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SOME RESULTS ON POLISH GROUPS

A b s t r a c t. We prove that no quantifier-free formula in the

language of group theory can define the ℵ1-half graph in a Polish

group, thus generalising some results from [6]. We then pose some

questions on the space of groups of automorphisms of a given

Borel complete class, and observe that this space must contain

at least one uncountable group. Finally, we prove some results

on the structure of the group of automorphisms of a locally fi-

nite group: firstly, we prove that it is not the case that every

group of automorphisms of a graph of power λ is the group of

automorphism of a locally finite group of power λ; secondly, we

conjecture that the group of automorphisms of a locally finite

group of power λ has a locally finite subgroup of power λ, and

reduce the problem to a problem on p-groups, thus settling the

conjecture in the case λ = ℵ0.

Received 24 September 2019

Keywords and phrases: Polish groups, automorphism groups, locally finite groups.

AMS Subject Classification: 03E15, 20K30, 20B27.

Partially supported by European Research Council grant 338821. No. 1155 on Shelah’s

publication list. The first author would like to thank Riccardo Camerlo for useful discus-

sions related to the questions posed in Section 3.



62 GIANLUCA PAOLINI, SAHARON SHELAH

.1 Introduction

We collect some results (of different nature) on the theory of Polish groups.

Section 2. Definable ℵ1-Half Graphs in Polish Groups.

By the ℵ1-half graph Γ(ℵ1) we mean the graph on vertex set {aα : α < ℵ1}∪
{bβ : β < ℵ1} with edge relation aαEΓbβ if and only if α < β. In the process

of characterization of the graph products of cyclic groups embeddable in

a Polish group [6], we observed that the commutation relation x−1y−1xy =

e can never define the ℵ1-half graph in a Polish group G. Here we generalize

this to:

Theorem 1.1. No quantifier-free formula ϕ(x̄, ȳ) in the language of

group theory can define the ℵ1-half graph in a Polish group G.

We actually prove a stronger result of independent interest, i.e. that Polish

groups do not admit “polarized ℵ1-partitions”, see Theorem 2.1 for the

detailed statement of this result. Finally, we would like to mention that

Theorem 1.1 can be considered as a form of model-theoretic stability for

Polish groups, in this direction see also [9].

Section 3. The Space of Automorphism Groups of a Borel Complete Class.

By a Borel complete class we mean a Borel class K of structures with

domain ω in a fixed language L such that the isomorphism relation on K is

as complicated as possible (equivalently, the countable graph isomorphism

relation is reducible to it – cf. Definition 3.2). We wonder here: how

complex can Aut(K) = {Aut(A) : A ∈ K} be for a given Borel complete

class? Can Aut(K) contain only one isomorphism type, resp. finitely many,

resp. countably many (cf. Problem 3.5)? In this direction:

Proposition 1.2. Let K be a Borel class of L-structures with domain

ℵ0 such that for every G ∈ Aut(K) we have that |G| � ℵ0. Then the

isomorphism relation on K is Borel, and so in particular K is not Borel

complete (cf. Definition 3.2).

On questions affine to this topic see also the interesting recent work [5].

Section 4. Group of Automorphisms of Locally Finite Groups.

Notation 1.3. (1) We denote by Klf the class of locally finite groups.

(2) We denote by Kgf the class of graphs.
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(3) For K a class of L-structures and λ an infinite cardinal, we let:

(3.1) Kλ = {M ∈ K : the domain of M is λ};

(3.2) Aut(K) = {Aut(M) : M ∈ K}.

Fact 1.4 ([4]). The class Kℵ0
lf is Borel complete (cf. Definition 3.2).

In this section we deal with the following problem:

Problem 1.5. Characterize Aut(Kλ
lf), for λ � ℵ0.

In this direction we first prove:

Theorem 1.6. Let λ � ℵ0, then:

Aut(Kλ
gf) �= Aut(Kλ

lf).

The proof of Theorem 1.6 leads to the following conjecture:

Conjecture 1.7. If G ∈ Kλ
lf , then Aut(G) has a locally finite subgroup

of power λ.

In the case of ℵ0 we prove that this is indeed the case:

Proposition 1.8. If G ∈ Kℵ0
lf , then Aut(G) has a locally finite infinite

subgroup.

On the other hand, we do not settle here Conjecture 1.7 in general, but

we prove:

Lemma 1.9. To prove Conjecture 1.7 it suffices to prove Conjecture 1.10,

where:

Conjecture 1.10. If λ > ℵ0, G ∈ Kλ
lf is an abelian p-group, H � G

and |H| < λ, then AutH(G) has a locally finite subgroup of power λ.

Finally, we would like to mention that in [7] we give a close analysis of

the group of automorphisms of Philip Hall’s universal locally finite group.
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.2 Definable ℵ1-Half Graphs in Polish Groups

Theorem 2.1. Let G be a Polish group, and for � < �(∗) < ω let:

(i) ḡ� = (ḡ�α : α ∈ A�);

(ii) A� ∈ [ω1]
ℵ1;

(iii) ḡ�α ∈ Gn(�);

(iv) ∆ be a finite set of q.f. formulas of the form ϕ(x̄0n(0), ..., x̄
�(∗)−1
n(�(∗)−1)) in

the language of group theory such that lg(x̄�n(�)) = n(�).

Then there are B� ∈ [A�]
ℵ1, for � < �(∗), and truth value t ∈ {0, 1} such

that if α(�) ∈ B�, for � < �(∗), then:

G |= ϕt(ḡ0α(0), ..., x̄
�(∗)−1
α(�(∗)−1)).

Proof. First of all notice that it suffices to prove the claim for:

∆ = {σ(x̄0n(0), ..., x̄
�(∗)−1
n(�(∗)−1)) = e},

and σ(x̄0n(0), ..., x̄
�(∗)−1
n(�(∗)−1)) a term in the language of group theory L =

{e, ·, ()−1}.
[Why? First of all, without loss of generality, we can assume that each ϕ ∈
∆ is a Boolean combination of formulas of the form σ(x̄0n(0), ..., x̄

�(∗)−1
n(�(∗)−1)) =

e. So let (σi(x̄
0
n(0), ..., x̄

�(∗)−1
n(�(∗)−1)) = e : i < i(∗) < ω) list them. Now choose

(Bi,� : � < �(∗)) by induction on i � i∗ such that:

(a) Bi,� ∈ [ω1]
ℵ1 ;

(b) B0,� = A�;

(c) Bi+1,� ⊆ Bi,�;

(d) (Bi+1,� : � < �(∗)) satisfies the desired conclusion for:

∆ = {σi(x̄0n(0), ..., x̄
�(∗)−1
n(�(∗)−1)) = e}.
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Then (Bi(∗),� : � < �(∗)) is as wanted.]
Let (G, d) witness the Polishness of G. For � < �(∗) and α, β ∈ A�, let

d(ḡ�α, ḡ
�
β) = max{d(g�,iα , g�,iβ ) : i < n(�)}, and:

U� = {α < ω1 : for some ε ∈ (0, 1)R

the set {β ∈ A� : d(ḡ
�
α, ḡ

�
β) < ε} is countable}.

Since (G, d) is separable, for every � < �(∗), the set U� is countable, and so

we can find α(∗) < ω1 such that
⋃

�<�(∗) U� ⊆ α(∗). Now, if B� = A�−α(∗) is
such that for every α(�) ∈ B� we have that G |= σ(ḡ0α(0), ..., ḡ

�(∗)−1
α(�(∗)−1)) = e,

then we are done. So suppose that this is not the case, then we can find

α� ∈ A� − α(∗) such that:

ε = d(σ(ḡ0α(0), ..., ḡ
�(∗)−1
α(�(∗)−1)), e) �= 0.

As G is Polish, there is ξ ∈ (0, 1)R such that:

if ā� ∈ Gn(�) and d(ā�, ḡ
�
α(�)), then d(σ(ā00, ..., ā

�(∗)−1
�(∗)−1), e) > ε/2. (1)

Now, for � < �(∗), let B� = {α ∈ A� : d(ḡ�α, ḡ
�
α�
) < ξ}. Then B� ⊆ A�

and, as α(∗) � α�, clearly |B�| = α1. Hence, by (1), (B� : � < �(∗)) is as

required. �

Theorem 1.1. No quantifier-free formula ϕ(x̄, ȳ) in the language of

group theory can define the ℵ1-half graph in a Polish group G.

Proof. Immediate from Theorem 2.1. �

.3 The Space of Automorphism Groups of a Borel

Complete Class

For an overview (and careful explanation) of the descriptive set theoretic

notions occurring in this section cf. e.g. [8, Chapter 11].

Notation 3.1. We denote by Kℵ0
gf the standard Borel space of graphs

with domain ℵ0.
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�(∗)−1
α(�(∗)−1)), e) �= 0.

As G is Polish, there is ξ ∈ (0, 1)R such that:
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Definition 3.2. Let K be a Borel class of L-structures with domain ℵ0.

We say that K is Borel complete if there exists a Borel map f : Kℵ0
gf → K

such that for every A,B ∈ K0 we have A ∼= B if and only if f(A) ∼= f(B).

Notation 3.3. Let G and H be topological groups.

(1) We write G ∼= H to mean that G and H are isomorphic as abstract

groups.

(2) We write G ∼=t H to mean that G and H are isomorphic as topological

groups.

Notation 3.4. (As in Notation 1.3) Given a class K of L-structures,

we let:

Aut(K) = {Aut(A) : A ∈ K}.

Proposition 1.2. Let K be a Borel class of L-structures with domain

ℵ0 such that for every G ∈ Aut(K) we have that |G| � ℵ0. Then the

isomorphism relation on K is Borel, and so in particular K is not Borel

complete.

Proof. We show that for any such class K the isomorphism relation ∼=
on K is Borel. Notice that for A,B ∈ K we have that A ∼= B if and only

if there are countably many f ∈ S∞ := {f : ω → ω : f is a bijection} such

that f : A ∼= B. Thus, the relation ∼= on K is the projection of a Borel

relation R:

(K×K)× S∞ ⊇ R = {(A,B, f) : f : A ∼= B}

with countable sections R(A,B) (for (A,B) ∈ K×K). Hence, by [3, Lemma

18.12], the relation ∼= on K is Borel, and so we are done. �

We are interested in the following open problem:

Problem 3.5. Let K be a Borel complete class.

(1) Can Aut(K)/ ∼= have size 1? Can Aut(K)/ ∼=t have size 1?

(2) Can Aut(K)/ ∼= be finite? Can Aut(K)/ ∼=t be finite?

(3) Can Aut(K)/ ∼= be countable? Can Aut(K)/ ∼=t be countable?
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.4 Groups of Automorphisms of Locally Finite Groups

Definition 4.1. (1) We denote by P the set of prime numbers.

(2) For p ∈ P , we denote by G∗
(p,∞) the divisible abelian p-group of rank 1.

(3) For p ∈ P and � < ω we denote by G∗
(p,�) the finite cyclic group of

order p�.

(4) For p ∈ P , we let Sp = {(p, �) : � < ω} and S+
p = Sp ∪ {(p,∞)}.

(5) For s ∈ S+
p and λ a cardinal, we let G∗

s,λ be the direct sum of λ copies

of G∗
s.

(6) For p ∈ P , we denote by Jp the group of p-adic integers.

(7) We say that an abelian group G is bounded if there exists n < ω such

that for every g ∈ G we have ng = 0.

(8) We say that G is unbounded if it is not bounded.

(9) We say that G is torsion if every element of G has finite order.

Fact 4.2 ([1][Theorem 17.2]). Let G be a bounded abelian group. Then

G is a direct sum of cyclic groups.

Fact 4.3. If an abelian p-group G is bounded, then there exists n < ω

such that:

G =
⊕
�<n

G∗
(p,�),λ�

.

Proof. This is a consequence of Fact 4.2. �

Fact 4.4 ([1][Theorem 8.4]). Let G be a torsion abelian group. Then:

G =
⊕
p∈P

Gp,

with Gp a p-group, for every p ∈ P .

Remark 4.5 ([2][pg. 250]). Let G be an abelian group and suppose

that G =
⊕

i∈I Gi, then
⊕

i∈I Aut(Gi) can be embedded into Aut(G).
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Fact 4.6 ([2, Theorem 115.1]). Let G be an unbounded abelian p-group,

then there exists an embedding f : Jp → Aut(G).

Lemma 4.7. Let G ∈ Kλ
lf (cf. Definition 1.3). Then Aut(G) has

a non-trivial locally finite subgroup.

Proof. We distinguish three cases:

(i) G is not abelian.

(ii) G is abelian and not bounded.

(iii) G is abelian and bounded.

If (i), then G/Cent(G) ∈ Klf is non-trivial and it can be embedded into

Aut(G), and so we are done. If (ii), then we are done by Facts 4.4 and 4.6,

and Remark 4.5. Finally, if (iii), then by Facts 4.3 and 4.4, there exists

a direct summand Gp of G such that Gp =
⊕

�<nG
∗
(p,�),λ�

and for some

0 < �(∗) < n < ω we have λ�(∗) � ℵ0. Let Gp�(α) be the α-th copy of

G∗
(p,�),λ�

. If p > 2, then consider:

{π ∈ Aut(Gp) : π maps Gp�(α) onto itself, for every α < λ� and � < n}.

If p = 2, then consider:

{π ∈ Aut(Gp) : π maps Gp�(∗)(2α)⊕Gp�(∗)(2α+ 1) onto itself,

for every α < λ�(∗)}.

Hence, by Remark 4.5, also (iii) is taken care of. �

The following facts are folklore:

Fact 4.8. (1) If M is a linear order, then Aut(M) has no element of

finite order.

(2) For every infinite structure M there exists a graph ΓM of the same

cardinality of M such that Aut(ΓM ) ∼= Aut(M).

Theorem 1.6. Let λ � ℵ0, then:

Aut(Kλ
gf) �= Aut(Kλ

lf).
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Proof. By Lemma 4.7 and Fact 4.8. �

We devote the rest of the section to the proof of Proposition 1.8 and

Lemma 1.9.

Notation 4.9. Given a group G and H � G we let:

AutH(G) = {π ∈ Aut(G) : π � H = idH}.

Fact 4.10. If G ∈ Kλ
lf and |G/Cent(G)| < λ, then there is H � G such

that |H| < λ and G = 〈H ∪ Cent(G)〉G.

Lemma 4.11. If (A) then (B), where:

(A) (a) G ∈ Kλ
lf ;

(b) H � G and |H| < λ;

(c) G∗ = Cent(G) and G = 〈H ∪G∗〉G;
(d) G∗ =

⊕
p∈P Gp and Hp = H ∩Gp;

(B) (a) if π ∈ AutH(G), then π(p) := π � Gp ∈ AutHp(Gp);

(b) the mapping π �→ (π(p) : p ∈ P ) from AutH(G) into∏
p∈P AutHp(Gp) is an embedding;

(c) the embedding in (b) is onto.

Proof. The non-trivial part is item (B)(c). To this extent, let πp ∈
AutHp(Gp), for p ∈ P . It suffices to find π ∈ AutH(G) such that π(p) = πp,

for every p ∈ P . We define π as follows. For p1 < · · · < pn ∈ P an initial

segment of P with the induced order, yp� ∈ Gp� and y ∈ H we let:

π(yyp1 · · · ypn) = yπp1(yp1) · · ·πpn(ypn).

Now, by (A), every g ∈ G has at least one representation of the form

g = yyp1 · · · ypn , and so, for every g ∈ G, π(g) has at least one definition.

We are then left to show that the choice of representation g = yyp1 · · · ypn
does not matter. To this extent, let g ∈ G and suppose that:

yyp1 · · · ypm = g = y′y′p1 · · · y
′
pk
,

By adding occurrences of e in the representations we can assume without

loss of generality that:

yyp1 · · · ypn = g = y′y′p1 · · · y
′
pn .

Notice now that for 1 � � � n we have:
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⊕
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(p,�),λ�
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(a) y′p� ∈ yp�Hp� , say y′p� = zp�yp� with zp� ∈ Hp� ;

(b) y′y′p1 · · · y
′
pn = y′(zp1yp1) · · · (zpnypn) = (y′(zp1 · · · zpn))yp1 · · · ypn ;

(c) yyp1 · · · ypn = (y′(zp1 · · · zpn))yp1 · · · ypn ;

(d) y = y′(zp1 · · · zpn).

Hence, we have:

π(yyp1 · · · ypn) = yπp1(yp1) · · ·πpn(ypn)
= (y′(zp1 · · · zpn))πp1(yp1), ..., πpn(ypn)
= y′zp1πp1(yp1) · · · zpnπpn(ypn)
= y′πp1(zp1yp1) · · ·πpn(zpnypn)
= y′πp1(y

′
p1) · · ·πpn(y

′
pn)

= π(y′y′p1 · · · y
′
pn).

�

Proposition 1.8. If G ∈ Kℵ0
lf , then Aut(G) has a locally finite infinite

subgroup.

Proof. Let G ∈ Kℵ0
lf . If G/Cent(G) is infinite, then we are done, since

we can embed G/Cent(G) into Aut(G). So suppose that G/Cent(G) is

finite and let G∗, Gp and Hp be as in Lemma 4.11. If for some p ∈ P we

have that Gp is infinite use Lemma 4.11 and Fact 4.6, unless Gp is bounded,

in which case use Lemma 4.11 and Fact 4.3. If for every p ∈ P we have

that Gp is finite, then the set:

P ∗ = {p ∈ P : Gp �= Hp and [Gp : Hp] > 2}

is infinite, and so for every p ∈ P ∗ we have that AutHp(Gp) is non-trivial.

Hence, considering
∏

p∈P ∗ AutHp(Gp) and using Lemma 4.11 we are done.

�

Lemma 1.9. To prove Conjecture 1.7 it suffices to prove Conjecture 1.10,

where:

Conjecture 1.10. If λ > ℵ0, G ∈ Kλ
lf is an abelian p-group, H � G

and |H| < λ, then AutH(G) has a locally finite subgroup of power λ.

Proof of Lemma 1.9. By Fact 4.10 and Lemma 4.11. �
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