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Abstract: Testate amoebae (TA) are unicellular protozoans enclosed in a test capable of indicating a wide variety of environmental condi-
tions. Among others, characteristics such as short life cycle, great sensitivity and worldwide distribution makes them adequate bioindicators. 
As a complement to physical and chemical measurements, biomonitoring can be a cheaper and fastest way of environmental monitoring. 
This research sought to evaluate the extent of TA use in biomonitoring and the responses given by them to environmental features. The 
research was conducted in Scielo, Science Direct, Online Library, Google Scholar and Capes Journal Portal and yielded 211 papers. TA 
bioindication is able to provide information on metal, trace element and atmospheric pollution, and to point out different trophic states, 
pH, and evidence on characteristics of hydrology. Further, TA can be used in paleoenvironmental reconstruction as they reflect climate, 
volcanic and even sea level change phenomena. Sometimes, together with other organisms in environmental analysis, they have shown to 
be an important complement to biomonitoring. Additionally, a functional traits approach has been recently included as a promising tool. 
Methodological adjustments that have been conducted throughout the years are allowing TA use to be more reliable and precise. This review 
provides insight on the many possible functions of TA in bioindication studies, highlighting their wide use as bioindicators.

Keywords: biomonitor, thecamoebian, bioindication, protozoan, hydrology, restoration

vironmental changes in a specific moment and habitat, 
offering qualitative information about the quality of the 
ecosystem (Markert et al. 2003, Sumudumali and Jaya-
wardana 2021). Bioindicator species may show chang-
es in their population dynamics and stability when re-
sponding to environmental modifications, which can 
be measured through variations in abundance, distribu-
tion, age structure, reproductive effort and success, and 
growth (Burger and Gochfeld 2001). The biomonitor-
ing approach is an important complement to physical 
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1. INTRODUCTION

In a biomonitoring study, an organism, a part of it, or 
a community is used as bioindicators pointing out en-



Y. de Góes Cohn Freitas et al. 2

and chemical measurements as it’s a fast, efficient and 
cost-effective method (Dale and Beyeler 2001), provid-
ing a more continuous data, sometimes including ex-
treme events that have not been detected by standard 
methods (Nguyen-Viet et al. 2007).

The testate amoebae (TA) are a polyphyletic group 
that comprises ameboid protozoans enclosed in a test 
test, common in freshwater (sediments, plankton), and 
terrestrial habitats (Kosakyan et al. 2020). In order to 
feed and locomote, thecamoebians protrude filose or lo-
bose pseudopodia through the test’s aperture, the pseu-
dostome (Cavalier-Smith 2004, Adl et al. 2019). TA 
present key characteristics to act as reliable bioindica-
tors, such as: 1) short life cycle that allows fast response 
to ecological change (Foissner 1999); 2) persistent test, 
that can resist fossilizing processes (Charman 2001, 
Patterson and Kumar 2002); 3) sensitivity to a wide 
range of environmental variables (Nasser et al. 2020); 
4) great abundance and diversity in different environ-
ments (Foissner 1999, Lansac-Tôha et al. 2007, Alves 
et al. 2010, Miranda et al. 2020); 5) worldwide distri-
bution and established as bioindicators throughout dif-
ferent biotopes (Nasser et al. 2020). These organisms 
have been studied and used as bioindicators, answering 
to past and present conditions (Payne 2013, Roe and 
Patterson 2014, Amesbury et al. 2016) in the many bio-
topes in which those species inhabit.

In freshwater ecosystems, TA inhabit rivers (Costa et 
al. 2015), lakes (Nasser et al. 2020), reservoirs (Misai-
lidis et al. 2018) and phytotelms (Kratina et al. 2017); 
but they can be also found in brackish environments, 
such as estuaries (Eichler et al. 2006), salt-marshes 
(Barnett et al. 2017) and marine sand supralittoral 
(Golemansky 2007). In terrestrial habitats, TA inha-
bit soils (Wanner et al. 2020), Sphagnum and mosses 
(Basińska et al. 2020), phytotelms (Kratina et al. 2017), 
and are also present in wastewater treatment systems 
(Hu et al. 2013). Thecamoebians occupy key roles in 
the trophic webs, varying in feeding types and trophic 
positions (Gilbert et al. 1998a, b; Lamentowicz et al. 
2013a). They feed on bacteria, cyanobacteria, microal-
gae, fungi, humus, or even small thecamoebians, cili-
ates, rotifers and nematodes (Schroeter 2001, Gilbert 
et al. 2003, Han et al. 2008, Jassey et al. 2012). TA can 
be directly affected by environmental changes such as 
moisture fluctuation, and indirectly by water chemistry, 
via the impact on the organism’s TA prey on (Mitchell 
et al. 2000a). Thecamoebians also participate in chemi-
cal and nutrient cycling such as carbon, nitrogen and 
silicon cycles (Puppe 2020). All above highlight the-

camoebians role in both ecological health functioning 
and structure (Burger and Gochfeld 2001).

Anthropogenic impacts throughout the globe affect 
Earth system’s resilience by processes like land-system 
changes, freshwater uses, changes in biosphere integ-
rity and in biogeochemical flows, such as carbon, ni-
trogen and phosphorus (Steffen et al. 2015). Consid-
ering this, bioindicators can offer an early warning of 
environmental changes, in a way to spotlight specific 
damages and trends in the habitat’s conditions (Paoletti 
1999, Burger and Gochfeld 2001). Thus, allowing res-
toration and conservation management tools to be in-
telligently associated with the environment condition, 
and by providing an assessment on ecological health, 
bioindication will keep track of goods and services pro-
vided by it contributing to human health (Paoletti 1999, 
Burger and Gochfeld 2001).

The present study aimed to review the current 
available scientific literature on testate amoeba’s use 
as bioindicators throughout different habitats and pur-
poses, focusing on the knowledge gathered about the 
responses given by these protozoans to environmental 
changes.

2. MATERIALS AND METHODS

The search has been conducted in the following scientific data-
bases: Scielo, Science Direct, Online Library, Google Scholar and 
Capes Journal Portal. The keywords used were (“testate amoebae” 
OR “testate amoeba” OR “thecamoebian”) AND (“bioindicator” 
OR “biomonitoring” OR “bioindication” OR “paleoecology” OR 
“transfer function”), paired with Boolean Operators. Papers pub-
lished until 2020 were gathered, with no inferior limit, in order to 
access a greatest number of papers. During the article’s survey, an 
evaluation of the title and abstract were carried out, in order to select 
the papers that utilized thecamoebians as a tool in biomonitoring 
research, those being the focus or used as support with other or-
ganisms. Were also selected articles taken from previous gathered 
paper’s references. Afterwards, a full text assessment was made, in 
order to detail what responses the thecamoebians gave in each envi-
ronment and to different variables.

3. RESULTS AND DISCUSSION

The database search encountered a total of 3.481 
results. There were selected 211 papers that present 
testate amoebae as eligible or potentially indicators in 
environmental monitoring and paleoenvironmental re-
constructions at peatlands, bogs, lakes, soil, wetlands, 
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rivers, streams, saltmarsh and paleocryosols. A total of 
70 under genera taxa, with specific bioindication prop-
erties including several environmental and paleoenvi-
ronmental features (Figure 1), were cited in this pa-
per. The specific tolerance and/or indicator property to 
some environmental variables are presented in Table 1. 
These protozoans are further used to develop trans-
fer functions in order to reconstruct palaeohydrology, 
paleoclimate and sea-level changes. Another use is in 
sewage treatment, where, amongst other microorgan-
isms, thecamoebians indicate the health of activated 
sludge plants and water quality of wastewater treatment 
systems.

3.1. Organic matter, pH and nutrients

Environmental impacts, especially those caused by 
human activities, have been causing a series of losses in 
water quality (Cardoso and Novaes 2013). In lakes, riv-
ers, reservoirs and streams, TA have their communities 
affected by the pollution caused by high concentration 
of nutrients (McCarthy et al. 1995, Qin et al. 2009, Nev-
ille et al. 2010, Qin et al. 2016, Schwind et al. 2019), 
minerals (Casper and Schonborn 1985), thaw salts (Qin 
et al. 2013), acidification of streams (Costan and Planas 
1986) and industrial and domestic untreated effluents 
(Costa et al. 2015).

Acidification in streams can decrease thecamoebians 
density, which can be explained by environment modi-
fication (e.g., potassium liberation from the sediments) 
and by the disturbance caused on the mechanical os-
motic regulators of TA (Costan and Planas 1986). The 
pollution of lakes by thaw salts, especially sodium chlo-
ride (NaCl), is another impact that water resources may 
suffer, causing lower diversity of TA (Roe and Patterson 
2014). In these places, the increase of brackish toler-
ant species as Arcella vulgaris, Centropyxis constricta 
̔spinosa̕ and Centropyxis aculeata ̔aculeata̕ is reported, 
being those recommended for tracking salt increase in 
healthy lakes (Roe and Patterson 2014). On the other 
hand, a higher diversity of TA was registered in alka-
line lakes, pointing out strong correlations of the com-
munity with water pH. Pontigulasia elisa, Pontigulasia 
compressa and Lesquereusia modesta were the most 
abundant taxa, making them indicators of higher pH 
(Qin et al. 2013).

Suspended matter can be considered an influence 
to TA communities in aquatic environments, since it 
is mostly composed of minerals used in the test con-
struction (Pereira et al. 2006, Du Châtelet et al. 2010, 
Schwind et al. 2019). In a lake with high levels of cal-

cite, the species Difflugia limnetica replaced the sand 
grains on its carapace for calcite grains (Casper and 
Schonborn 1985), being considered a good indicator 
of calcite precipitation in lakes (Casper and Schonborn 
1985). In particular, the exogenous species respond sig-
nificantly to the suspended matter in the water column, 
which can reflect in the abundance and occurrence of 
individuals (Schwind et al. 2019). Positive responses 
to higher concentrations of suspended inorganic mat-
ter were reported for Difflugia pseudogramen, Difflugia 
lobostoma and Centropyxis ecornis. Conversely, Pro
tocucurbitella coroniformes, Cucurbitella crateriformis 
and Cucurbitella dentata f. quinquilobata responded 
negatively to increases of suspended inorganic matter 
(Schwind et al. 2019).

Anthropic impacts increase and speed up processes 
that lead to high concentrations of suspended matter in 
water resources (Souza and Knoppers 2003), being eu-
trophication one of the problems that strikes the water 
environments the most, being able to limit heterotroph-
ic microorganism’s metabolic activities (Smith and 
Schindler 2009). In rivers contaminated by industrial 
and domestic untreated effluents, the low abundance of 
Difflugia distenda was considered an indicative of im-
pact at the water quality (Costa et al. 2015). Heleopera 
sphagni and Nebela collaris were conspicuous in lakes 
with high concentrations of organic matter (McCarthy 
et al. 1995). In comparison, a more diverse community 
was observed in hypereutrophic and mesotrophic grass-
land regions lakes, with Difflugia oblonga and Cucu
bitella tricuspis being dominant (Neville et al. 2010). 
However, the greatest diversity was reported for the bo-
real forest, where most of the lakes are eutrophic (Nev-
ille et al. 2010). In lakes with high concentrations of 
nutrients and heavy metals, the community of TA had 
its richness reduced, being the genera Centropyxis and 
Difflugia the most tolerant to high nutrient’s concentra-
tions, and dominant in all the pollution gradients (Qin 
et al. 2016). Cucurbitella tricuspis was also pointed out 
as commonly associated with high levels of solid waste 
(Escobar et al. 2005). However, there is still a lack of 
studies about the ecology of the group in polluted lakes, 
which makes it hard to explain the dominance of certain 
taxa in a specific condition (Qin et al. 2016).

In lakes and rivers, there have been recorded correla-
tions between TA and ammonia, nitrate, phosphate and 
chlorophyll-a content (Arrieira et al. 2015, Arrieira et al. 
2016, Schwind et al. 2017); interfering in their size and 
morphometry (Arrieira et al. 2016) and frequency and 
abundance (Schwind et al. 2017). Those nutrients are 
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Fig. 1. Diverse bioindication properties shown by testate amoebae in lakes, peatlands, soil and sea marshes. (a) Variables liable to be iden-
tified by testate amoebae. (b) Paleoenvironmental variables recorded by testate amoebae. N: nitrogen, P: phosphorus, K: potassium, Mn: 
magnesium, Hg: mercury, Sc: scandium, Pb: lead, Fe: iron, Ba: barium, Cr: chromium, Zn: zinc, Co: cobalt, As: arsenic, Cu: copper, Ca: 
calcium.
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Table 1. Testate amoebae specific tolerance and/or indicator property to some environmental variables.

Testate amoebae
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1 Alabasta militaris * * *

2 Amphitrema wrightianum * * * *

3 Arcella * *

4 Arcella catinus *

5 Arcella discoides * * * *

6 Arcella hemisphaerica *

7 Arcella megastoma *

8 Arcella vulgaris * * * *

9 Archerella flavum * * * * * *

10 Assulina *

11 Assulina muscorum * * *

12 Bullinularia indica * * *

13 Centropyxis * *

14 Centropyxis aculeata * * * * * *

15 Centropyxis aculeata ‘aculeata’ *

16 Centropyxis cassis * *

17 Centropyxis constricta * *

18 Centropyxis constricta ‘spinosa’ *

19 Centropyxis discoides *

20 Centropyxis ecornis * * * *

21 Corythion * *

22 Corythion dubium * * * *

23 Cucurbitella crateriformis *

24 Cucurbitella dentata f. quinquilobata *

25 Cucurbitella tricuspis * *

26 Cyclopyxis arcelloides * * *

27 Difflugia * * *

28 Difflugia acuminata * * * *

29 Difflugia amphoralis * *

30 Difflugia bacillifera *

31 Difflugia bicornis * *

32 Difflugia biwae *

33 Difflugia distenda *

34 Difflugia elegans * * * *

35 Difflugia gramen *

36 Difflugia helvetica * *

37 Difflugia kempnyi *
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38 Difflugia limnetica *

39 Difflugia lobostoma * * *

40 Difflugia oblonga * * *

41 Difflugia parva * *

42 Difflugia proteiformis *

43 Difflugia pseudogramen *

44 Difflugia schuurmani * *

45 Difflugia urceolata * *

46 Difflugia ventricosa *

47 Euglypha diliociformis *

48 Euglypha laevis * *

49 Euglypha rotunda * *

50 Euglypha strigosa * *

51 Euglypha tuberculata * *

52 Heleopera petricola * * *

53 Heleopera sphagni * * * * * *

54 Hyalosphenia elegans * * * *

55 Hyalosphenia papilio * * * * * *

56 Hyalosphenia subflava * * *

57 Lesquereusia globulosa *

58 Lesquereusia modesta * * 

59 Lesquereusia ovalis *

60 Mediolus corona * * *

61 Nebela carinata * * * * *

62 Nebela collaris * *

63 Nebela tincta * * *

64 Netzelia tuberculata *

65 Paraquadrula irregularis *

66 Phryganella acropodia * * *

67 Placocista spinosa * * *

68 Pontigulasia compressa * * 

69 Pontigulasia elisa *

70 Protocucurbitella coroniformes *

71 Quadrulella symmetrica * *

72 Trigonopyxis arcula * * * * *

73 Trinema * *

74 Trinema enchelys *

75 Trinema lineare      *           

References: 1 – Tolonen et al. 1994; Mitchell et al. 1999; Booth 2002; Lamentowicz and Mitchell 2005; Nguyen-Viet et al. 2008; Heine-
meyer and Swindles 2018; 2 – Mitchell et al. 1999; Charman et al. 2000; Mieczan 2009; Turner et al. 2013; Lamentowicz and Mitchell 
2005; Niedzwiecki et al. 2016; Mieczan and Tarkowska-Kukuryk 2017; Heinemeyer and Swindles 2018; Creevy et al. 2018; 3 – Song et al. 
2014; Lamentowicz and Mitchell 2005; 4 – Nguyen-Viet et al. 2008; 5 – Charman and Warner 1997; Warner et al. 2007; Nguyen-Viet 
et al. 2008; Mieczan 2009; Qin et al. 2016; Heinemeyer and Swindles 2018; 6 – Madoni 1994; Hu et al. 2013; 7 – Misailidis et al. 2018; 
8 – Patterson et al. 1996; Kumar and Patterson 2000; Escobar et al. 2005; Patterson et al. 2013; Turner et al. 2013; Roe and Patterson 2014; 
Swindles et al. 2015; Amesbury et al. 2016; Mieczan and Tarkowska-Kukuryk 2017; 9 – Charman and Warner 1992; Tolonen et al. 1994; 
Warner and Charman 1994; Mitchell et al. 1999; Mieczan 2009; Turner et al. 2013; Marcisz et al. 2014a; Lamentowicz and Mitchell 2005; 
Swindles et al. 2015; Swindles et al. 2016; Marcisz et al. 2016; Niedzwiecki et al. 2016; Ratcliffe et al. 2017; Mieczan and Tarkowska- 
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-Kukuryk 2017; Lamentowicz et al. 2020; 10 – Song et al. 2014; Payne et al. 2016; 11 – Warner and Chmielewski 1992; Mitchell et al. 1999; 
Laggoun-Défarge et al. 2008; Mieczan and Tarkowska-Kukuryk 2013; Lamentowicz and Mitchell 2005; Niedzwiecki et al. 2016; Mieczan 
and Tarkowska-Kukuryk 2017; Lamentowicz et al. 2020; 12 – Tolonen et al. 1992; Mitchell and Gilbert 2004; Mieczan 2009; Lamento-
wicz and Mitchell 2005; 13 – Qin et al. 2016; Nasser et al. 2020; Asada and Warner 2009; 14 – McCarthy et al. 1995; Patterson et al. 1996; 
Mitchell et al. 1999; Nguyen-Viet et al. 2008; Yang et al. 2011; Qin et al. 2013; Song et al. 2014; Qin et al. 2016; Lamentowicz and Mitchell 
2005; Mieczan and Tarkowska-Kukuryk 2017; 15 – Roe and Patterson 2014; 16 – Asada and Warner 2009; Qin et al. 2013; Qin et al. 2016; 
17 – Patterson et al. 1996; McCarthy et al. 1995; 18 – Roe and Patterson 2014; 19 – Yang et al. 2011; 20 – Lamentowicz and Mitchell 2005; 
Qin et al. 2013; Qin et al. 2016; Amesbury et al. 2016; Schwind et al. 2019; 21 – Mieczan 2009; Song et al. 2014; 22 – Mitchell et al. 1999; 
Laggoun-Défarge et al. 2008; Nguyen-Viet et al. 2008; Lamentowicz and Mitchell 2005; Payne et al. 2012; Mieczan and Tarkowska-Kukuryk 
2017; 23 – Schwind et al. 2019; 24 – Schwind et al. 2019; 25 – Escobar et al. 2005; Qin et al. 2016; Nasser et al. 2020; 26 – Mitchell et al. 
1999; Booth 2002; Lamentowicz and Mitchell 2005; Asada and Warner 2009; Yang et al. 2011; Turner et al. 2013; Heinemeyer and Swindles 
2018; 27 – Qin et al. 2016; Song et al. 2014; Nasser et al. 2020; 28 – Qin et al. 2013; Schwind et al. 2017; Qin et al. 2016; 29 – Qin et al. 2016; 
Schwind et al. 2017; 30 – Charman and Warner 1997; 31 – Qin et al. 2016; 32 – Qin et al. 2016; 33 – Costa et al. 2015; 34 – Lamentowicz 
and Mitchell 2005; Qin et al. 2013; Niedzwiecki et al. 2016; Mieczan and Tarkowska-Kukuryk 2017; Nasser et al. 2020; 35 – Misailidis 
et al. 2018; 36 – Schwind et al. 2017; 37 – Schwind et al. 2017; 38 – Casper and Schonborn 1985; 39 – Schwind et al. 2019; Schwind et al. 
2017; 40 – Qin et al. 2016; Misailidis et al. 2018; McCarthy et al. 1995; 41 – Schwind et al. 2017; 42 – Patterson et al. 1996; 43 – Schwind 
et al. 2019; 44 – Schwind et al. 2017; 45 – McCarthy et al. 1995; Qin et al. 2016; 46 – Schwind et al. 2017; 47 – Nguyen-Viet et al. 2007; 
48 – Mitchell et al. 1999; Yang et al. 2011; 49 – Mitchell et al. 1999; Mieczan 2009; Mieczan and Tarkowska-Kukuryk 2013; Wanner et al. 
2020; 50 – Mitchell et al. 1999; Lamentowicz and Mitchell 2005; Meyer et al. 2012; Nguyen-Viet et al. 2008; 51 – Madoni 1994; Lamento-
wicz and Mitchell 2005; Mieczan 2009; Hu et al. 2013; 52 – Mitchell et al. 1999; Lamentowicz and Mitchell 2005; Niedzwiecki et al. 2016; 
Heinemeyer and Swindles 2018; 53 – McCarthy et al. 1995; Lamentowicz and Mitchell 2005; Nguyen-Viet et al. 2008; Marcisz et al. 2014a; 
Marcisz et al. 2016; Niedzwiecki et al. 2016; Lamentowicz et al. 2020; 54 – Charman and Warner 1992; Tolonen et al. 1994; Mitchell et al. 
1999; Lamentowicz and Mitchell 2005; Charman et al. 2007; Warner et al. 2007; Mieczan 2009; Niedzwiecki et al. 2016; Ratcliffe et al. 2017; 
Creevy et al. 2018; 55 – Charman and Warner 1992; Tolonen et al. 1994; Mitchell et al. 1999; Lamentowicz and Mitchell 2005; Charman 
et al. 2007; Warner et al. 2007; Marcisz et al. 2014a; Niedzwiecki et al. 2016; Payne et al. 2016; Marcisz et al. 2016; Niedzwiecki et al. 2016; 
Ratcliffe et al. 2017; Creevy et al. 2018; Lamentowicz et al. 2020; Basińska et al. 2020; 56 – Charman and Warner 1992; Booth 2002; Turner 
and Swindles 2012; Turner et al. 2013; Niedzwiecki et al. 2016; 57 – Misailidis et al. 2018; 58 – Qin et al. 2013; Qin et al. 2016; 59 – Schwind 
et al. 2017; 60 – McCarthy et al. 1995; Misailidis et al. 2018; Qin et al. 2013; Qin et al. 2016; 61 – Charman and Warner 1997; Mitchell et al. 
1999; Lamentowicz and Mitchell 2005; Nguyen-Viet et al. 2008; Mieczan 2009; Mieczan and Tarkowska-Kukuryk 2017; 62 – McCarthy 
et al. 1995; Mitchell et al. 1999; Lamentowicz and Mitchell 2005; 63 – Mitchell et al. 1999; Booth 2002; Lamentowicz and Mitchell 2005; 
Laggoun-Défarge et al. 2008; Mieczan 2009; Meyer et al. 2012; 64 – Niedzwiecki et al. 2016; Misailidis et al. 2018; 65 – Nguyen-Viet 
et al. 2004; 66 – Mitchell et al. 1999; Mitchell 2004; Heinemeyer and Swindles 2018; 67 – Mitchell et al. 1999; Warner et al. 2007; 68 – 
Qin et al. 2013; Qin et al. 2016; 69 – Qin et al. 2013; 70 – Schwind et al. 2019; 71 – Mitchell et al. 1999; Lamentowicz and Mitchell 2005; 
Nguyen-Viet et al. 2007; 72 – Mitchell et al. 1999; Charman et al. 2000; Lamentowicz and Mitchell 2005; Turner and Swindles 2012; Meyer 
et al. 2012; Turner et al. 2013; Swindles et al. 2015; Mieczan and Tarkowska-Kukuryk 2017; Heinemeyer and Swindles 2018; 73 – Song et al. 
2014; 74 – Wanner et al. 2020; 75 – Wanner et al. 2020; Nguyen-Viet et al. 2008.

linked to the environment’s productivity, impacting 
TA by the food web (Arrieira et al. 2015, Arrieira et al. 
2016). Difflugia parva, D. acuminata, Lesquereusia 
ovalis, Difflugia schuurmani and Difflugia Helvetica 
were positively correlated with chlorophyll-a (Schwind 
et al. 2017). D. parva, D. acuminata and D. ventricosa 
are indicator organisms that are positively associated 
with phosphorus concentrations, unlike D. lobostoma 
(Schwind et al. 2017). Regarding nitrogen, D. helvet
ica and D. schuurmani are positively associated with 
high concentrations, while D. lobostoma, negatively 
(Schwind et al. 2017). The bioindicator species that ex-
pressed positive associations with chlorophyll-a, phos-
phorus and nitrogen, responded preferentially to higher 
concentrations of them commonly found in eutrophic 
conditions (Schwind et al. 2017).

3.2. The influence of hydrology 

Moisture/humidity is the main factor influencing 
thecamoebians composition at bogs. In addition, micro-
topography, water chemistry and seasonality have some 
impact on testate amoeba’s distribution (Warner et al. 
2007).

Capable of causing more than one third of vari-
ance in testate amoeba communities (Song et al. 2018), 
water-table depth has been pointed out as the main 
factor influencing these communities at peatlands 
(Lamentowicz and Mitchell 2005, Mitchell et al. 2008, 
Li et al. 2015, Payne et al. 2016, Zhang et al. 2017, 
Song et al. 2018). Seasonality plays an important role 
in those environments, as it changes water availabil-
ity to TA (Heal 1964, Gilbert et al. 2003, Warner et al. 
2007). Thus, TA communities can suggest water table 
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fluctuation, or it’s stability over prolonged time scales 
(van Bellen et al. 2018, Lamentowicz et al. 2019, Mar-
cisz et al. 2020). Also, seasonality can have an impact 
on TA communities through changes in temperature 
(Lamentowicz et al. 2013a), light abundance (Marcisz 
et al. 2014a) and even in combination with nutritional 
conditions (Mitchell 2004, Payne and Mitchell 2007, 
Mieczan 2007, Mieczan 2010, Elliott et al. 2012, Jas-
sey et al. 2013, Song et al. 2018). The last combination 
could be inferred also when correlating TA with Sphag
num species, due to chemical compounds released by 
the plants (Jassey et al. 2013, Jassey et al. 2014, Mar-
cisz et al. 2014b).

The above cited variables can be related to testate 
amoebae size structure, as smaller species have been 
more abundant at drier periods of the year (Warner et al. 
2007, Jassey et al. 2014, Fournier et al. 2015, Marcisz 
et al. 2016), while the biggest ones where more com-
mon at the wettest seasons (Lamentowicz et al. 2013a).

In a wet open bog, Argynnia vitraea, D. oblonga, 
Nebela carinata were characteristic species, while 
Sphenoderia lenta, Cryptodifflugia oviformis, and Ne
be la lageniformis inhabited a drier forested swamp 
(Warner et al. 2007). During the season with wetter 
conditions, Hyalosphenia papilio, Hyalosphenia ele
gans, Arcella discoides, and Placocista spinosa were 
found, reinforcing their relation to high soil water con-
tent (Warner et al. 2007). In relation to spatial patterns, 
microtopography of the Sphagnum have affected testate 
amoebae’s assemblages, reflecting ecological gradients 
that, otherwise, wouldn’t be visible macroscopically. 
Albeit, ecological variables cannot be inferred precisely 
by it (Mitchell et al. 2000b). The taxa Archerella fla
vum, H. papilio, and H. elegans were pointed out as 
good high paleo-moisture indicators, while Hyalosphe
nia subflava, was related to the drier sampling points 
(Charman and Warner 1992, Tolonen et al. 1994, Warn-
er and Charman 1994). Species of narrow ecological 
amplitude are A. discoides, Difflugia bacillifera, N. car
inata, Nebela griseola, Nebela marginata, Cryptodif
flugia sacculus, Quadrulella symmetrica, Amphitrema 
stenostoma, and S. lenta (Charman and Warner 1997). 
In a Chile peatland, Centropyxis was the only dominant 
genera during all the four seasons of the year, being 
pointed out as generalist and opportunist (Fernández 
and Zapata 2011).

The community of testate amoebae is affected by 
a hydroseral gradient, changing according to the stage, 
from open water to fen and pioneer raised mire to om-
brotrophic bog (Elliott et al. 2012). It was also suggest-

ed that thecamoebians could be used alongside plant 
macrofossils with the potential for delimiting salinity 
changes, as they responded more quickly and were more 
sensitive to nutrient gradients than the plant communi-
ties (Elliott et al. 2012). In Moorlands, subject to a lot 
of changes and degradations over the past centuries, 
hydrology was the strongest environmental factor con-
trolling the communities of TA, allowing their use as 
monitors of this ecosystem (Turner and Swindles 2012).

Characteristic taxa of wet Sphagnum habitats are 
Amphitrema wrightianum, Nebela carinata, Archerel
la flavum and Hyalosphenia papilio, Assulina species 
(Charman et al. 2000, Booth 2002, Lamentowicz and 
Mitchell 2005, Mazei and Tsyganov 2006). Character-
istic taxa of dry Sphagnum habitats are Trigonopyxis ar
cula, Bullinularia indica, Nebela tincta, Alabasta mili
taris (Charman et al. 2000, Booth 2002, Lamentowicz 
and Mitchell 2005, Mazei and Tsyganov 2006). Other 
abundant and notable taxa from the wetter end of the 
water table were Pseudodifflugia fulva type, and Diff
lugia pulex type, H. papilio, Assulina seminulum type, 
Arcella catinus type and H. elegans for the dryer end 
(Charman et al. 2007). Studies in mosses indicate that 
the species A. wrightianum, A. vulgaris and Archerella 
flavum were indicative of a more humid environment 
(Turner et al. 2013, Swindles et al. 2015, Amesbury 
et al. 2016, Heinemeyer and Swindles 2018). On the 
other hand, C. arcelloides and Heleopera petricola in-
dicate intermediate humidity (Amesbury et al. 2016). 
Conversely, B. indica, A. militaris, C. ecornis, C. arce
lloides, H. petricola, Phryganella acropodia and Trigo
nopyxis arcula were indicative of drier locations (Turn-
er et al. 2013, Swindles et al. 2015, Amesbury et al. 
2016, Heinemeyer and Swindles 2018). Species with 
spines, such as Centropyxis aculeata, species from the 
Arcella genus and belonging to the genus Difflugia, are 
also useful for indicating higher humidity (Song et al. 
2014). In contrast to the genus Trinema, Assulina and 
Corythion, linked to the drier places (Song et al. 2014).

3.3. Ecosystem restoration

Testate amoebae indicate changes in regenerating 
peatlands and floodplains. Afforestation, drainage and 
harvest at peatlands are concerns in these ecosystems, 
as they cause ecological damage and carbon loss to the 
atmosphere (Lachance et al. 2005). Efforts have been 
made to restore such environments, allowing the peat to 
re-growth (Parry et al. 2014). Simultaneously, in flood-
plains, anthropic impacts have created the necessity to 
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apply restoration projects (Sudduth et al. 2007), and 
strategies for tracking recovery are welcome.

At different levels of succession, peatlands can be 
inhabited by different assemblages of TA that respond 
to physical and chemical properties of the peat (But-
tler et al. 1996). As the peatland becomes drier and 
more acidic, species richness and abundance increased, 
while density, biomass and average thecamoebian size 
decreased (Laggoun-Défarge et al. 2008). N. tincta, 
Assulina muscorum and Corythion dubium were char-
acteristic species of the advanced stage environment, 
being indicators of dry and acidic conditions (Mitchell 
et al. 1999, Laggoun-Défarge et al. 2008). A. musco
rum and C. dubium have already increased in abun-
dance after one and a half to two years from drainage in 
a forested mire, showing their capability to monitor soil 
microenvironmental effects (Warner and Chmielewski 
1992). Thecamoebian communities were able to show 
impacts from harvest, even when secondary succession 
surface vegetation appeared to be similar to the natu-
ral site’s vegetation. These protists are an alternative to 
continuous measurement in the field, in order to indi-
cate water table depth and pH (Laggoun-Défarge et al. 
2008). Also, in a restoring peatland, management have 
partially caused the TA community changes, but besides 
it, the weather has also contributed (Swindles et al. 
2016). With the management intervention, wet indica-
tor species appeared, such as Amphitrema stenostoma, 
Archerella flavum, Arcella discoides type, Difflugia ba
cillifera and D. bacillarium (Swindles et al. 2016).

TA can further be used as bioindicators in peatlands 
undergoing forest-to-bog restoration (Creevy et al. 
2018). By comparing the community inhabiting open, 
forested and forest-to-bog sites, significant differences 
in relative abundance between them were observed. Al-
though diversity was lower in the open sites (a factor 
that was influenced by peatland microtopography), the 
richness was higher than at forested and forest-to-bog 
ones (Creevy et al. 2018). Commercial forestry prac-
tices have caused the loss of mixotrophic taxa in the 
forested sites. This result was related especially with 
the light condition, as mixotrophic taxa persisted in un-
disturbed open bog because of their need for light to 
survive. A. discoides was considered a potential indica-
tor in forested sites and it was recommended that future 
sampling designs encompass microtopography (Creevy 
et al. 2018).

Thecamoebians functional traits (FT) related to their 
carapace were indicated as candidates for bioindica-
tion of woody debris impact on shaping the community 

at a restored floodplain in Switzerland (Fournier et al. 
2012). Taking into consideration the multiple environ-
mental pressures selecting testate amoeba’s FT, and the 
potential of FT to complement classical indices, further 
research regarding TA FT has been encouraged (Fourni-
er et al. 2015).

3.4. Agricultural practices

Soil quality is essential in the sustainable perfor-
mance of agricultural practices (Carter 2002); however, 
the increased use of pesticides, herbicides and fertiliz-
ers have side effects on the environment (Nesbitt and 
Adl 2014). Many protists are sensitive to pesticides 
and other components commonly used in agricultural 
practices, and insecticides are more harmful to these or-
ganisms than herbicides (Foissner 1994, 1997). A. vul
garis, in presence of the fungicide Fundasol had the 
growth stimulated, but some hours later all species in 
the study were dead (Todorov and Golemansky 1992).

Testate amoebae in an Arctic Tundra had abundance 
and biomass reduced by 77 and 84% with long-term ni-
trogen (N) and phosphorus (P) fertilization. Some species 
vanished from the fertilized plots, while P. acropodia 
increased (Mitchell 2004). These results were probably 
related to the deterioration of the mosses caused by fer-
tilization and the availability of preys (Mitchell 2004). 
Furthermore, when inhabiting moss fertilized with N, 
Bullinaria indica showed greater abundance (Mitchell 
and Gilbert 2004), but this response needs further inves-
tigation, as the species has already been related to the 
lowest preferences of N at peat (Tolonen et al. 1992). In 
a Sphagnum peatland N and P fertilization experiment, 
testate amoeba’s richness and density decreased (Mie-
czan et al. 2015), which could be related to a decrease 
in oxygen concentration. The testacean C. dubium pre-
sented lower abundance in a heathland when the sites 
were treated with huge concentrations of nitrogen for 
20 years (Payne et al. 2012). Although it may highlight 
the species as a N bioindicator, it is discussed that the 
response may have been indirect, more related to plant 
community changes (Payne et al. 2012).

3.5. Fire events and volcanic activities

Fire events have already shown to impact testate 
amoebae communities in moorlands, where, after char-
coal deposition, water infiltration may be reduced and 
drought and erosion increased (Turner and Swindles 
2012). Hyalosphenia subflava and T. arcula have al-
ready been pointed out as potential burning indicators, 
being related to the driest sites (Turner and Swindles 
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2012, Turner et al. 2013). Although Qin et al. (2017) 
registered a growth at thecamoebians with xenosomes 
after a wildfire episode, in a multi-proxy study, TA with 
idiosomes with organic coating became more abundant 
after fire (Marcisz et al. 2019). Also, fire events caused 
a selection of smaller TA species (Marcisz et al. 2016) 
and a substantial decrease of mixotrophs (Marcisz et al. 
2016, Marcisz et al. 2019). The last, may be caused by 
the water table depth lowering after the fire, alongside 
changes at the site’s vegetation and ash fallout shade, 
that diminished the photosynthetic capacity of the 
mixotrophs (Fournier et al. 2015, Lamentowicz et al. 
2015a, Marcisz et al. 2016). On the other hand, when 
fire occurs on the peatland’s surrounding vegetation, it 
may increase water table depth, as the plants cease to 
absorb water from the soil. These events can contribute 
to a change in TA assemblages to wet indicator species 
(Lamentowicz et al. 2007, Marcisz et al. 2015).

Deposition of sulphuric acid by anthropogenic or 
volcanogenic activities have presented an impact to TA 
communities (Payne 2010), such as deposition of sodi-
um sulphate (Payne et al. 2010). Although it is not clear 
by which mechanisms these protozoans were affected, 
they can be related to changes in the ecosystem’s troph-
ic web, with a sulphate-reducing bacteria (SRB) and 
methanogenic archaea (MA) shift (Payne 2010, Payne 
et al. 2010).

Thecamoebians are indicators of past and current 
volcanic activity, in a way that could be used as prox-
ies of both frequency and extent of eruptions, dating 
and correlating paleoenvironmental data. This is pos-
sible by the ability of TA to be one of the first protists 
in the succession to inhabit volcanic ash fallout (Smith 
1985), incorporating particles with less than 125μm, 
called cryptotephra, into they’re tests. This character-
istic facilitates the extraction and counting of these 
minerals (Delaine et al. 2016). Moreover, the construc-
tion of thecamoebian’s carapace using foreign material 
can turn them into indicators of microplastic pollution. 
Thecamoebians from order Arcellinida were capable of 
incorporating 4μm polystyrene spheres into their tests 
under laboratory conditions (Bian et al. 2019). With mi-
croplastics being accumulated year after year in fresh-
water ecosystems to hundreds or thousands of particles 
per litre (Li et al. 2020), it’s bioavailability may impact 
the test construction.

3.6. Metal and semimetal contamination

In areas previously impacted by mining, protozoa 
were the first eukaryotic organisms to colonize the en-

vironment (Wanner and Dunger 2001). This way, TA 
are affected and responsive to metals and semimetals, 
pointing out contamination. When reclaiming an open-
cast coal mining in Germany, different assemblages of 
testate amoebae demonstrated sensitivity to different 
stages of soil recovery, relating to characteristics that 
alter the quality of the substrate (Wanner and Dunger 
2001). In lake’s sediments and water columns affected 
by gold mining, the techniques implemented for meas-
uring arsenic are not efficient to point out ecological 
impacts (Nasser et al. 2020). Notwithstanding, strong 
correlations between thecamoebians and arsenic (As) 
have already been pointed out (Nasser et al. 2016), with 
this group being considered a good indicator of con-
tamination by As. When related to that, the least toler-
ant group was mainly represented by the genus Difflu
gia and by the species Cucurbitella tricuspis; and the 
greater tolerance, represented by some species of Cen
tropyxis and Difflugia elegans (Nasser et al. 2020). In 
addition, these protists were also correlated with phos-
phorus (P), barium (Ba), carbon (C) and calcium (Ca) 
(Nasser et al. 2016).

The concentration of heavy metals in lakes were 
positively correlated with the taxa Mediolus corona, 
Difflugia bicornis, C. tricuspis and P. compressa, and 
negatively with Difflugia acuminata and L. modesta. 
However, the research only points to the influence of 
heavy metals under the structure of the community 
(Qin et al. 2016). The species A. vulgaris was regis-
tered in great abundance in lakes with high heavy met-
als concentrations and low pH, which shows that this 
species was tolerant to stressing conditions, being able 
to present different alterations in tropical environments 
(Patterson et al. 2013, Kumar and Patterson 2000, Es-
cobar et al. 2005). The species Centropyxis aculeata, 
C. constricta and A. vulgaris were shown to be tolerant 
in a lake heavily polluted by mercury and arsenic (Pat-
terson et al. 1996). Although the genus Centropyxis and 
A. vulgaris showed affinity with metals, only A. vulgar
is was considered a good indicator, as it was not being 
favoured by the trophic state and salinity of the lake. 
Moreover, a relationship between mercury and arsenic 
levels with the distribution of Difflugia proteiformis is 
notorious, being present at highly contaminated sites 
(Patterson et al. 1996).

The presence of potentially toxic trace elements in 
a reservoir substrate (As, Cr, Cu, Fe, Mn, Ni, Pb, Sc and 
Zn) affected the abundance and diversity of the com-
munity of thecamoebians (Misailidis et al. 2018). Places 
with low rates of contamination presented a higher num-
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ber of species, and regions with aggregations of roots 
and low concentrations of pollutants are dominated by 
Difflugia corona, D. oblonga and D. gramen. As the 
concentration increases, species that were more tolerant 
remain and dominate. They were: Arcella megastoma 
and D. corona, in contrast with the most sensitive ones: 
D. gramen, Lesquereusia globulosa and Netzelia tuber
culata (Misailidis et al. 2018). The identification to the 
lowest taxonomic resolution leads to a conclusion less 
uncertain and more clear of the biomonitoring proper-
ties of testaceans, especially in dynamic habitats as res-
ervoirs, besides contributing with ecological informa-
tion regarding genera and species (Vieira et al. 2017). 

In a floodplain contaminated by heavy metals (Cu, 
Pb, Zn, Co) in Japan, the diversity of TA was lower in 
the most polluted places, where the concentrations of 
Cu, Pb and Zn were higher (Wanner et al. 2020). Their 
results showed in areas contaminated by heavy metals, 
species such as Euglypha rotunda, Trinema enchelys 
and Trinema lineare as indicators of the impact on the 
biogeochemical cycle in proterozoic silicon wells due 
to the self-secrete composition of their test (Wanner 
et al. 2020).

C. arcelloides and Centropyxis cassis were abundant 
in peatlands areas where copper (Cu) concentration was 
high, suggesting that the genera could be tolerant to high 
concentrations of this metal. However, the diversity of 
TA in general was lower, pointing out Centropyxis spe-
cies’s tolerance as an exception. It is believed that the 
high concentrations of metals, such as Cu, might reduce 
the abundance of prey (e.g., algae and bacteria) and only 
species tolerant to food shortage would survive (Asa-
da and Warner 2009). In stream mosses, C. aculeata, 
C. discoides, C. arcelloides, and Euglypha laevis can 
be potentially used to measure Cu pollution in water, 
while mercury (Hg) causes community’s abundance to 
decline (Yang et al. 2011). Euglypha strigosa was also 
pointed out as sensitive to Cu (Meyer et al. 2012). When 
the moss retains such pollutants, a different picture was 
found at 63 Canadian lakes, where low concentration 
of Hg didn’t have an impact on TA (Yang et al. 2011, 
Neville et al. 2013).

Increasing concentration of lead (Pb) accumulated 
in Barbula indica moss diminished thecamoebians spe-
cies richness, abundance and Shannon index. Pb signif-
icantly decreased abundance of some Euglypha, Trin
ema, Centropyxis and Tracheleuglypha species, while 
Quadrulella symmetrica and Euglypha diliociformis 
have suggested resistance to lead (Nguyen-Viet et al. 
2007). TA had their richness, total density and total bio-

mass decreased as Pb concentration and time of exposi-
tion increased in a controlled environment. N. carinata, 
E. strigosa, and H. sphagni were the most sensitive 
taxa, while A. catinus, A. discoides, A. militaris, C. du
bium, T. lineare, and C. aculeata are the most resistant 
(Nguyen-Viet et al. 2008). 

3.7. Atmospheric influence and its pollution

Moss with inhabiting testate amoebas are good 
bioindicators for atmospheric pollution since they are 
in subaerial environments, directly exposed to atmos-
pheric pollutants (Nguyen-Viet et al. 2007). Parameters 
as appearance/extinction of species or decrease in bio-
mass/abundance can be used to identify the atmospheric 
condition (Meyer et al. 2012). The contamination with 
nitrogen dioxide (NO2) can impact the richness, abun-
dance and biomass of the testate amoebae community 
(Meyer et al. 2009, Meyer et al. 2012), with the spe-
cies richness being significantly correlated with NO2 
concentration (Nguyen-Viet et al. 2004). Changes in 
interactions at microbial level, especially predation, en-
hanced this effect (Meyer et al. 2009). Paraquadrula ir
regularis was pointed out as an indicator of atmos pheric 
pollution caused by this gas, what could be related to 
acidification of the environment, and calcium leaching 
of its calcareous test (Nguyen-Viet et al. 2004). N. tinc
ta and Trygonopyxis arculla were also sensitive to NO2, 
and the community that lives in Pseudoscleropodium 
purum moss can be used to differentiate sources of pol-
lution (industrial or urban ones) (Meyer et al. 2012). In 
an experiment with atmospheric carbon dioxide (CO2) 
increase, Sphagnum TA decreased in biomass (Mitchell 
et al. 2003). Moreover, road traffic pollution was able 
to cause a decrease in abundance and diversity of soil 
TA (Balik 1991). The locations with the greatest im-
pact, also had a different composition. From a total of 
42 recorded TA species, 16 were restricted to less pol-
luted locations (Balik 1991), showing their relationship 
with atmospheric pollution (Nguyen-Viet et al. 2004). 
Testate amoeba assemblages from a brown coal com-
bustion polluted peatland were impacted by it, with 
Al and Cu being indicated as the most toxic elements 
to them (Fiałkiewicz-Kozieł et al. 2015). The pollu-
tion decreased mixotrophic and larger TA species, but 
an increase in Centropyxis aerophila and Phryganella 
acropodia species (Fiałkiewicz-Kozieł et al. 2015).

Environmental variations caused by climate change 
such as increase in temperature and precipitation altera-
tions have an impact on peatland microbiota, and TA 
are pointed out as candidates to monitor them (Jassey 
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et al. 2011b). At the Sphagnum upper segments, the-
camoebians biomass and density increased together 
with temperature. Although more studies in this sub-
ject are necessary, in this condition they fed on an ex-
pressive range of prey and react to their changes (e.g., 
bacteria) (Jassey et al. 2011b). Temperature increase al-
tered the trophic web, as it has the Sphagnum polyphe-
nols selecting differently the microbial community and 
shortening the food web. This led to a faster carbon 
and nutrient recycling by decreasing predators and om-
nivores (including larger TA, with bigger pseudostome) 
while increasing autotrophs and decomposers (Jassey 
et al. 2013). H. papilio was an indicator of temperature 
increase, and could be an important tool in monitoring 
during the reconstruction of Sphagnum peatlands, since 
it’s a mixotrophic thecamoebian inhabiting the top lay-
ers of Sphagnum (Basińska et al. 2020). 

The species C. constricta, C. aculeata, Difflugia ur
ceolata, D. oblonga and D. corona, presented high den-
sity in core studies from three lakes in Atlantic Canada 
as a result of an increase of the temperature (McCarthy 
et al. 1995). In lakes of rocky mountain regions with 
low temperatures, a low diversity of TA was registered, 
with dominance of the taxa C. aculeata and C. constric
ta (Neville et al. 2010).

3.8. Paleoenvironmental reconstruction

Fossil thecamoebian shells are very often well pre-
served and abundant in peatlands, making them spe-
cial as bioindicators when compared to conventional 
fossil indicators (Warner and Charman 1994). Modern 
and fossil assemblages of testate amoeba paired with 
depth to water table analysis and radiocarbon-dating 
were used to construct transfer functions, which pro-
vides palaeohydrological data when applied to the cor-
responding site (Warner and Charman 1994, Charman 
et al. 2007). Those have been applied to infer centenni-
al scale climate patterns (Charman and Hendon 2000, 
Hendon et al. 2001, Booth 2002), anthropic impacts 
(Patterson et al. 2002, Ndayishimiye et al. 2020) and 
sea level change (Barnett et al. 2017). Regional trans-
fer functions have already been developed throughout 
Europe (Tolonen et al. 1992, 1994; Schnitchen et al. 
2006; Swindles et al. 2015; Lamentowicz et al. 2020), 
to Russia (Willis et al. 2015, Lamentowicz et al. 2015b, 
Kurina and Li 2019), China (Qin et al. 2013, Li et al. 
2015), New Zealand (Charman 1997), United States 
and Canada (Booth 2001, 2008; Amesbury et al. 2013; 
Lamarre et al. 2013), Peru (Swindles et al. 2014) and 
Panama (Swindles et al. 2018).

Functional trait-based reconstructions have been 
increasing recently, being conducted over several 
landscapes (Marcisz et al. 2020), and provide reliable 
analysis when there is no transfer function and inde-
pendently from taxonomic identification (Lamento-
wicz et al. 2015a, van Bellen et al. 2017, Krashevska 
et al. 2020). By constructing statistical models based 
on functional traits, identification errors and taxo-
nomic change inaccuracies are diminished, while there 
is a bigger chance of comprehending community dy-
namics and functional processes over long time-scales 
(Marcisz et al. 2020). Also, a multi-proxy approach 
involving functional-traits could benefit paleoenviron-
mental reconstructions by correlating ecological pro-
cesses to functional roles (Lamentowicz et al. 2015a, 
van Bellen et al. 2017, Galka et al. 2017, Marcisz et al. 
2020, Krashevska et al. 2020).

Water table depth (WTD) was the main variable 
to which thecamoebians responded, along with point-
ing out microtopography differentiation in peatlands 
(Warner and Charman 1994, Krashevska et al. 2020). 
TA species could indicate increase, instability, and 
lowering of the water table (even when it happens by 
sharp declines of the WTD) (Galka et al. 2014, Galka 
et al. 2015). In these environments, moisture content 
has been primarily taken into consideration (Booth 
2002), but, as it changes more often, even during a day, 
WTD is the main variable observed (Charman and 
Warner 1997, Warner et al. 2007). More reliable recon-
structions can be carried out during wetter conditions 
phases, as taxa with dry optima can be wider distrib-
uted than those with wet optima. During dry conditions 
phases, the absence of a wet indicator becomes more 
reliable than the encounter of a dry one (Charman et al. 
2007).

On the other hand, WTD influence becomes second-
ary when most of the sample is collected from min-
erotrophic mires, and not ombrotrophic ones. In those 
cases, the trophic state of a mire, that can be reflected 
by pH (Payne et al. 2006, Markel et al. 2010), conduc-
tivity and calcium content, will have a bigger impact 
on the thecamoebians assemblages (Lamentowicz et al. 
2013b). This way, when applied to WTD reconstruc-
tion through transfer functions, assemblages from om-
brotrophic and minerotrophic mires should be regarded 
to the construction of different transfer functions to 
different peatland development stages (Kurina et al. 
2020). When constructing a transfer function to an om-
brotrophic peatland, the bog stage of its development 
should be reconstructed with an ombrotrophic model, 



Testate amoebae 13

and a minerotrophic model should fit the earlier fen-
bog and fen transition stages (Kurina et al. 2020).

Thecamoebian’s assemblages are pointed out as 
paleolimnological and paleoecological indicators at 
lakes, being able to reflect climate changes (McCa-
rthy et al. 1995). During the late glacial and Holocene, 
five assemblages identified the beginning of the epoch, 
alongside with climate phenomena that palynology 
alone could not indicate (McCarthy et al. 1995). These 
protists could also indicate lake depth (Tsyganov et al. 
2019), sedimentation rates and pH changes throughout 
the Holocene (Ellison 1995). In a multi-proxy approach 
study, a thecamoebians based WTD reconstruction 
paired peaks in the bog surface water with periods with 
lower sunspot activity (Turner et al. 2013). In an East 
Siberian Arctic permafrost study, thecamoebians spe-
cies composition from the Late Pleistocene-Holocene 
were used to identify differences between both periods 
and between their temperatures (Bobrov et al. 2004).

Regarding the difficulty of separating climate 
change from human impact; when testate amoebae are 
integrated with micro and macrofossils, such as pol-
len, microcharcoal, local plant community, spores and 
dendroecological analysis, in a multi-proxy approach, 
it can be possible to separate these two factors in peat-
lands and lakes (Patterson et al. 2002, Lamentowicz et 
al. 2008, Lamentowicz et al. 2015a, Galka et al. 2017, 
Lamentowicz et al. 2019, Lamentowicz et al. 2020). 
Moreover, TA showed to be very responsive to hydro-
logical fluctuations, while macrofossils may be delayed 
(Lamentowicz et al. 2008). At peatlands, TA assem-
blages structure differentiated after land use change, 
caused by deforestation and implementation of agricul-
ture (Marcisz et al. 2020). Because of changes in water 
absorption, a bigger availability of water may increase 
WTD. In this case, testate amoeba size and biovolume 
(Marcisz et al. 2020), pseudostome size and position 
are affected by WTD (Lamentowicz et al. 2015a), and 
may there will be an increase in mixotrophs, if light 
becomes more available (Galka et al. 2017, Marcisz et 
al. 2020). Deforestation may also lead to terrestrializa-
tion, as it increases dust deposition and nutrient flow to 
the peatland (Ireland and Booth 2012, Lamentowicz et 
al. 2020); this way, a shift in the plant community can 
also impact TA assemblages (Ireland and Booth 2012). 
Furthermore, in a scenario of WTD lowering, after peat 
extraction, TA size and mixothrops decreased (Marcisz 
et al. 2016). Further, TA with smaller (Krashevska et 
al. 2020) and more hidden pseudostome increased with 
dryness (Marcisz et al. 2016). Thecamoebians core as-

semblages from Swan Lake (Canada), have been able to 
show the different uses of the land around it (Patterson 
et al. 2002). The different communities were compared 
to palynological data, and reflected the great impact 
of deforestation for agriculture and human settlement, 
even in underwater life. The Deforestation Assemblage, 
presented dominance of stress indicator taxa, such as 
C. aculeata and A. vulgaris (Patterson et al. 2002). C. 
tricuspis, in contrast, appeared in the Eutrophication 
Assemblages, a period after World War II with high 
use of chemical fertilizers (Patterson et al. 2002). Al-
though erosion was also present in the latter study, it’s 
combination with nutrient input at Lake Erie (Canada) 
inferred a bigger impact in the community, being in-
dicated by Difflugia biddens presence (Scott and Me-
dioli 1983). Soil erosion also played a key role model-
ling thecamoebians assemblages in lake Lugu (China) 
where three characteristic assemblages were identified 
through 2500 years (Ndayishimiye et al. 2020). As-
semblages also shifted by change in nutrient input, by 
forest growth and eutrophication influenced by human 
activities (Ndayishimiye et al. 2020). All those papers 
point out that these protozoans are proxies for land use 
changes.

A salt-marsh is a wet biotope located next to the 
coast regions, flooded by salt waters by the high tide 
(Viswanathan et al. 2020). Despite the known impor-
tance of these organisms, there is a scarcity of stud-
ies that use this group as an indicator in the salt marsh 
biotope (Barnett et al. 2017). A few species inhabit 
these regions with strong zonation, from the high salt-
marsh environments transitioning into the supratidal 
zone (Barnett et al. 2013, Barnett et al. 2017). In salt-
marshes, the TA were paleoenvironmental indicators 
related to the reconstruction of the sea level and being 
used to construct tendencies of it in the current geologi-
cal period (Barnett et al. 2015), being more precise in 
its indication when compared to foraminifera (Gehrels 
2000, Gehrels et al. 2006). Throughout the North At-
lantic, a thecamoebian’s assemblages-based transfer-
function could indicate, with great precision, sea level 
fluctuations, revealing information when other proxies 
are missing. Moreover, when paired with foraminifera-
based data, the reconstruction capability extends back 
in time (Barnett et al. 2017).

3.9. Sewage Treatment

The biological sewage treatment process is based 
on the formation of suspended bacterial flakes, which 
have a diverse microfauna associated, being segregated 
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from the effluent in the sedimentation tanks (Zhou et 
al. 2006). The microbiota is sensitive to environmental 
variations, so changes in the community are responsi-
ble for disassembling the trophic web, affecting the bio-
logical performance of the treatment station (Madoni 
2003). The microfauna protists perform a vital func-
tion, mainly controlling microbial population density 
through predation, assuring by that the quality of the 
effluent (Curds and Cockburn 1970).

Testate Amoebae of the genera Arcella, Difflugia 
and Euglypha were bioindicators (Madoni 1994, Nico-
lau et al. 2005, Pérez-Uz et al. 2010, Hu et al. 2013) 
found in greater abundance in older sludge plants, as 
their growth was favoured (Madoni et al. 2000). In 
addition, specific system characteristics, such as low 
loading, long retention time and high aeration rate of 
the tank influence their abundances. These variables in-
dicate the effluent quality and the high biological activ-
ity of sludge plants (Chierici and Madoni 1991). There-
fore, TA can be indicators of the functioning quality 
of a sewage treatment system. In treatment places, TA 
with less than 20μm that were associated with flocs 
helping to improve productivity of nitrifying bacteria 
that lives inside those, since those little thecamoebians 
are bacteria predators (Pérez-Uz et al. 2010). Further-
more, this group of organisms responds to nitrification 
in the treatment system, once its occurrence decreases 
with the decrease of the removal of nitrogen, mostly in 
species of the genera Arcella (Pérez-Uz et al. 2010). 
Species that stood out in this biotope were Arcella hem
isphaerica and Euglypha tuberculata, that respond to 
the system nitrification (Madoni 1994, Hu et al. 2013). 
However, in an activated sludge plant, it was shown 
that the first one was related to good settlement of 
sludge plants and should be used as an indicator of the 
effectiveness of the plant, because its abundance de-
creased when the effluent’s quality dropped (Zhou et al. 
2006). Nowadays, the ecological importance that TA 
play in these systems is known, and according to the 
advance of the decades, studies have emphasized these 
organisms and their bioindicator potential. However, 
studies on this issue are still scarce.

3.10. Taxonomic and methodology issues

Biomonitoring using zooplankton has indicated 
that it’s identification and analysis, including TA, can 
be done to genera level (Machado et al. 2015, Souza 
et al. 2019). Identification to the genera level has been 
an economic strategy to overcome the lack of specific 
taxonomists to certain groups. However, TA studies did 

not obtain a high agreement between the data provided 
by the level of genera and of species, which excludes 
them from that strategy (Alarcão et al. 2014, Gomes et 
al. 2015). The lack of specialists can be explained as 
a result of a certain negligence with testate amoebae in 
comparison to other members of zooplankton, mainly 
regarding its lack of a specific methodology for data 
collection and analysis (Leipnitz et al. 2006), as well 
as a recognized relevance to biodiversity in biosystems 
(Corliss 2002, Han et al. 2011).

Some concerns regarding methodology include 
sampling. For instance, significant differences between 
upper and lower Sphagnum thecamoebians, raise con-
cern about how deep the samplings should occur. As 
it would change community composition, diversity 
and dominance, providing an incomplete answer of 
the site’s thecamoebians if not taken into consideration 
(Booth 2002, Jassey et al. 2011a, Ireland and Booth 
2012). Upper and lower portions shelter restricted taxa, 
and lower assemblages have shown to have bigger 
richness than shallower ones, as it accumulates tests 
of thecamoebians from upper portions and from previ-
ous years (Booth 2002). Mixotrophs are dominant in 
surface layers, while heterotrophic species are more 
abundant in deeper layers, but the use of xenosomes to 
build the carapace also plays a part in the vertical distri-
bution, as Amphitrema wrightianum where more abun-
dant in intermediate segments of the Sphagnum rather 
than in the top layers (Jassey et al. 2011a). Upper layers 
of Sphagnum are more exposed to water table fluctua-
tions, and may indicate it differently than deeper layers 
(Basińska et al. 2020). Although upper taxa would be 
more representative of environmental variables at the 
sample time, collecting all the vertical extension of tes-
tate amoeba distribution could be the best way to char-
acterize its relations with environment variables (Booth 
2002, Ireland and Booth 2012).

4. CONCLUSION

Testate amoebae are reliable indicators when applied 
to different uses in a diversity of biotopes. They can 
be an important tool as biological indicators in various 
conditions ranging from water, soil and atmospheric 
pollution, to sea level fluctuations, land use change and 
paleoclimate reconstruction. A multi-proxy approach 
and inclusion of functional trait-based analysis more 
recently developed for the testaceans should contribute 
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to a crescent importance and extension of their use. It is 
clear that, although testate amoebae’s use as indicators 
has gained space through different fields, in all the areas 
where applied, there is still room for growth. 
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