddability relation between the corresponding geometric

lattices.

2. To develop some generalities on the kind of stabilizer preserving Borel reduction (or

SPB reduction for short) mentioned above.

Concerning the first aim, we use the main constructions of [13] to prove:

Theorem 1.2. The bi-embeddability relation ≡pl between countable simple planes is

invariantly universal.

Theorem 1.3. The bi-embeddability relation ≡ppl between countable non-Desar-guesian

projective planes is invariantly universal.

Corollary 1.4. Every Σ1
1 equivalence relation is Borel bi-reducible with the bi-embed-

dability relation restricted to some Lω1ω-subclass of countable simple planes.

Corollary 1.5. Every Σ1
1 equivalence relation is Borel bi-reducible with the bi-embed-

dability relation restricted to some Lω1ω-subclass of countable non-Desarguesian projective

planes.

Consequently, the bi-embeddability relation in the class of countable non-Desarguesian

projective planes is strictly more complicated than isomorphism. In fact, we get that ≡ppl

and ≡ppl are complete analytic equivalence relations in the sense of [9, Def. 1.2]. It follows
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that we cannot classify the class of countable non-Desarguesian projective planes up to

bi-embeddability in any reasonable way: neither in terms of Ulm-type invariants, nor in

terms of orbits of Polish group actions.

Concerning the second aim, we point out how in some cases SPB reductions can be

obtained from the existing literature in category theory and list a couple of open questions.

2. Invariant Universality

Following [9] we consider Borel reducibility between quasi-orders, i.e., reflexive and tran-

sitive binary relations.

Definition 2.1. Let Q and R be quasi-orders on the standard Borel spaces X and Y .

• Q Borel reduces to R (in symbols, Q ≤B R) if there exists a Borel map f : X → Y

such that for all x, y ∈ X,

x Q y ⇐⇒ f(x)R f(y) .

In this case we say that f is a Borel reduction from Q to R (in symbols, f : Q ≤B R).

• Q is Borel bi-reducible with R (in symbols, Q ∼B R) if Q ≤B R and R ≤B Q.

In particular, when Q and R are equivalence relations, one obtains the usual notion

of Borel reducibility mentioned in the introduction. When Q is an analytic quasi-order

on X and A is a Borel subset of X, we can regard A as a standard Borel space with its

relative standard Borel structure and the quasi-order on A obtained by the restriction of

Q. We shall denote by Q � A the restriction of Q to A.

We now recall the main definitions from [3, Definition 1.1].

Definition 2.2. Let Q be a Σ1
1 quasi-order on some standard Borel space X and let E

be a Σ1
1 equivalence subrelation of Q (i.e. E ⊆ EQ, where EQ is the equivalence relation

induced by Q). We say that (Q,E) is invariantly universal if for every Σ1
1 quasi-order P

there is a Borel subset A ⊆ X which is E-invariant and such that P ∼B Q � A.

Definition 2.3. Let F be a Σ1
1 equivalence relation on some standard Borel space

X and let E be a Σ1
1 equivalence subrelation of F . We say that (F,E) is invariantly

universal if for every Σ1
1 equivalence relation D there is a Borel subset A ⊆ X which is

E-invariant and such that D ∼B F � A.

Notice that if (F,E) is invariantly universal, then F is in particular a complete analytic

equivalence relation in the sense of [9, Definition 1.2]. Moreover, our interest for quasi-

orders is easily explained: if (Q,E) is an invariantly universal quasi-order and EQ is the

equivalence relation generated by Q, then (EQ, E) is an invariantly universal equivalence

relation.

Throughout this paper we will make use of the following notation.
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Notation 2.4. Let X be a standard Borel space of countable structures.

(i) We denote by vX (or simply v) the embeddability relation on X.

(ii) We denote by ∼=X (or simply ∼=) the isomorphism relation on X.

(iii) We denote by ≡X (or simply ≡) the bi-embeddability relation on X.

(iv) We say that the quasi-order Q on X is invariantly universal if (Q,∼=X) is (cf. Defini-

tion 2.2).

(v) We say that the equivalence relation E on X is invariantly universal if (E,∼=X) is

(cf. Definition 2.3).

The following fact is an immediate consequence of the López-Escobar Theorem (cf. [8,

Theorem 16.8]) and gives a further insight of the phenomenon of invariantly universality

on spaces of countable structures.

Fact 2.5. If X is a standard Borel space of countable structures, and F is a Σ1
1 equiv-

alence relation on X, then F is invariantly universal if and only if every Σ1
1 equivalence

relation is Borel bi-reducible with the restriction of F to some Lω1ω subclass of X.

We now present a sufficient condition for invariant universality. Let XGr be the stan-

dard Borel space of countable graphs. First we abstract the following fact from [3, Sec-

tion 3].

Fact 2.6. There is a Borel subset X ⊆ XGr such that the following hold:

(i) =X and ∼=X coincide;

(ii) each graph in X is rigid; that is, it has no non-trivial automorphism;

(iii) for every Σ1
1 quasi-order P on 2N, there exists an injective Borel reduction α 7→ Tα

from P to vX.

Convention 2.7. Throughout the paper we will denote by X the set from Fact 2.6.

Notation 2.8. We denote by S∞ the Polish group of permutations on N, and by

Subg(S∞) the standard Borel space of closed subgroup of S∞, endowed with the Effros-

Borel structure (see [8, Section 12.C]).

Now we recall the following fact, which is a particular case of [3, Theorem 4.2].

Fact 2.9. Let X be a standard Borel space of countable structures. Then the relation

vX is an invariantly universal quasi-order provided that the following conditions hold:

(I) there is a Borel map f : X→ X such that:
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(i) f : vX ≤B vX ;

(ii) f : ∼=X ≤B
∼=X ;

(II) the map f(X)→ Subg(S∞) : f(T ) 7→ Aut(f(T )) is Borel.

We stress:

Remark 2.10. Since every graph in X is rigid, whenever the reduction f witnessing (I)

of Fact 2.9 further preserves the automorphisms groups (i.e. Aut(T ) ∼= Aut(f(T ))), then

clearly condition (II) from Fact 2.9 is automatically satisfied.

3. Planes

Definition 3.1. Let P1 and P2 be planes (cf. Definition 1.1).

(1) We say that P1 is a subplane of P2 if (the domain of) P1 is a subset of P2, points of

P1 are points of P2, lines of P1 are lines of P2, and the point p is on the line ` in P1

if and only if the point p is on the line ` in P2.

(2) We say that P1 is a complete subplane of P2 is P1 is a subplane of P2 and any point

of intersection of lines of P1 which lies in P2 also lies in P1, and every line joining two

points of P1 which lies in P2 also lies in P1.

Definition 3.2 (Cf. [10, Theorem 11.4]). Given a plane P we define by recursion on

n < ω a chain of planes (Pn : n < ω) as follows:

n = 0. Let Pn = P .

n = m + 1. For every pair of parallel lines ` 6= `′ in Pm add a new point ` ∧ `′ to Pm
incident only with ` and `′. Let Pn be the resulting plane.

We define the free projective extension of P to be F (P ) :=
⋃
n<ω Pn.

Definition 3.3. Let P be a plane.

(1) We say that a line from P is trivial if it contains exactly two points.

(2) When P is finite, then we say that P is confined if every point of P is incident with

at least three lines of P , and every line of P is non-trivial.

(3) We say that P is confined if every point and every line of P is contained in a finite

confined subplane of P .

Fact 3.4. Let P1 and P2 be confined planes and f : P1 → P2 a complete embedding (i.e.

f(P1) is a complete subplane of P2). Then there exists a complete embedding f̂ : F (P1)→
F (P2) such that f � P1 = f .
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Proof. This is essentially [7, Theorem 4.3]. �

Fact 3.5. Let P1 and P2 be confined planes (cf. Definition 3.3) and f : F (P1)→ F (P2)

an embedding. Then f � P1 ⊆ P2.

Proof. In the terminology of [10, Chapter XI], the core of F (P`) equals the core of

P` (cf. [10, Corollary at p. 224]), which in turn is the whole of P`, since by assumption

P` is confined. It easily follows that f � P1 ⊆ P2, since otherwise the core of F (P2) is not

equal to P2. �

Definition 3.6. A plane is said to be Desarguesian if the following condition is sat-

isfied: whenever p, q, r and p′, q′, r′ are triples of non-collinear points such that lines pp′,

qq′ and rr′ pass through the same point, then the points:

pq ∧ p′q′, pr ∧ p′r′ and qr ∧ q′r′

are collinear (where ` ∧ `′ is the unique point incident with both lines).

As well known, the class of planes corresponds canonically to the class of geometric

lattices of length 3 (cf. [11, Section 2]). For our purposes the perspective of geometric

lattices is preferable (see Convention 3.11 and the proofs of Theorems 4.2 and 4.3), and

thus in the next two remarks we make explicit this correspondence. Before doing this, we

recall the basic definitions needed.

Recall that a lattice is an order (L,≤) such that any two elements a, b have a least

upper bound and a greatest lower bound, denoted by a∧b and a∨b, respectively. A chain

in a lattice (L,≤) is a subset X ⊆ L such that (X,≤) is a linear order.

Assumption: In this paper all lattices have a maximum element 1

and a minimum element 0. Furthermore, any chain between any

two elements is finite.

Given a lattice (L,≤) (as in the assumption above) and x ∈ L, we let h(x), the height

of x, to be the length of the longest maximal chain between 0 and x. Furthermore, given

a, b ∈ L, we say that a is covered by b, for short al b, if a < b and for every a ≤ c ≤ b we

have that either a = c or c = b. Finally, we say that a is an atom if it covers 0.

Definition 3.7. Let (L,≤) be a lattice.

1. We say that (L,≤) is semimodular if for every a, b ∈ L we have that

a ∧ bl a ⇒ bl a ∨ b.
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2. We say that (L,≤) is a point lattice if every a ∈ L is a supremum of atoms.

3. We say that (L,≤) is geometric if (L,≤) is a semimodular point lattice.

Remark 3.8. Let P be a plane as in Definition 1.1. First of all, add to P a largest

element 1 and a smallest element 0, and let P+ = P ∪ {0, 1}. Then, for every pair of

points a and b from P let a∨ b denotes the unique line they determine. For every pair of

lines `1 and `2 from P let `1 ∧ `2 be 0 if the two lines are parallel, and let it be the unique

point in their intersection otherwise. Then (P+, 0, 1,∨,∧) is a geometric lattice of length

3 (cf. Section 2 of the present paper).

Remark 3.9. Let (P, 0, 1,∨,∧) be a geometric lattice of length 3 (cf. [11, Section 2]),

and P− = P −{0, 1}. Let A be the set of atoms of P and let B be the set of co-atoms of

P , and for a ∈ A and b ∈ B, let a E b if a ∨ b = b. Then (P−, A,B,E) is a plane, where

A denotes the set of points of the plane, B denotes the set of lines of the plane and E is

the incidence relation between points and lines.

Remark 3.10. Let P1 and P2 be planes, and P+
1 and P+

2 be the associated geometric

lattices. Then P1 is a complete subplane of P2 iff P+
1 is a sublattice of P+

2 .

Convention 3.11. For the rest of the paper, formally, by a plane we will mean a

geometric lattice of length 3 considered with respect to the signature L = {0, 1,∨,∧}. In

particular, an embedding of planes will mean an embedding of geometric lattices.

4. Proofs of Main Theorems

First of all we stress:

We invite the reader to keep in mind Convention 3.11.

Notation 4.1. (1) We denote by XGr the standard Borel space of countable graphs.

(2) We denote by Xpl the standard Borel space of simple planes2 (cf. Definition 1.1), and

by vpl and ∼=pl the relation of embeddability and isomorphism on Xpl, respectively.

(3) We denote by Xppl the standard Borel space of countable non-Desarguesian projective

planes3, and by vppl and ∼=ppl the relation of embeddability and isomorphism on Xppl,

respectively.

Theorem 4.2. For every Γ ∈ XGr let PΓ be defined as in [13, Section 3]. The map

XGr → Xpl : Γ 7→ PΓ is Borel and:

2Clearly the class of countable simple planes is a first-order class.
3The class of countable non-Desarguesian projective planes is first-order (see e.g. [15, Definition

5.1.1]).
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(1) Γ1
∼= Γ2 if and only if PΓ1

∼= PΓ2;

(2) Aut(Γ) ∼= Aut(PΓ);

(3) Γ1 v Γ2 if and only if PΓ1 v PΓ2.

Proof. Items (1) and (2) are proved in [13]. Concerning (3), argue as in the end of

the proof of [13, Theorem 12] (where it is proved that Γ 7→ PΓ is isomorphism-invariant).

Notice that the choice of signature (and thus of embedding) is crucial for the argument

to go through, since we need that intersection of lines are preserved by the embedding in

order to use the (?1) of the proof in the way we use it there. �

Theorem 4.3. For every Γ ∈ XGr let P ∗Γ be defined as in [13, Section 4]. The map

XGr → Xppl : Γ 7→ P ∗Γ is Borel and:

(1) Γ1
∼= Γ2 if and only if PΓ1

∼= PΓ2;

(2) Aut(Γ) ∼= Aut(PΓ);

(3) Γ1 v Γ2 if and only if PΓ1 v PΓ2.

Proof. Items (1) and (2) are proved in [13]. Concerning (3), it follows from Re-

mark 3.10, Facts 3.4 and 3.5, [13, (?1) of Proof of Theorem 3] and Theorem 4.2(3). Notice

that also in this case the choice of signature (and thus of embedding) is crucial. �

Proof of Theorem 1.2. Consider the restriction of the map Γ 7→ PΓ on X from

Fact 2.6. By items (1) and (3) of Theorem 4.2 the map Γ 7→ PΓ simultaneously reduces

vX to vpl and ∼=X to ∼=pl. Condition (II) of Fact 2.9 follows by Theorem 4.2(2) and

Remark 2.10. The statement now follows from Fact 2.9. �

Proof of Corollary 1.4. The statement follows from Theorem 1.2 and Fact 2.5. �

Proof of Theorem 1.3. Argue as in the proof of Theorem 1.2 using Theorem 4.3.

�

Proof of Corollary 1.5. The statement follows from Theorem 1.3 and Fact 2.5. �

5. SPB reductions

In this section we will denote by G a Polish group and by X and Y two standard Borel

spaces. If a : G × X → X is a Borel action of G on X, we shall denote by Ea the orbit

equivalence relation arising from a (i.e., xEa y ⇐⇒ ∃g ∈ G (a(g, x) = y)). The stabilizer

of any point x ∈ X is the subgroup Gx := {g ∈ G | a(g, x) = x}.
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Definition 5.1. Let a : G × X → X, b : G × Y → Y be two Borel actions so that

X and Y are standard Borel G-spaces. We say that Ea SPB reduces to Eb (in symbols,

Ea ≤SPB Eb) if there is a Borel map f : X → Y witnessing that Ea ≤B Eb and such that

∀x ∈ X(Gx
∼= Gf(x)) . (SP)

We stress the following:

Remark 5.2. When G = S∞, condition (SP) is equivalent to saying that

∀x ∈ X(Aut(x) ∼= Aut(f(x))) .

Items (1)–(2) of both Theorem 4.2 and Theorem 4.3 can be briefly reformulated as

follows.

Theorem 5.3 ([13]). The following SPB reductions hold:

• ∼=Gr ≤SPB
∼=pl;

• ∼=Gr ≤SPB
∼=ppl.

We highlight the following fact which follows directly from Fact 2.9 and Remark 2.10,

and exhibits how Theorem 5.3 can be used to prove Theorem 1.2 and Theorem 1.3.

Fact 5.4. Let X be a standard Borel space of countable structures. Then the relation

vX is an invariantly universal quasi-order provided that there is a Borel map f : X→ X

such that:

(i) f : vX ≤B vX ;

(ii) f : ∼=X ≤SPB
∼=X .

Some examples of SPB reductions directly follow from the existence of full embeddings

between categories. In category theory there has been quite a lot of work concerning the

complexity of different categories by means of (categorical) embeddings4. Several classical

examples of categorical embedding typically concern categories whose objects are algebraic

structures of a fixed type, and whose morphisms are the respective homomorphisms (or

embedding) between those structures. A comprehensive reference for this kind of results

is the book [14]. One of the strongest notion of (categorical) embedding that has been

considered in the literature is the one of full embedding, an injective functor which further

induces a bijection between the morphisms in the domain category and the morphisms in

the target category.

4The categorical notion of embedding should not be confused with the one of embedding between

structures.
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Definition 5.5. If C and D are categories, a full embedding F from C into D is a

functor F : C → D such that

• F is injective on the objects of C;

• for every a, b the map HomC(a, b)→ HomD(F (a), F (b)) : f 7→ F (f) is a bijection.

An example of full embedding is given by the constructions of [13], that we previously

mentioned in the statements of Theorem 4.2 and Theorem 4.3. E.g., the map Γ 7→ P ∗Γ
can be redefined for the category of all graphs, regardless of their cardinality (and in fact

this is the setting of [13]), to prove the following:

Theorem 5.6 (essentially [13]). There exists a full embedding from the category of

graphs together with graph embeddings into the category of non-Desarguesian projective

planes together with planes embeddings (recall Convention 3.11).

Our interest in full embeddings is easily explained. First, notice that any Lω1ω-class C
can be regarded as a category — the morphisms of C are the usual embeddings between

the structures of C. The next proposition explains how certain full embedding induce a

Borel reduction.

Proposition 5.7. Let C and D be two Lω1ω-classes so that we can consider the cor-

responding standard Borel spaces XC and XD. Suppose that F is a full embedding from C
into D such that

(i) F maps objects whose domain is ω to object whose domain is ω;

(ii) F � XC can be realized as a Borel function from XC to XD; i.e., there is a Borel

function f : XC → XD such that for every x ∈ XD, f(x) ∼= F (x).

Then, the isomorphism relation ∼=C SPB reduces to ∼=D.

Proof. Since F is full, for every x, y, the sets of isomorphisms between x and y and

their images, respectively denoted by Iso(x, y) and Iso(F (x), F (y)), are isomorphic via

the map

Iso(x, y)→ Iso(F (x), F (y)) : h 7→ F (h).

In particular, for every x ∈ XC, the map:

Aut(x)→ Aut(F (x)) : h 7→ F (h).

is a bijection, indeed it is a group isomorphism.
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Now let f : XC → XD be a Borel function as in (ii). Since every F (x) is isomorphic to

f(x), we have that for every x ∈ XC,

Aut(x) ∼= Aut(F (x)).

�

Following the approach of [12], we can regard the subcategories of C and D formed by

XC and XD, respectively, together with the isomorphism maps as analytic groupoids. The

SPB reduction we get is in particular a functorial reduction (see [12, Definition 2.8.1]).

The following full embeddings between categories are well-known in the literature.

When not specified, we consider categories with respect to homomorphism embeddings

as morphisms.

Fact 5.8. There is a full embedding from the category of graphs into any of the fol-

lowing categories.

• the category of partial orders PO ([14, Chapter IV, 5.6]);

• the category of semigroups Smg ([14, Chapter V, 2.9]);

• the category of unital rings Rng1 ([5, Section 3]).

One can check that for any of the aforementioned categorical embeddings, items (i)–(ii)

of Proposition 5.7 are satisfied, thus we obtain the following.

Proposition 5.9. The isomorphism relation between countable graphs ∼=Gr SPB re-

duces to any of the following isomorphism relation

• the isomorphism relation between countable partial orders ∼=PO;

• the isomorphism relation between countable semigroups ∼=Smg ;

• the isomorphism relation between countable unital rings ∼=Rng1.

We conclude this section with a few more thoughts about SPB reductions. If the

Lω1ω-elementary classes X and Y are Borel complete, then the isomorphism relations
∼=X and ∼=Y are necessarily Borel bi-reducible, but they need not be SPB bi-reducible.

E.g., the isomorphism relation between countable graphs ∼=Gr does not SPB reduce to

isomorphism between countable groups ∼=Gp, because every infinite countable group has

nontrivial automorphisms.

Let ∼=Tr be the isomorphism relation between countable trees (i.e., connected acyclic

graphs) and ∼=LO be the isomorphism relation between countable linear orders. Although
∼=Tr and ∼=LO have been known to be Borel complete, they are not equivalent to ∼=Gr up

to faithful Borel reducibility (cf. [6, Theorem 4.5]). It is then natural to ask the following

questions.

Question 5.10. Does ∼=Gr ≤SPB
∼=Tr?

Question 5.11. Does ∼=Gr ≤SPB
∼=LO?
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