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Tin PERKOV and Luka MIKEC

TABLEAU-BASED TRANSLATION FROM

FIRST-ORDER LOGIC TO MODAL LOGIC

A b s t r a c t. We define a procedure for translating a given

first-order formula to an equivalent modal formula, if one exists,

by using tableau-based bisimulation invariance test. A previously

developed tableau procedure tests bisimulation invariance of a

given first-order formula, and therefore tests whether that formula

is equivalent to the standard translation of some modal formula.

Using a closed tableau as the starting point, we show how an

equivalent modal formula can be effectively obtained.

.1 Introduction

Kripke semantics makes modal logic a fragment of first-order logic, namely

the bisimulation invariant fragment. Unfortunately, this is an undecidable
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fragment of first-order logic (see [1]). Truth clauses of modal formulas

have obvious translations to first-order logic. This is the basis of standard

translation from modal logic to first-order logic. Of course, the set of these

translations is decidable, but the set of all first-order formulas (over the ap-

propriate signature) each of which is equivalent to the standard translation

of some modal formula is not decidable. By the Van Benthem Charac-

terization Theorem, this is exactly the set of all formulas invariant under

bisimulation, which makes the latter the basic equivalence between Kripke

models.

In [6] we developed a tableau-based procedure to test whether a given

first-order formula is bisimulation invariant. Using reduction to the stan-

dard first-order tableau (see, e.g., [7] for reference), we proved soundness

and completeness. The latter implies semi-decidability of the problem, since

it means that each bisimulation invariant formula has a closed tableau. In

other words, in the case of an affirmative answer, the procedure does ter-

minate and gives the correct answer, i.e., the test is positive.

In this paper we use a given closed tableau of a bisimulation invariant

formula not only as a justification that this formula is equivalent to the

standard translation of a modal formula, but also to obtain some such

modal formula, using the tableau as a starting point.

In Section 2, we briefly overview basic notions and results from [6], for

the sake of self-containment of the present paper. In Section 3, we present

a procedure of obtaining a modal correspondent of a given bisimulation

invariant first-order formula. We conclude with a brief description of an

implementation of the procedure.

.2 Preliminaries

We assume familiarity with modal logic (see e.g. [2] for further details if

needed), so the following several paragraphs are here just in order to fix

notation, terminology and a convenient choice of primitive symbols. We

will only consider the basic modal language, the alphabet of which extends

that of classical propositional logic with dual modalities ♦ and �. The

syntax of modal formulas is given by

ϕ ::= p | ⊥ |> | ¬ϕ |ϕ1 ∨ ϕ2 |ϕ1 ∧ ϕ2 |♦ϕ |�ϕ,
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where p ranges over the set of propositional variables. We often write

ϕ→ ψ instead of ¬ϕ ∨ ψ.

A Kripke model is M = (W,R, V ), where W 6= ∅, R ⊆ W ×W , and V

is a valuation, a function that maps each propositional variable p to some

V (p) ⊆W .

Let σ be the first-order signature consisting of a binary relational symbol

R and a unary relational symbol P for each propositional variable p. A

Kripke model can be regarded as a σ-structure, with |M| = W , RM = R

and PM = V (p) for each p. The standard translation is defined as follows:

STx(p) = Px, for each propositional letter p

STx(⊥) = ⊥
STx(>) = >
STx(¬ϕ) = ¬STx(ϕ)

STx(ϕ1 ∨ ϕ2) = STx(ϕ1) ∨ STx(ϕ2)

STx(ϕ1 ∧ ϕ2) = STx(ϕ1) ∧ STx(ϕ2)

STx(♦ϕ) = ∃y(Rxy ∧ STy(ϕ))

STx(�ϕ) = ∀y(Rxy → STy(ϕ)),

where y in the last two clauses is a fresh variable.

Having the aforementioned identification of Kripke models and σ-struc-

tures in mind, we can speak about an equivalence between modal formulas

and first-order formulas with one free variable: we say that a modal formula

ϕ is equivalent to a first-order formula F (x) if for each Kripke model M

and each world w in M, the formula ϕ is satisfied at w, which is denoted by

M, w  ϕ, if and only if M |= F (x)[w], i.e., if and only if F (x) is satisfied

in M, now regarded as a σ-structure, under the assignment of w to the

variable x.

It is easy to see that for any modal formula ϕ we have M, w  ϕ if and

only if M |= STx(ϕ)[w], i.e., the standard translation of ϕ is equivalent to

ϕ.

A bisimulation between models M = (W,R, V ) and M′ = (W ′, R′, V ′)

is a non-empty relation Z ⊆W ×W ′ such that:

(at) if wZw′, then for every p we have w ∈ V (p) if and only if w′ ∈ V ′(p);

(forth) if wZw′ and Rwv, then there is v′ such that vZv′ and R′w′v′;

(back) if wZw′ and R′w′v′, then there is v such that vZv′ and Rwv.
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We say that a σ-formula F (x) is bisimulation invariant if the following

holds: if there is a bisimulation Z between M and M′ such that wZw′,

then we have M |= F (x)[w] if and only if M′ |= F (x)[w′].

By the Van Benthem Characterization Theorem, a σ-formula F (x) is

bisimulation invariant if and only if it is equivalent to the standard trans-

lation of some modal formula.

Generally, a tableau is a systematic search for a model that satisfies

some formula. Thus we can test the validity of a formula with a tableau

made for its negation. The idea of bisimulation invariance testing is also

to search for a counterexample, in this case to construct two models and

a bisimulation between them that does not preserve the truth of a given

formula.

Let us briefly introduce the rules of bisimulation invariance tableau or

BI-tableau. Let F (x) be a σ-formula in which only variable x is free. Each

node of a BI-tableau is a triple (A,B,C), which we write as A·B ·C where A

and C can be the empty words or formulas over σ expanded with constant

symbols introduced in the tableau, while B can also be the empty word, or

have the form cZc′. We will not explicitly denote the empty word in the

tableau, so for example a node such that B and C are empty is denoted

A · ·.
Let A be a first-order formula. Denote by A(c/x) a formula obtained

from A by substituting every free occurrence of a variable x with a constant

symbol c.

The root of a BI-tableau for F (x) is

F (w/x) · wZw′ · ¬F (w′/x).

To reduce the number of rules and to simplify proofs, we assume that

both F (w/x) and ¬F (w′/x) are in the negation normal form (NNF), i.e.,

only atomic subformulas can be in the scope of negation. Note that this

makes writing ¬F (w′/x) an abuse of notation, but there should be no

danger of confusion.

As suggested by the form of the root, we try to satisfy F at w and

¬F at w′ by building M and M′ (with the roots w and w′), together

with some bisimulation Z between them such that wZw′. So, formulas on

the left-hand side of any node are about M, formulas on the right-hand

side about M′, and formulas in the middle are about a relation, possibly

a bisimulation, between them.
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These are the rules:

• ∨-rule

A1 ∨A2 ·B · C

A1 · · A2 · ·

A ·B · C1 ∨ C2

· · C1 · · C2

• ∧-rule

A1 ∧A2 ·B · C
A1 · ·
A2 · ·

A ·B · C1 ∧ C2

· · C1

· · C2

• ∃-rule

∃xA ·B · C
A(a/x) · ·

A ·B · ∃xC
· · C(a′/x),

where a (resp. a′) is a new constant symbol, i.e., it does not occur at

any ancestor node.

• ∀-rule

∀xA ·B · C
A(a/x) · ·

A ·B · ∀xC
· · C(a′/x),

where a (resp. a′) is any constant symbol that occurs on the left (resp.

right) side of any ancestor or descendant node.

Each of the rules above is applied only once to each appropriate node,

except for the ∀-rule, which is applied once for each constant symbol that

occurs on the appropriate side of any node in a tableau.

The second group of rules have two premises each. Distinct applications

of each of them may share one premise, but not both.

• (forth)-rule

Rab · ·
A · aZa′ · C
· bZb′ · Ra′b′

(where b′ is new)
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• (back)-rule

· ·Ra′b′
A · aZa′ · C

Rab · bZb′·

(where b is new)

• (at)-rule

Pa · ·
A · aZa′ · C
· · Pa′

· · Pa′
A · aZa′ · C
Pa · ·

Atomic formulas appended by all of these rules are depicted boxed. To

avoid introducing redundant nodes to a tableau, this group of rules does

not make any subsequent use of nodes with boxed formulas.

We use the usual notions for tableaux. Since the present paper focuses

on closed tableaux, let us emphasize only that we say that a branch of

a BI-tableau is closed if some formula and its negation occur on the same

side of some of its nodes, while a BI-tableau is closed if all of its branches

are closed.

Theorem 2.1 ([6]). The bisimulation invariance tableau calculus is

sound and complete: a σ-formula F (x) is bisimulation invariant if and

only if there is a closed BI-tableau for F (x).

The procedure terminates in the case of a bisimulation invariant for-

mula. Otherwise it might not terminate, since in some cases the only

counterexamples are infinite. With an adjustment known from first-order

logic tableaux (see [3]), it will always terminate if there exists a finite ex-

ample. A counterexample can be read off an open branch. In this paper

we will not use this adjustment, since only bisimulation invariant formulas

are presently important.

.3 Obtaining a formula from a closed tableau

The procedure has three stages: first the interim first-order formula is read

off the tableau, then it is normalized in a way that enables the final stage

– translation to a modal formula.
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Suppose we have a closed BI-tableau for F (x). Let a0 = w and let

a1, a2, . . . be the other constant symbols that occur in formulas on the left.

We read the tableau starting from the root until one of the following cases

occurs and construct an interim first-order formula F ′ as follows.

• The branch closes. If this is due to an occurrence of a boxed formula

of the form Pai and ¬Pai on the left side, put F ′ = ¬Pxi. If such

a contradiction occurs on the right side, put F ′ = Pxi.

Similarly, if we have Raiaj and ¬Raiaj on the left, put F ′ = ¬Rxixj ,
and if we have such a contradiction on the right side, put F ′ = Rxixj .

If the branch closes due to a contradiction of some formulas that are

not boxed, put F ′ = ⊥ if this contradiction occurs on the left side,

but if it occurs on the right side, put F ′ = >.

• A branching occurs. If this is due to an application of the ∨-rule

on the left side, then put F ′ = F ′
1 ∨ F ′

2, and otherwise, if it is due

to an application of the ∨-rule on the right side, put F ′ = F ′
1 ∧ F ′

2,

where F ′
1 and F ′

2 are obtained from the respective branches. Proceed

inductively.

• An application of the (forth)-rule occurs, involving a formula of the

form Rajak on the left-hand side. In this case put F ′ = ∃xkF ′
1 and

obtain F ′
1 from the rest of the current branch inductively.

• An application of the (back)-rule occurs, which appends a formula of

the form Rajak on the left-hand side. Put F ′ = ∀xkF ′
1 and obtain

F ′
1 from the rest of the current branch inductively.

In examples with only a few constant symbols, to simplify notation, we

use constant symbols w, a, b and variables x, y, z.

Consider some examples.

Example 1. Let F (x) = ∃y∀z(Rxy ∧ (¬Ryz ∨ Pz ∨Qz)).
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∃y∀z(Rwy∧(¬Ryz∨Pz∨Qz))·wZw′ ·∀y∃z(¬Rw′y∨(Ryz∧¬Pz∧¬Qz))
∀z(Rwa ∧ (¬Raz ∨ Pz ∨Qz)) · ·
Rwa ∧ (¬Raw ∨ Pw ∨Qw) · ·

Rwa · ·
¬Raw ∨ Pw ∨Qw · ·

·aZa′ · Rw′a′

· · ∃z(¬Rw′a′ ∨ (Ra′z ∧ ¬Pz ∧ ¬Qz))
· · ¬Rw′a′ ∨ (Ra′b′ ∧ ¬Pb′ ∧ ¬Qb′)

· · ¬Rw′a′

X

· ·Ra′b′ ∧ ¬Pb′ ∧ ¬Qb′
· ·Ra′b′
· · ¬Pb′
· · ¬Qb′

Rab · bZb′·
Rwa ∧ (¬Rab ∨ Pb ∨Qb) · ·

Rwa · ·
¬Rab ∨ Pb ∨Qb · ·

¬Rab · ·
X

Pb · ·
· · Pb′

X

Qb · ·
· · Qb′

X

Reading form the root, the first point relevant for the construction of the

interim formula is the application of the (forth)-rule at the 6th node. We put

F ′ = ∃yF ′
1 and then obtain F ′

1 from this point onwards.

The next relevant point is the first branching, which occurs on the right side,

so at this point we put F ′
1 = F ′

11 ∧ F ′
12, and then obtain F ′

11 and F ′
12 from the

respective branches. So, at this point we have F ′ = ∃y(F ′
11 ∧ F ′

12).

The left branch immediately closes in the way for which the procedure tells us

to put F ′
11 = Rxy. The next relevant event on the right branch is the application

of the (back)-rule, resulting in F ′
12 = ∀zF ′

2. Thus, F ′ = ∃y(Rxy ∧ ∀zF ′
2), with F ′

2

due to be obtained from the rest of the right branch.

The remaining step is the branching below, which occurs on the left side, so

we have F ′
2 = F ′

21 ∨ F ′
22 ∨ F ′

23.

All new branches immediately close, resulting in F ′
2 = ¬Ryz ∨ Pz ∨Qz.

Thus we have F ′ = ∃y(Rxy ∧ ∀z(¬Ryz ∨ Pz ∨ Qz)), which is the standard

translation of a modal formula ♦�(p ∨ q). Clearly, F ′ is equivalent to F .
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The interim formula enables an easier translation to a modal formula. In

the previous example the interim formula is in fact a standard translation.

This is not always the case.

Example 2. Let F (x) = ∃y(Rxy ∧ (Px ∨ Py)).

∃y(Rwy ∧ (Pw ∨ Py)) · wZw′ · ∀y(¬Rw′y ∨ (¬Pw′ ∧ ¬Py))

Rwa ∧ (Pw ∨ Pa) · ·
Rwa · ·

Pw ∨ Pa · ·
·aZa′ · Rw′a′

· · ¬Rw′a′ ∨ (¬Pw′ ∧ ¬Pa′)

· · ¬Rw′a′

X

· · ¬Pw′ ∧ ¬Pa′
· · ¬Pw′

· · ¬Pa′

Pw · ·
· · Pw′

X

Pa · ·
· · Pa′

X

The steps in building F ′ are the following:

• the (forth)-rule is applied: F ′ = ∃xF ′
1

• branching on the right: F ′ = ∃x(F ′
11 ∧ F ′

12)

• left branch closes, while the right branch has a further left-hand

branching: F ′ = ∃x(Rxy ∧ (F ′
21 ∨ F ′

22))

• remaining branches close: F ′
21 = Px, F ′

22 = Py

Thus we have F ′ = ∃y(Rxy ∧ (Px ∨ Py)), which is actually equal to

F . This is not exactly the standard translation of some modal formula.

However, we have the following sequence of formulas clearly equivalent to

F ′:

∃y((Rxy ∧ Px) ∨ (Rxy ∧ Py))

∃y(Rxy ∧ Px) ∨ ∃y(Rxy ∧ Py)
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(∃yRxy ∧ Px) ∨ ∃y(Rxy ∧ Py)

Now, the last formula is the standard translation of (♦>∧ p)∨♦p. The

key to obtain this was to remove Px from the scope of ∃y. Indeed, the

above sequence of formulas is an example of the well-known procedure of

anti-prenexing or miniscoping (see, e.g., [5]).

As in the previous example, we can always use basic equivalences of

first-order formulas (cf. [7], p. 117) to obtain the standard translation of

some modal formula from an interim formula.

Our procedure, of course, needs an algorithm which determines whether

a first-order formula is the standard translation of a modal formula. To

check this, we can traverse the formula’s syntax tree and check if (1) the only

free variable contained in a subformula is the variable introduced by the

closest quantified formula ancestor (or w if no such variable exists) and (2)

if the formula’s operator is a logical connective or has the form ∀β(Rαβ →
. . . ) or ∃β(Rαβ ∧ . . . ), with α not having been bound already and β being

the variable introduced by the closest quantified formula ancestor (or w if

no such variable exists).

Consider another example, which illustrates how interim formula can

be significantly simpler then the initial formula, which was not the case in

the previous examples.

Example 3. Let F (x) = ∀y(¬Rxy ∨ (∃z¬Ryz ∧ ∀zRyz)).

∀y(¬Rwy ∨ (∃z¬Ryz ∧ ∀zRyz)) · wZw′ · ∃y(Rw′y ∧ (∀zRyz ∨ ∃z¬Ryz))
· ·Rw′a′ ∧ (∀zRa′z ∨ ∃z¬Ra′z)
· ·Rw′a′

· · ∀zRa′z ∨ ∃z¬Ra′z
Rwa · aZa′·

¬Rwa ∨ (∃z¬Raz ∧ ∀zRaz) · ·

¬Rwa · ·
X

∃z¬Raz ∧ ∀zRaz · ·
∃z¬Raz · ·
∀zRaz · ·
¬Rab · ·
Rab · ·
X
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The steps in building F ′ are the following:

• the (back)-rule is applied: F ′ = ∀yF ′
1

• branching on the left: F ′∀y(F11 ∨ F12

• branches close: F11 = ¬Rxy, F12 = ⊥

Thus we have F ′ = ∀y(¬Rxy ∨ ⊥) = STx(�⊥).

Theorem 3.1. Assume we have a closed BI-tableau for F (x). Then the

interim formula F ′ is equivalent to F . Furthermore, F ′ can be effectively

rewritten to an equivalent formula that is the standard translation of some

modal formula.

Proof. Consider any node of the given BI-tableau. LetG′ be the subformula

of F ′ obtained by the procedure starting from that node. In what follows,

we will treat two conclusions of the ∧-rule as belonging to one node (this

is the only case in which we will have more than one formula on the same

side). We claim that G′ is equivalent to one of the following:

(1) Q1xi+1Q2xi+2 . . . G(x/w, x1/a1, x2/a2, . . . ), where G is a formula or

the conjunction of all formulas which occur on the left side or boxed

on the right side of some preceding nodes (the rest of the proof below

makes it clear which ones), with at least one of these nodes being

between the previous branching (if there is one) and the current node,

including the current node, or

(2) Q1xi+1Q2xi+2 . . .¬G(x/w′, x1/a
′
1, x2/a

′
2, . . . ), with an analogous con-

dition to that in (1), but with the left and the right side swapped,

where each of Q1, Q2, . . . is ∀ or ∃ and xi+1, xi+2, . . . are variables corre-

sponding to constant symbols ai+1, ai+2, . . . or a′i+1, a
′
i+2, . . . occurring in

G such that ai+1Za
′
i+1, ai+2Za

′
i+2, . . . do not occur in the tableau prior to

the current node.

Note that, applied to the root, this claim becomes the desired claim

that F ′ is equivalent to F . Indeed, at the root G as described above can

only be F itself, with no additional quantifiers in the prefix, since at the

root there are no constant symbols such as those described above.

We prove the claim by induction on the distance of the current node to

the farthest leaf.
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In the base case (where nodes are leafs), G′ may be of the form Rxixj ,

¬Rxixj , Pxi, ¬Pxi, > or ⊥.

• G′ = Rxixj . This case occurs only if we have a contradiction between

Ra′ia
′
j and ¬Ra′ia′j on the right side. So, G = Ra′ia

′
j occurs boxed on

the right side, while G(xi/a
′
i, xj/a

′
j) = Rxixj is equivalent (in fact,

equal) to G′.

• G′ = ¬Rxixj results from the occurrence of Raiaj and G = ¬Raiaj
on the left side, so G(xi/ai, xj/aj) is equivalent to (in fact, equals)

¬Rxixj = G′.

• G′ = Pxi implies that Pa′i and ¬Pa′i occur on the right side, so

for G = Pa′i we have that G occurs boxed on the right side and

G(xi/a
′
i) = Pxi = G′.

• G′ = ¬Pxi implies that Pai and G = ¬Pai occur on the left side,

so we have G(xi/ai) = ¬Pxi = G′.

• G′ = > implies that some G and ¬G occur on the right side on the

path. Clearly, ¬(G∧¬G) ≡ ¬G∨G is equivalent to G′. This remains

to be the case if we prefix ¬G ∨ G with quantifiers as stated in (1)

and (2).

• G′ = ⊥ implies that some G and ¬G occur on the left side. Clearly,

G ∧ ¬G is equivalent to G′ = ⊥. Again, this holds regardless of

any quantifiers prefixed to G ∧ ¬G (using, of course, the non-empty

domain assumption, which we do).

Note that in all the base cases, one of the nodes containing the rele-

vant formulas must occur under the previous branching, since branches are

immediately closed after a contradiction occurs.

Inductive step has several cases, depending on the next rule applied in

the tableau, starting from the current node.

• If the next rule applied in the tableau is the ∀- or ∃-rule, which

both have no immediate effect on F ′, the subformula of F ′ obtained

starting after the application of this rule is again G′. By the induction

hypothesis, (1) or (2) applies to G′, with G (or one of its conjuncts)
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occurring either prior to the current node, in which case the claim

is proved, or exactly at the node succeeding the application of the

∀-rule. In the latter case, the claim also holds, since (this conjunct

of) G should be prefixed by Qjxj , where xj is the variable involved in

this application of the ∀- or ∃-rule, and this prefixed formula occurs

at the current node.

• As in the previous case, an application of the ∧-rule also has no im-

mediate effect on F ′, i.e., the subformula of F ′ obtained starting after

the application of the ∧-rule is still G′. By the induction hypothe-

sis, G′ is implied by a formula of the form described in (1) or (2),

where G or one of its conjuncts occur either above the current node,

in which case the claim holds, or immediately after the application

of the ∧-rule. But, since we treat conclusions of the ∧-rule as one

node, taking the conjunction of formulas from that node is the same

as taking the formula to which the ∧-rule was applied.

• In the case of the left ∨-rule, the current node is of the form G1∨G2 ··,
while G′ = G′

1 ∨ G′
2, where G′

1 and G′
2 are subformulas obtained

starting from the roots of two branches. By the induction hypothesis,

(1) applies to G′
1 and to G′

2, where G or one of its conjuncts is G1

and G2, respectively, since these are the only nodes after the previous

branching. So clearly, G1∨G2 will work as G (or instead of a conjunct

of G) for G′.

• In the case of the right ∨-rule, the current node is of the form ··G1∨G2

and G′ = G′
1 ∧G′

2, where G′
1 and G′

2 are obtained starting from the

roots of branches. By the induction hypothesis, (2) applies to G′
1 and

to G′
2, where G or one of its conjuncts is G1 and G2, respectively,

as in the previous case. It is easy to see that G1 ∨ G2 will work

as G (or instead of a conjunct of G) for G′. For example, if G′
1 is

equivalent to ¬G1 and G′
2 is equivalent to ¬G2, then G′ is equivalent

to ¬(G1 ∨ G2). It is easy to see that this still works with additional

conjuncts or quantifiers which may occur as described in (1) and (2).

• The (at)-rule does not change the subformula obtained thereafter,

so it is G′. Also, the new node contains only one formula which is

a boxed version of a formula which already occurred above on the

other side, so the induction hypothesis implies the claim.
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• The (forth)-rule has the same property as the (at)-rule concerning

the content of the new node, but the subformula obtained after its

application is G′
1, where G′ = ∃xkG′

1. We apply the induction hy-

pothesis to G1. Then the same G from (1) and (2) which corresponds

to G′
1 can be used for G′, prefixed by the additional quantifier ∃xk.

The case of the (back)-rule is proved analogously.

It remains to show that a modal correspondent is effectively obtainable

from F ′. Clearly, if F ′ is already the standard translation of some modal

formula (or if F is, in which case we do not need to use BI-tableau in

the first place), it is easy to reverse the translation to obtain this modal

formula. If not, we use anti-prenexing or miniscoping (see, e.g., [5]) to

obtain an equivalent formula F ′′. We prove by induction on the complexity

of F ′′ that F ′′ is the standard translation of some modal formula.

The base case is trivial, since R cannot occur in a quantifier-free F ′′

and other cases are obviously standard translations of modal formulas. The

Boolean cases in the inductive step are also trivial, since standard trans-

lation commutes with Boolean connectives. So, it remains to consider the

cases where F ′′ is of the form ∃yG′′ or ∀yG′′.

In the first case, the occurrence of the existential quantifier implies

that the (forth)-rule was applied in the tableau, involving Rwa on the

left side. This implies that Rxy is a subformula of F , but then ¬Rxy is

a subformula of NNF of ¬F . Consequently, one of the branches closes due to

a contradiction between Rw′a′ and ¬Rw′a′ on the right side, making Rxy

also a subformula of F ′′. We can assume without loss of generality that F ′′

is of the form ∃y(Rxy∧H ′′) (or just ∃yRxy, in which case F ′′ is the standard

translation of ♦>), since anti-prenexing moves any other quantifier further

inside F ′′ and also distributes existential quantifiers through disjunctions.

Furthermore, it is easy to see that inH ′′ only y occurs freely, thus we can use

the induction hypothesis to show that H ′′ equals STy(ψ) for some ψ. Hence,

F ′′ = STx(♦ψ). The universal quantifier case is proved analogously.

Remark 1. Note that the enrichment of modal logic with hybrid op-

erators makes all first-order formulas translatable to the hybrid language,

using the hybrid translation, an analogue of the standard translation. See

[4] for details on translations between hybrid and first-order languages.

This means that the present paper also points out to a relation between
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modal and hybrid languages by a two-step translation via the first-order

logic.

.4 Implementation

Let us briefly comment on the implementation details.1 The algorithm is

implemented in JavaScript for easier portability. We use the open-source

parser nearley.js, a high-quality and robust implementation of the Ear-

ley parsing algorithm.2 Our grammar supports most of the usual ASCII

replacements for logical symbols.3

Implementation closely follows the algorithm as described earlier, with

minor modifications. In particular, it supports other truth-functional con-

nectives beside ∧ and ∨. Unlike in the paper version, the implementation

is based on a variant of the calculus in which the inference rules operate on

signed formulas. In other words, the implementation keeps track of whether

a formula is “true” (>) or “false” (⊥). For example, a p→ q > branch will

produce p ⊥ and q > as the offspring. In particular, in the implementation,

the connective ¬ is never appended to a formula in a child branch. This

way, successors of a node may contain only subformulas of formulas that

are already present.

To limit time and space, both of which rise sharply (this is a conse-

quence of the combinatorial explosion created by the presence of the ∃-rule

and ∀-rule), executions are limited to a configurable number of steps. For

most formulas, it is best to experiment with raising this number in small

increments. The time and space consumed depends very much on a for-

mula, but for the majority of formulas, reasonable values are below 100.

A step consists of the following actions.

1. Resolving propositional connectives. In this step, all tableau rules

concerning logical connectives are applied iteratively as long as they

can be applied. Any signed formula of the form ∀ . . . ⊥ (resp. ∃ . . . ⊥)

is solved by adding a child branch containing a formula ∃ . . . > (resp.

∀ . . . >).

1Available on https://github.com/luka-mikec/inverse-standard-translation.
2See https://nearley.js.org.
3See https://github.com/luka-mikec/inverse-standard-translation/blob/

master/g.ne for details.
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2. Quantified formulas. In this step, a single (if any) ∀-rule or ∃-rule is

applied. Existential formulas are always preferred to universal formu-

las. If there are multiple available universal formulas, the preferred

formula is the one that has been instantiated earliest. Formulas in-

herit the instantiation time from their parents, thus ensuring that

every universal formula will get instantiated at some point. The in-

stantiation constant in the case of universal formulas is lexicographi-

cally the smallest constant introduced in the tableau so far.

3. Resolving propositional connectives. The repetition of this action is

not needed in order for the algorithm to be correct, but it enables

the algorithm to quickly find a contradiction if one exists on the

propositional level.

4. Bisimulation rules. The tableau is traversed in order to find a pair of

premises where the (forth)-rule, the (back)-rule or the (at)-rule can

be applied. The pair must be unused previously. The first such pair

is selected and the rule is applied.

The steps are always applied on the whole tableau and not recursively, i.e.,

an infinite branch will not use up all the available steps.

After obtaining the interim formula with the procedure above, we “flat-

ten” disjunctions and conjunctions into n-ary expressions without nesting.

This makes it easier to detect and remove repeated subformulas. The next

step is to reposition the quantifiers in order to get the shape of the standard

translations. At this point we expect that, for example, a ∀qF subformula

is actually ∀q
∨
Fi where at least one Fi is of the form ¬Rq′q for some q′.

We continue this process recursively, i.e., the next step is to find a transla-

tion of
∨

j 6=i Fj . Once this process is complete, we have a formula which is

a standard translation of some modal formula. This formula is converted

to a modal formula in the straightforward manner.

Below we provide some input examples which we used to test the im-

plementation.

Note that the second to last formula could have been ♦¬P ∨♦P , or even

just ♦>. The last formula could have been simpler, too: �¬P ∨ �P . In

general, the algorithm does not produce the shortest corresponding modal

formula, but rather some corresponding modal formula.
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Input Output

∀x¬Rcx �⊥
∃xPx ♦P

∃x(Rcx ∧ (∃y(Rxy ∧ ∃yPy))) ♦♦P
∀x(Rcx→ (∀y(Rxy → Py))) ��P

∀x(Rcx→ Px)→ Pc ♦¬P ∨ P
∀x(Rcx→ Px)→ ∃y(Rcy ∧ Py) ♦¬P ∨ ♦>
∃y(Rcy ∧ Py)→ ∀x(Rcx→ Px) �¬P ∨ (�P ∨�⊥)

More complex formulas, such as the standard translation of ��P →
�P ,

∀x(Rcx→ ∀y(Rxy → Py))→ ∀x(Rcx→ Px),

are too complex to be processed by this implementation in reasonable time.
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