
REPORTS ON MATHEMATICAL LOGIC

55 (2020), 87–111

doi:10.4467/20842589RM.20.005.12437

Gianluca PAOLINI

A NEW ω-STABLE PLANE

A b s t r a c t. We use a variation on Mason’s α-function as

a pre-dimension function to construct a not one-based ω-stable

plane P (i.e. a simple rank 3 matroid) which does not admit an

algebraic representation (in the sense of matroid theory) over any

field. Furthermore, we characterize forking in Th(P ), we prove

that algebraic closure and intrinsic closure coincide in Th(P ), and

we show that Th(P ) fails weak elimination of imaginaries, and has

Morley rank ω.

Received 10 January 2020

Keywords and phrases: Hrushovski constructions, matroids, ω-stable structures.

AMS Subject Classification: 03C45, 05B35.

The author would like to thank heartfully John Baldwin for helpful discussions related

to this paper. The present paper was written while the author was a post-doc research

fellow at the Einstein Institute of Mathematics of the Hebrew University of Jerusalem,

supported by European Research Council grant 338821.



88 GIANLUCA PAOLINI

.1 Introduction

In this study we use methods from combinatorial theory and model theory

to construct a simple rank 3 matroid that is new from both perspectives.

As well-known to experts, the class of simple rank 3 matroids corresponds

canonically to the class of linear spaces, or, equivalently, to the class of ge-

ometric lattices of rank 3. Matroid theorists refer to simple rank 3 matroid

also as planes, and so we will adopt this terminology in this study. In [11]

we used Crapo’s theory of one point-extensions of matroids [6] to construct

examples of ω-stable (one of the most important dividing lines in model

theory) planes in the context of abstract elementary classes. In the present

study we use Mason’s α-function of matroid theory and the amalgamation

construction known as Hrushovski’s construction to build an ω-stable plane

in the context of classical first-order logic with an interesting combination

of combinatorial and model theoretic properties.

Mason’s α-function is a naturally arising notion of complexity for ma-

troids introduced by Mason [16] in his study of so-called gammoids, a now

well-known class of matroids arising from paths in graphs. Interestingly,

Evans recently showed [7] that the class of strict gammoids corresponds

exactly to the class of finite geometries considered by Hrushovski in his

celebrated refutation of Zilber’s conjecture [10]. A model theoretic anal-

ysis of Mason’s α-function similar to our approach but quite different in

motivation has also appeared in [9, 17]1.

What is referred to as Hrushovski’s constructions is a method of con-

structing model theoretically well-behaved structures via an amalgamation

procedure which makes essential use of a certian predimension function.

This amalgamation construction results in a countable structure (the so-

called “Hrushovski’s generic”) carrying the additional structure of an infi-

nite dimensional matroid, which controls important model theoretic prop-

erties of the structure constructed (which in our case is a simple rank 3

matroid). In this type of constructions, the specifics of the predimension

function depend on the case at hand, and in our case the predimension

function is a mild but crucial variation of Mason’s α function (cf. Defini-

tion 4.3).

We believe that our variation on Mason’s α-function as a predimension

function is of independent interest from various points of view. On the

1 Our study and [9, 17] were concurrent and both inspired by Evans’s work [7].
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combinatorial side, we think that the combinatorial consequences of the

realization that Mason’s α-function is essentially a predimension should

be properly explored. On the model theoretic side, we believe that the

“collapsed2 version” of our construction leads to interesting connections

with design theory (currently explored in works in preparation joint with

John Baldwin [2, 3]), and in particular with Steiner k-systems.

Before stating our main theorem we spend few motivating words in-

troducing the model theoretic properties appearing in it. Model theory is

the study of classes of structures using logical properties, which are also

referred to as dividing lines (since they are often accompanied by a di-

chotomous behavior). Among the various properties considered by logi-

cians there are certain properties which are more “geometric” in nature.

These properties are called “geometric” since they are given by impos-

ing conditions on certain infinite dimensional matroids associated with the

structures. The canonical example of this kind of structure is the class of

strongly minimal structures, where the model theoretic operator of alge-

braic closure determines an infinite dimensional matroid. This context has

later been extended to uncountably categorical structures (one model up

to isomorphism in every uncountable cardinality), and even more gener-

ally to ω-stable structures (cf. [15, Chapter 6]). In this spirit, one of the

geometric properties of the kind mentioned above is the notion of being

one-based, which on strongly minimal structures corresponds to the natu-

ral notion of local modularity of the lattice of closed sets of the associated

matroid.

We prove the following theorem:

Theorem 1.1. There exists a pre-dimension function δ on the class

of finite planes (finite simple rank 3 matroids) such that the corresponding

“Hrushovski’s generic” (cf. Definition 4.16) exists, and so it is a plane

P (i.e. a simple rank 3 matroid, cf. Definition 3.1), and it satisfies the

following conditions:

(1) P contains the “non-Desarguesian” matroid (cf. Figure 1, or [20, pg.

139]), and so it is not algebraic (in the sense of matroid theory);

2 The so-called “collapse” is a technical variation of the Hrushovki’s construction which

ensures the satisfaction of further important model-theoretic properties, as e.g. uncount-

able categoricity: only one model up to isomorphism in every uncountable cardinalily.
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(2) in Th(P ) intrinsic closure and algebraic closure coincide (cf. Definition

4.22);

(3) Th(P ) does not have weak elimination of imaginaries (cf. Defini-

tion 4.30);

(4) Th(P ) is not one-based (cf. Definition 4.32);

(5) Th(P ) is ω-stable and has Morley rank ω (cf. [15, Chapter 6]);

(6) over algebraically closed sets forking in Th(P ) corresponds to the canon-

ical amalgamation introduced in [11, Theorem 4.2] (cf. Remark 4.11).

As mentioned above, properties (2)-(6) of Theorem 1.1 are important

dividing lines in model theory, and their satisfaction shows that our object

is particularly well-behaved from this perspective; for an introduction to

these notions see e.g. [15, Chapter 6]. In combination with these proper-

ties, the fact that our plane P is not algebraic (a matroid theoretic notion

related to fields, cf. Definition 1.1) makes our plane particularly exotic.

Non-algebraic planes are somewhat rare in nature, and in fact the exis-

tence of non-algebraic planes is a non-trivial fact due to Lindström [13, 14],

who constructed in [13] an infinite familiy of non-algebraic finite planes.

Furthermore, this shows that our variation on Mason’s α-function is cru-

cial, since the class of finite simple matroids M with α(M) � 0 is the

already mentioned class of strict gammoids (see [1, Chapter 7, Section 4]

or [7]), and these structures are known to be linear (a matroid theoretic

notion related to vector spaces, cf. Definition 1.1 and [1, Corollary 7.75]),

and thus in particular algebraic. On the other hand, in [18] we constructed

a simple rank 3 matroid with strong homogeneity properties with ∧-embeds

all the finite simple rank 3 matroids, and so in particular it is not algebraic,

but that structure has the so-called independence property, and so it is in

a completely different region of the model theoretic universe. In fact, we

stress once again that what is interesting about the structure constructed

in this paper is the combination of the failure of algebraicity together with

the satisfaction of ω-stability, and of the other model theoretic properties

of Theorem 1.1.

Concerning the structure of the paper: in Section 2 we give a quick intro-

duction to matroid theory and recall the definition of Mason’s α-function;
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in Section 4 we introduce the construction at the core of this paper and

prove Theorem 1.1.

We stress that in our construction the fact that we use a modification

of the α-function (and not the α-function per se) is crucial, since the δ

which we define in Section 4 is submodular, while the α-function is not

submodular, cf. Remark 4.5.

We refer the reader to [2] for further discussion concerning how our pred-

imension function δ differs from the previously considered predimensions

in the literature, and for further parallelisms with the current literature on

Hrushovski’s constructions.

.2 Matroid Theory Background

In this section we give a quick background on notions from matroid theory

which are relevant for the present paper. For an introduction to matroid

theory directed to model theorists see also e.g. [11, Section 2]. We will first

give the definition of a simple matroid (a.k.a. combinatorial geometry) as

a set with a closure operator (cf. Definition 2.1), then give the definition

which takes as primary the collection of dependent sets (cf. Definition 2.3),

and then observe that the two definitions are equivalent (cf. Fact 2.4).

We will then lay the correspondence between geometric lattices and simple

matroids, and finally define Mason’s α-function.

Definition 2.1. We say that (M, clM ) is a combinatorial geometry (or

a simple matroid) of finite rank if the following conditions are met:

(1) if A ⊆ B, then clM (A) ⊆ clM (B) = clM (clM (B));

(2) clM (∅) = ∅, and clM ({a}) = {a}, for every a ∈ M ;

(3) if a ∈ clM (A ∪ {b})− clM (A), then b ∈ clM (A ∪ {a});

(4) if a ∈ cl(A), then a ∈ cl(A0) for some finite A0 ⊆ A;

(5) there exists finite A ⊆ M such that clM (A) = M .

Remark 2.2. We make a comment on terminology concerning Defini-

tion 2.1. In Definition 2.1 we defined what is a simple matroid, relaxing

condition (2) we obtain the more general notion ofmatroid. Model theorists
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often refer to objects as in Definition 2.1 as finite dimensional (combina-

torial) geometries. We have the following correspondence between matroid

theoretic and model theoretic terminology:

matroid : simple matroids = pregeometries : geometries.

In this paper we follow the matroid theoretic termimonology.

We write A ⊆ω B for A ⊆ B and |A| < ω.

Definition 2.3. Let M be a set and D a collection of non-empty finite

subsets of M . We say that (M,D) is a simple matroid, and refer to sets

in D as dependent sets, when we have:

(1) if D is dependent, then |D| > 2;

(2) if D is dependent and D ⊆ D′ ⊆ω M , then D′ is dependent;

(3) if D1, D2 ⊆ M are dependent and D1 ∩D2 is not dependent, then for

every a ∈ M we have that D1 ∪D2 − {a} is dependent;

(4) there is n < ω such that if D ⊆ω M and |D| � n, then D is dependent.

Fact 2.4 (see e.g. [5]). (1) Let (M, clM ) be a combinatorial geometry

of finite rank (cf. Definition 2.1), and call a finite subset D ⊆ M

dependent if there is a ∈ D such that a ∈ clM (D−{a}). Then, denoting
by D the set of dependent sets of (M, clM ), we have that (M,D) is

a simple matroid (cf. Definition 2.3).

(2) Let (M,D) be a simple matroid, and define the following operator clM
on M :

(a) if A ⊆ M is finite, then a ∈ clM (A) if A ∪ {a} is dependent;

(b) if A ⊆ M is infinite, then clM (A) =
⋃

B⊆ωM
clM (B).

Then (M, clM ) is a combinatorial geometry of finite rank.

The following convention is adopted in this paper, where by definitions

of the notions occurring in it we consider the definitions given in this paper.

Convention 2.5. In virtue of Fact 2.4, when talking about simple ma-

troids we will not distinguish between the formalisms of Definitions 2.1

and 2.3.
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We now define the notion of rank of simple matroid.

Definition 2.6. Let (M, clM ) be a simple matroid. We let the rank of

M , denoted as rk(M), to be the least n such that every set of size n + 1

is dependent (cf. Definition 2.3). By convention if |M | ∈ {0, 1, 2}, then
rk(M) = |M |.

We now come to geometric lattices and their correspondence with simple

matroids. Recall that a lattice is a partial order (L,�) such that any two

elements a, b have a least upper bound and a greatest lower bound, denoted

by a ∧ b and a ∨ b. A chain in a lattice (L,�) is a subset X ⊆ L such that

(X,�) is a linear order.

Assumption 2.7. In this paper all lattices have a maximum element

1 and a minimum element 0. Furthermore, any chain between any two

elements is finite.

Given a lattice (L,�) and x ∈ L, we let h(x), the height of x, to be the

length of the longest maximal chain between 0 and x. Furthermore, given

a, b ∈ L, we say that a is covered by b, for short a� b, if a < b and for every

a � c � b we have that either a = c or c = b. Finally, we say that a is an

atom if it covers 0.

Definition 2.8. Let (L,�) be a lattice.

i) We say that (L,�) is semimodular if for every a, b ∈ L we have that

a ∧ b� a ⇒ b� a ∨ b.

ii) We say that (L,�) is a point lattice if every a ∈ L is a supremum of

atoms.

iii) We say that (L,�) is geometric if (L,�) is a semimodular point lattice

such that its greatest element 1 exists and it is equal to a finite set of

atoms.

Remark 2.9. Notice that Definition 2.8(3) implies in particular that

geometric lattices are complete. In the context of geometric lattices, atoms

are often referred to as points, we will follow this convention throughout

the entire paper.



92 GIANLUCA PAOLINI

often refer to objects as in Definition 2.1 as finite dimensional (combina-

torial) geometries. We have the following correspondence between matroid

theoretic and model theoretic terminology:

matroid : simple matroids = pregeometries : geometries.

In this paper we follow the matroid theoretic termimonology.

We write A ⊆ω B for A ⊆ B and |A| < ω.

Definition 2.3. Let M be a set and D a collection of non-empty finite

subsets of M . We say that (M,D) is a simple matroid, and refer to sets

in D as dependent sets, when we have:

(1) if D is dependent, then |D| > 2;

(2) if D is dependent and D ⊆ D′ ⊆ω M , then D′ is dependent;

(3) if D1, D2 ⊆ M are dependent and D1 ∩D2 is not dependent, then for

every a ∈ M we have that D1 ∪D2 − {a} is dependent;

(4) there is n < ω such that if D ⊆ω M and |D| � n, then D is dependent.

Fact 2.4 (see e.g. [5]). (1) Let (M, clM ) be a combinatorial geometry

of finite rank (cf. Definition 2.1), and call a finite subset D ⊆ M

dependent if there is a ∈ D such that a ∈ clM (D−{a}). Then, denoting
by D the set of dependent sets of (M, clM ), we have that (M,D) is

a simple matroid (cf. Definition 2.3).

(2) Let (M,D) be a simple matroid, and define the following operator clM
on M :

(a) if A ⊆ M is finite, then a ∈ clM (A) if A ∪ {a} is dependent;

(b) if A ⊆ M is infinite, then clM (A) =
⋃

B⊆ωM
clM (B).

Then (M, clM ) is a combinatorial geometry of finite rank.

The following convention is adopted in this paper, where by definitions

of the notions occurring in it we consider the definitions given in this paper.

Convention 2.5. In virtue of Fact 2.4, when talking about simple ma-

troids we will not distinguish between the formalisms of Definitions 2.1

and 2.3.

A NEW ω-STABLE PLANE 93

We now define the notion of rank of simple matroid.

Definition 2.6. Let (M, clM ) be a simple matroid. We let the rank of

M , denoted as rk(M), to be the least n such that every set of size n + 1

is dependent (cf. Definition 2.3). By convention if |M | ∈ {0, 1, 2}, then
rk(M) = |M |.

We now come to geometric lattices and their correspondence with simple

matroids. Recall that a lattice is a partial order (L,�) such that any two

elements a, b have a least upper bound and a greatest lower bound, denoted

by a ∧ b and a ∨ b. A chain in a lattice (L,�) is a subset X ⊆ L such that

(X,�) is a linear order.

Assumption 2.7. In this paper all lattices have a maximum element

1 and a minimum element 0. Furthermore, any chain between any two

elements is finite.

Given a lattice (L,�) and x ∈ L, we let h(x), the height of x, to be the

length of the longest maximal chain between 0 and x. Furthermore, given

a, b ∈ L, we say that a is covered by b, for short a� b, if a < b and for every

a � c � b we have that either a = c or c = b. Finally, we say that a is an

atom if it covers 0.

Definition 2.8. Let (L,�) be a lattice.

i) We say that (L,�) is semimodular if for every a, b ∈ L we have that

a ∧ b� a ⇒ b� a ∨ b.

ii) We say that (L,�) is a point lattice if every a ∈ L is a supremum of

atoms.

iii) We say that (L,�) is geometric if (L,�) is a semimodular point lattice

such that its greatest element 1 exists and it is equal to a finite set of

atoms.

Remark 2.9. Notice that Definition 2.8(3) implies in particular that

geometric lattices are complete. In the context of geometric lattices, atoms

are often referred to as points, we will follow this convention throughout

the entire paper.



94 GIANLUCA PAOLINI

Remark 2.10. Concerning Theorem 2.11, recall that in our setting

Definition 2.1(5) holds, or, following the model theoretic terminology men-

tioned in Remark 2.2, we only consider finite dimensional geometries.

Theorem 2.11 (Birkhoff-Whitney). i) Let (M, cl) be a (simple) ma-

troid and let G(M) the set of closed subsets of M (later referred to as

flats), i.e. the X ⊆ M such that cl(X) = X. Then (G(M),⊆) is

a geometric lattice.

ii) Let (G,�) = (G, 0, 1,∨,∧) be a geometric lattice with point set M and

for A ⊆ M let:

cl(A) =
{
p ∈ M | p �

∨
A
}
.

Then (G, cl) is a simple matroid. Furthermore, the function φ : G →
G(M) such that φ(x) = {p ∈ M | p � x} is a lattice isomorphism.

We will also need the following definition (which is used in Fact 4.10).

Definition 2.12. LetM = (M, cl) andN = (N, cl) be simple matroids.

We say that M is a ∧-subgeometry of N if M is a subgeometry of N (i.e.

M ⊆ N and clM (X) = clN (X) ∩M) and the inclusion map iM : M → N

induces an embedding (with respect to both ∨ and ∧) of G(M) into G(N)

(cf. [11, Section 2]).

Concerning the notion of algebraic matroid occurring in item (1) of

Theorem 1.1:

Definition 2.13. Let M be a matroid.

(1) We say that M is linear if there is a field K, a K-vector space V , and

an injective map f : M → V such that X ⊆ M is independent in M if

and only if f(X) is linearly independent in V .

(2) We say that M is algebraic if there exists an algebraically closed field

K and an injective map f : M → K such that X ⊆ M is independent

in M if and only if f(X) is algebraically independent in K.

We introduce some useful notations and terminology.

Notation 2.14. Let M = (M, cl) be a simple matroid.

(1) We refer to closed subsets of M (i.e. subsets F ⊆ M of the form

clM (F ) = F ) as flats of M , or M -flats.
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(2) Given two subsets F and X of M we use the notation3 F � X (resp.

F ≺ X) to mean that F is a subset of X (resp. a proper subset) and

F is a flat of M .

We finally define the α-function.

Definition 2.15 (Mason’s α-function [16]). Let M be a finite simple

matroid. For each subset X of M we define recursively:

α(X) = |X| − rk(X)−
∑
F≺X

α(F ).

Definition 2.16. Let M be a finite simple matroid and F an M -flat.

We define the nullity of F as follows:

n(F ) = |F | − rk(F ).

The following conventions will simplify a great deal the computations

of Section 4. Its use will be limited to Proposition 4.7 and Lemma 4.8.

Convention 2.17. Let M = (M, cl) and N = (N, cl) be finite simple

matroids and suppose that M is a subgeometry of N . If F is an N -flat,

then:

(1) we denote by |F |M the number |F ∩M |;

(2) we denote by nM (F ) the number n(F∩M), considering F∩M computed

in M as an M -flat, and by nN (F ) the number n(F ) computed in N as

an N -flat.

Convention 2.18. Let M = (M, cl) be a simple matroid. Then:

(1) M -flats of rank 2 are referred to as lines;

(2) we denote by L(M) the set of lines of M .

(3) For N ⊆ M and � ∈ L(M), we say that � is based in N if |� ∩N | � 2.

(4) For N ⊆ M , we let LM (N) to be the set of � ∈ L(M) which are based

in N . Since L(N) and LM (N) are in canonical bijection we will be

sloppy in distinguishing between them, and often write L(N) instead of

LM (N).
3 This notation is taken from [16] where the notion of α-function was introduced.
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.3 Our Context

In the present paper we will actually only be interested in matroids of rank

� 3. In this case the definitions from the previous section can be greatly

simplified. We will now give a direct definition of a simple rank 3 matroid

as a simple combinatorial structure, and then argue why this is coherent

with the notions from Section 2. For a more extensive discussion of this

definition see also [2, Section 2].

Definition 3.1. A simple matroid of rank � 3 is a 3-hypergraph M =

(V,R) whose adjacency relation is irreflexive, symmetric4 and satisfies the

following axiom:

(Ax) if R(a, b, c) and R(a, b, d), then {a, b, c, d} is an R-clique.

This definition of matroids is formally not a complete definition, since it

does not specify the dependent sets of cardinality different than 3 (so with

respect to Definition 2.3). The point is that if M is a simple matroid of

rank � 3, then:

(1) every set of size < 3 is not dependent;

(2) every set of size > 3 is dependent.

Hence, every structure M = (V,R) as in the current definition admits

canonically the structure of a matroid of rank � 3 simply by letting:

(a) every set of size < 3 as independent;

(b) every set of size > 3 as dependent;

(c) if X = {a, b, c} ⊆ M has size 3, then X is dependent iff M |= R(a, b, c).

The following remark gives an explicit characterization of α(M) in the

case M is of rank 3. For the purposes of the present paper this character-

ization suffices, and thus we could have avoided the general definition of

the α-function; we chose not to do so because we wanted to motivate the

naturality of the predimension function of Definition 4.3 (from Section 4)

and make explicit its relation to the α-function.

4 Explictly, we have: (i) M |= R(a, b, c) implies |{a, b, c} = 3|, and (ii) if M |=
R(a1, a2, a3) and σ is a bijection of {1, 2, 3} then M |= R(aσ(1), aσ(2), aσ(3)).
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Remark 3.2. Let M be a finite simple matroid of rank 3, then:

α(M) = |M | − 3−
∑

�∈L(M)

n(�).

Convention 3.3. Given M = (V,R) as in Definition 3.1 and {a, b, c} ⊆
M a subset of size 3 we say that a is under the line b ∨ c to mean that

M |= R(a, b, c).

.4 The Construction

We follow the general framework of [4], and refer to proofs from there

when minor changes to the arguments are needed in order to establish our

claims. It is strongly advised to have a copy of [4] and [22] while reading

this section.

Notation 4.1. Let K∗
0 be the class of finite simple matroids of rank � 3

seen as structures in a language with a ternary predicate R for dependent

sets of size 3 (cf. Definition 3.1). Recall that we refer to elements A ∈ K∗
0

as planes (if rk(A) < 3 we say that A is degenerate). We say that A ∈ K∗
0

has positive α if α(A) � 0.

Convention 4.2. Throughout the rest of the paper model theoretically

we will consider our planes only in the language of Notation 4.1. In par-

ticular, if P is a plane seen as an L-structure, then the lines of P (in the

sense of the associated geometric lattice G(P )) are not elements of P , but

only definable subsets of P .

Definition 4.3. For A ∈ K∗
0, let:

δ(A) = |A| −
∑

�∈L(A)

n(�).

Definition 4.4. Let:

K0 = {A ∈ K∗
0 such that for any A′ ⊆ A, δ(A′) � 0},

and (K0,�) be as in [4, Definition 3.11], i.e. we let A � B if and only if:

A ⊆ B ∧ ∀X(A ⊆ X ⊆ B ⇒ δ(X) � δ(A)).

Finally, we write A < B to mean that A � B and A is a proper subset

of B.
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Remark 4.5 and Example 4.6 are connected to the discussion in the

introduction after the statement of Theorem 1.1.

Remark 4.5. Notice that, by Remark 3.2, if A ∈ K∗
0 has rank 3, then:

δ(A) = α(A) + 3.

And so our δ is just a natural variation of Mason’s α-function. Despite

this, our variation is crucial, since, as we observed in the introduction, the

class of finite simple matroids of positive α is the already mentioned class

of strict gammoids, and these structures are known to be linear (see e.g.

[1, Corollary 7.75]), while, as shown in Example 4.6, there exists a non-

algebraic A ∈ K∗
0 such that δ(A) � 0.

Even more interestingly, although as a consequence of Lemma 4.8, δ is

submodular, the α-function is not submodular, i.e. there exists A,B ∈ K∗
0

such that:

α(A ∪B) > α(A) + α(B)− α(A ∩B).

In fact letting A = {a, b, c} and B = {a, b, d} be two copies of the three

element simple matroid of rank 3 we have that:

α(A ∪B) = 1 > α(A) + α(B)− α(A ∩B) = 0 + 0 + 0.

Example 4.6. Let A be the “non-Desarguesian” matroid (cf. Figure 1,

for another representation of this matroid see [20, pg. 139]). Then, δ(A) =

1, since A has 10 points and exactly 9 non-trivial lines, each of nullity 1

(i.e. each has size 3). Furthermore, inspection of Figure 1 shows that for

every B ⊆ A, we have that δ(B) � 0. The “non-Desarguesian” matroid

was shown not to be algebraic in [14, Corollary, pg. 238]. This will be

relevant for the proof of Theorem 1.1(1). Finally, notice on the other hand

that α(A) < 0 (where α is Mason’s α-function from Def. 2.15), and so the

class of planes with positive δ but negative α is non-trivial, as in fact all

the matroids with non-negative α are linear (as they are gammoids).

The following two claims constitute the computational core of the pa-

per, and aim at proving that our function δ is lower semimodular. Propo-

sition 4.7 is used to prove Lemma 4.8, which in turn is used to draw Con-

clusion 4.9. In Proposition 4.7 and Lemma 4.8 we will make a crucial

use of Conventions 2.17-2.18.
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Figure 1: The “non-Desarguesian” matroid.

Proposition 4.7. Let A and B be disjoint subsets of a matroid C ∈ K∗
0

(so, in particular A and B are submatroids of the matroid C, or, equiva-

lently, substructures in the sense of Notation 4.1). Then:

(1) if � ∈ L(B), then nAB(�) − nB(�) = |�|A (clearly, if � ∈ L(B), then

� ∈ L(AB));

(2) δ(A/B) := δ(AB)− δ(B) is equal to:

|A| −
∑

�∈L(AB)
�∈L(A)
��∈L(B)

nAB(�)−
∑

�∈L(AB)
�∈L(A)
�∈L(B)

|�|A −
∑

�∈L(AB)
�∈L(B)
��∈L(A)

|�|A.

Proof. Concerning item (1), for � ∈ L(AB) and � ∈ L(B) we have:

nAB(�)− nB(�) = |�|AB − rk(�)− |�|B + rk(�)

= |�|A + |�|B − |�|B
= |�|A.
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Concerning item (2), we have that δ(A/B) is:

= |AB| −
∑

�∈L(AB)

nAB(�)− |B|+
∑

�∈L(B)

nB(�)

= |A|+ |B| −
∑

�∈L(AB)

nAB(�)− |B|+
∑

�∈L(B)

nB(�)

= |A| −
∑

�∈L(AB)

nAB(�) +
∑

�∈L(B)

nB(�)

= |A| −
∑

�∈L(AB)
�∈L(A)
��∈L(B)

nAB(�)−
∑

�∈L(AB)
�∈L(A)
�∈L(B)

nAB(�)−
∑

�∈L(AB)
�∈L(B)
��∈L(A)

nAB(�)

+
∑

�∈L(B)

nB(�)

= |A| −
∑

�∈L(AB)
�∈L(A)
��∈L(B)

nAB(�)−
∑

�∈L(AB)
�∈L(A)
�∈L(B)

(nAB(�)− nB(�))

−
∑

�∈L(AB)
�∈L(B)
��∈L(A)

(nAB(�)− nB(�))

= |A| −
∑

�∈L(AB)
�∈L(A)
��∈L(B)

nAB(�)−
∑

�∈L(AB)
�∈L(A)
�∈L(B)

|�|A −
∑

�∈L(AB)
�∈L(B)
��∈L(A)

|�|A.

Concerning the passage from the third equation to the fourth equation

notice that if � ∈ L(AB)− (L(A) ∪ L(B)), then nAB(�) = 0. �

Lemma 4.8. Let A,B,C ⊆ D ∈ K∗
0, with A ∩ C = ∅ and B ⊆ C.

Then:

δ(A/B) � δ(A/C).

Proof. Let A,B,C be subsets of a matroid D and suppose that B ⊆ C

and A ∩ C = ∅. Notice that by Proposition 4.7 we have:

−δ(A/C) = −|A|+
∑

�∈L(AC)
�∈L(A)
��∈L(C)

nAC(�) +
∑

�∈L(AC)
�∈L(A)
�∈L(C)

|�|A +
∑

�∈L(AC)
�∈L(C)
��∈L(A)

|�|A, (�1)

δ(A/B) = |A| −
∑

�∈L(AB)
�∈L(A)
��∈L(B)

nAB(�)−
∑

�∈L(AB)
�∈L(A)
�∈L(B)

|�|A −
∑

�∈L(AB)
�∈L(B)
��∈L(A)

|�|A. (�2)
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Notice now that for � ∈ L(AC) we have:

(a) if � ∈ L(A), � /∈ L(B) and � /∈ L(C), then � occurs in the first sum of

(�1) and in the first sum of (�2), and clearly nAC(�) � nAB(�);

(b) if � ∈ L(A) and � ∈ L(B), then � ∈ L(A) and � ∈ L(C), and so � occurs

in the second sum of (�1) and in the second sum of (�2);

(c) if � ∈ L(B) and � /∈ L(A), then � ∈ L(C) and � /∈ L(A), and so � occurs

in the third sum of (�1) and in the third sum of (�2);

(d) if � ∈ L(A), � /∈ L(B) and � ∈ L(C), then � occurs in the second sum

of (�1) and in the first sum of (�2), and furthermore we have:

nAB(�) � nA(�) + 1 < nA(�) + 2 = |�|A.

Since, clauses (a)-(d) above cover all the terms occurring in (�2), we con-

clude that δ(A/B) � δ(A/C), as wanted. �

Conclusion 4.9. (K0,�) satisfies Axiom A1-A6 from [4, Axioms Group

A], i.e.:

(1) if A ∈ K0, then A � A;
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Proof. As in e.g. [4, Theorem 3.12], this is easy to establish using
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Fact 4.10 ([11, Theorem 4.2]). Let A,B,C ∈ K0 with C a ∧-subgeo-
metry (cf. Definition 2.12) of A and B and A ∩B = C. Then there exists

a canonical amalgam of A and B over C, which we denote as A⊕C B. In

the next remark we give an explicit characterization of A ⊕C B as an L-

structure, i.e. we simply translate the lattice theoretic definition of A⊕C B

from [11] into the language of L-structures.
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∑

�∈L(AB)
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∑

�∈L(B)

nB(�)

= |A|+ |B| −
∑

�∈L(AB)
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∑

�∈L(B)

nB(�)

= |A| −
∑

�∈L(AB)

nAB(�) +
∑

�∈L(B)

nB(�)

= |A| −
∑

�∈L(AB)
�∈L(A)
��∈L(B)

nAB(�)−
∑

�∈L(AB)
�∈L(A)
�∈L(B)
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∑

�∈L(AB)
�∈L(B)
��∈L(A)

nAB(�)
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∑

�∈L(B)
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∑
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∑
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∑
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∑
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��∈L(B)
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∑
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∑
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∑
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�∈L(C)
��∈L(A)
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∑
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��∈L(B)
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∑
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Notice now that for � ∈ L(AC) we have:

(a) if � ∈ L(A), � /∈ L(B) and � /∈ L(C), then � occurs in the first sum of

(�1) and in the first sum of (�2), and clearly nAC(�) � nAB(�);

(b) if � ∈ L(A) and � ∈ L(B), then � ∈ L(A) and � ∈ L(C), and so � occurs

in the second sum of (�1) and in the second sum of (�2);

(c) if � ∈ L(B) and � /∈ L(A), then � ∈ L(C) and � /∈ L(A), and so � occurs

in the third sum of (�1) and in the third sum of (�2);

(d) if � ∈ L(A), � /∈ L(B) and � ∈ L(C), then � occurs in the second sum

of (�1) and in the first sum of (�2), and furthermore we have:

nAB(�) � nA(�) + 1 < nA(�) + 2 = |�|A.

Since, clauses (a)-(d) above cover all the terms occurring in (�2), we con-

clude that δ(A/B) � δ(A/C), as wanted. �

Conclusion 4.9. (K0,�) satisfies Axiom A1-A6 from [4, Axioms Group

A], i.e.:

(1) if A ∈ K0, then A � A;

(2) if A � B, then A ⊆ B;

(3) if A,B,C ∈ K0 and A � B � C, then A � C;

(4) if A,B,C ∈ K0, A � C, B ⊆ C, and A ⊆ B, then A � B;

(5) ∅ ∈ K0 and ∅ � A, for all A ∈ K0;

(6) if A,B,C ∈ K0, A � B, and C is a substructure of B, then A∩C � C.

Proof. As in e.g. [4, Theorem 3.12], this is easy to establish using

Lemma 4.8. �

Fact 4.10 ([11, Theorem 4.2]). Let A,B,C ∈ K0 with C a ∧-subgeo-
metry (cf. Definition 2.12) of A and B and A ∩B = C. Then there exists

a canonical amalgam of A and B over C, which we denote as A⊕C B. In

the next remark we give an explicit characterization of A ⊕C B as an L-

structure, i.e. we simply translate the lattice theoretic definition of A⊕C B

from [11] into the language of L-structures.



102 GIANLUCA PAOLINI

Remark 4.11. The amalgam D := A ⊕C B of Fact 4.10 can be char-

acterized as the following L-structure:

(1) the domain of D is A ∪B;

(2) RD = RA ∪RB ∪ {{a, b, c} : a ∨ b ∨ c = a′ ∨ b′ for some {a′, b′} ⊆ C}.

Where ∨ refers to the canonically associated geometric latticeG(D). A more

transparent way to define the amalgam A⊕C B is by defining the domain

of A ⊕C B to be simply A ∪ B, and the lines of A ⊕C B to be the lines

coming from A, those coming from B, modulo identifying the lines from C,

plus the obvious trivial lines.

Lemma 4.12. (1) If A � B ∈ K0, then A is a ∧-subgeometry of B.

(2) (K0,�) has the amalgamation property.

Proof. Concerning (1), suppose that A,B ∈ K0, and A is not a ∧-
subgeometry of B, then there exists p ∈ B − A and �1 �= �2 ∈ L(A)

such that p is incident with both �1 and �2. Thus, δ(Ap) < δ(A) and so

A �� B. Concerning (2), let A,B,C ∈ K0 and suppose that C � A,B with

A ∩B = C (without loss of generality). Let A⊕C B := D (recall Notation

4.10), which exists by (1). Using e.g. Remark 4.11, it is easy to see that:

δ(D) = δ(A) + δ(B)− δ(C). (�3)

Furthermore, for every C ⊆ X ⊆ D we have thatX = (A∩X)⊕C∩X(B∩X).

Thus, it is immediate to infer that D ∈ K0 and B,C � D, as wanted. �

We now introduce several technical notions of amalgamation, in par-

ticular sharp and uniform amalgamation. We are only interested in sharp

amalgamation as a sufficient condition for uniform amalgamation, and we

are only interested in the latter as a sufficient condition for ω-stability, see

Conclusion 4.28.

Definition 4.13. Let (L0,�) be a class of relational structures of

the same vocabulary satisfying the conditions in Conclusion 4.9 and let

A,B,C ∈ L0.

(1) For k < ω, we say that A is k-strong in B, denoted A �k B, if for

any B′ with A ⊆ B′ ⊆ B and |B′ − A| � k we have A � B′ (cf. [4,

Definition 2.26]).
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(2) We say that B is a primitive extension of A if A � B and there is no

A � B0 � B such that A � B0 � B (cf. [4, Definition 2.30]).

(3) Given C � A,B with A ∩ B = C, we let A ⊗C B denote the free

amalgam of A and B over C, i.e. the structure with domain A∪B and

no additional relations apart from the ones in A and the ones in B.

(4) We say that (L0,�) has the sharp amalgamation property if for every

A,B,C ∈ L0, if C � A is primitive and C �|A|−|C| B, then either

A ⊗C B ∈ L0 or there is a �-embedding of A into B over C (cf. [4,

Definition 2.31]).

(5) We say that (L0,�) has the uniform amalgamation property if the

following condition holds: for every A � B ∈ L0, and for every m < ω

there is an n = fB(m) such that if A �n C, then there is a D, a strong

embedding of C into D and an m-strong embedding of B into D that

completes a commutative diagram with the given embeddings of A into

B and C.

Proposition 4.14. Let A � B ∈ K0 be primitive. Then either |B −
A| � 1, or for every p ∈ B − A we have that p is not incident with a line

� ∈ L(A). Furthermore, in the first case we have that δ(B/A) � 1.

Proof. Suppose that there exists p ∈ B − A such that p is incident

with a line � ∈ L(A) (and thus under no other line �′ ∈ L(A), cf. Lemma

4.12 and recall Convention 3.3). Then we have δ(A) = δ(Ap), and so if

|B| − |A| > 1 we have δ(A) = δ(Ap) � δ(B), and thus A < Ap < B,

contradicting the assumptions of the proposition. The furthermore part is

immediate from the definition of δ. �

Lemma 4.15. (1) (K0,�) has the sharp amalgamation property.

(2) In (1) we can replace |A| − |C| with 1, i.e. the conclusion of Defi-

nition 4.13(4) is true for the all the extensions of the form C �1 B,

not only for the extensions of the form C �|A|−|C| B, as required by

Definition 4.13(4)).

(3) (K0,�) has the uniform amalgamation property (cf. Definition 4.13(5)).
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Proof. The general deduction of (3) from (1) is by [4, Lemma 2.32]. We

prove (1) and (2). Let A,B,C ∈ K0 and suppose that C < A is primitive,

C �1 B and A ∩ B = C (without loss of generality). By Proposition 4.14,

either every p ∈ A−C is not incident with a line � ∈ L(C) or C −A = {p}
and there exists a line � ∈ L(C) such that p is incident with �. Suppose the

first, then by Remark 4.11 the canonical amalgam A ⊕C B (cf. Notation

4.10) coincides with the free amalgam A ⊗C B (cf. Definition 4.13(3)),

and so we are done. Suppose the second and let p and � witness it. If

every p′ ∈ B − C is not incident with the line �, then also in this case

A⊕C B = A⊗C B, and so we are done. Finally, if there exists p′ ∈ B − C

such that p is incident with �, then clearly A = Cp is such that it �-embeds

into B over C, since δ(C) = δ(Cp′) = δ(Cp). �

Definition 4.16. Let (L0,�) be a class of relational structures in the

language L satisfying the conditions in Conclusion 4.9. A countable L-

model M is said to be (L0,�)-generic when:

(1) if A � M,A � B ∈ L0, then there exists B′ � M such that B ∼=A B′;

(2) M is a union of finite substructures.

Fact 4.17 ([4, Theorem 2.12]). Let (L0,�) be a class of relational struc-

tures of the same vocabulary satisfying the conditions in Conclusion 4.9,

and suppose that (L0,�) has the amalgamation property. Then there exists

a (L0,�)-generic model, and this model is unique up to isomorphism.

Corollary 4.18. The (K0,�)-generic model exists.

Proof. By Fact 4.17 and Lemma 4.12. �

Notation 4.19.

(1) Let P be the generic model for (K0,�) (cf. Corollary 4.18), and let M

be the monster model of Th(P ).

(2) Given A,B,C ⊆ M we write A ≡C B to mean that there is an auto-

morphism of M fixing C pointwise and mapping A to B.

We recall that we write A ⊆ω B to mean that A ⊆ B and |A| < ℵ0.
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Definition 4.20. Let M |= Th(P ).

(1) Given A ⊆ω M , we let:

d(A) = inf{δ(B) : A ⊆ B ⊆ω M}.

(2) Given A ⊆ω M , we let A � M if d(A) = δ(A).

(3) Given A,B,C ⊆ω M with C � A,B � M and A ∩ B = C, we let

A |�
d
C B if:

d(A/C) = d(A/B).

Fact 4.21. Let M |= Th(P ) and A ⊆ω M . Then there exists a unique

finite BA ⊆ω M such that A ⊆ BA � M and BA is minimal with respect

to inclusion. Furthermore, BA ⊆ aclM (A) (where aclM (A) is the algebraic

closure of A in M).

Proof. By [4, Theorem 2.23], since clearly K0 has finite closure. �

Definition 4.22. Following [4] we denote the set BA from Fact 4.21 by

iclM (A), and we call it the intrinsic closure of A in M .

Lemma 4.23. Let A ⊆ω P . Then aclP (A) ⊆ iclP (A).

Proof. Let A ⊆ω P , b ∈ P − iclP (A), A
′ = iclP (A) and B′ = iclP (Ab).

Now, for every 1 < k < ω, we can find D � P such that:

D ∼=A′ B′ ⊕A′ B′ ⊕A′ · · · ⊕A′ B′
︸ ︷︷ ︸

k-times

:= F,

since A′ � B′ � F ∈ K0 and P is generic (cf. [4, Definition 2.11]). Thus,

by the homogeneity of P , we can find infinitely many elements of P with

the same type as b over A′. Hence, b /∈ aclP (A). �

Conclusion 4.24. Let A ⊆ω M |= Th(P ), then iclM (A) = aclM (A),

i.e. intrinsic closure and algebraic closure coincide in M .

Proof. The inclusion iclM (A) ⊆ aclM (A) is by Fact 4.21. For the other

inclusion argue as in [4, Theorem 4.5] using Lemma 4.23. �
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Proposition 4.25. Let A,B,C ⊆ω M with C � A,B � M and A∩B =

C. If A |�
d
C B (cf. Definition 4.20(3)), then AB � M.

Proof. As in [4, Theorem 3.31]. �

Lemma 4.26. Let A,B,C ⊆ω M with C � A,B � M and A∩B = C.

Then the following are equivalent:

(1) A |�
d
C B (cf. Definition 4.20(3));

(2) AB = A⊕C B (cf. Notation 4.10).

Proof. Easy to see using Proposition 4.25 and Remark 4.11. �

Lemma 4.27. Let A,B,C ⊆ω M with C � A,B � M and A∩B = C.

Then:

(1) (Existence) there exists A′ ≡C A such that A′ |�
d
C B;

(2) (Stationarity) A ≡C A′, A |�
d
C B and A′ |�

d
C B, then A ≡B A′.

Proof. Immediate from Lemma 4.26 and Remark 4.11. �

Conclusion 4.28. P is ω-stable.

Proof. As observed in Fact 4.21, the class K = Mod(Th(P )) has finite

closures. Thus, the result follows from Lemma 4.15, [4, Theorem 2.28], [4,

Theorem 2.21], [4, remark right after 2.20] and [4, Theorem 3.34], where

the argument in [4, Theorem 3.34] goes through by Lemma 4.27. �

Corollary 4.29. Let A,B,C ⊆ω M with C � A,B � M and A ∩B =

C. Then the following are equivalent:

(1) A |�C B (in the forking sense, cf. e.g. [15, Chapter 6]);

(2) A |�
d
C B (cf. Definition 4.20(3));

(3) AB = A⊕C B (cf. Notation 4.10).

Proof. The equivalence (1)⇔ (2) is as in [4, Lemma 3.38] using Lemma

4.27, the equivalence (2) ⇔ (3) is Lemma 4.26. �
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Definition 4.30 ([19, Exercise 8.4.2]). Let T be a first-order theory.

We say that T has weak elimination of imaginaries if for every model M |=
T and definable set D over A ⊆ M there is a smallest algebraically closed

set over which D is definable.

Corollary 4.31. Th(P ) does not have weak elimination of imaginaries

(Def. 4.30).

Proof. Let {a, b, a′, b′} ⊆ M be such |{a, b, a′, b′}| = 4, {a, b, a′, b′} � M

and {a, b, a′, b′} forms an R-clique (i.e. the points a, b, a′, b′ are collinear).

Consider now the definable set X = {a, b} ∪ {c ∈ M : M |= R(a, b, c)} in

M. Then in M there is no smallest algebraically closed set over which X

is definable, since clearly X = {a′, b′} ∪ {c ∈ M : M |= R(a, b, c)} and both

{a, b} and {a′, b′} are algebraically closed in M (recall Conclusion 4.24). �

We now introduce the notion of a theory being one-based, a crucial

property in geometric model theory.

Definition 4.32. Let T be an ω-stable first-order theory, and let M be

its monster model. We say that T is one-based if for every A,B ⊆ M such

that A = acl(A) and B = acl(B) we have that A |�A∩B B.

Proposition 4.33. Th(P ) is not one-based.

Proof. Let C � M be a simple rank 3 matroid with domain {p1, p2, p3}.
Let B � M be an extension of C with a generic point q1 (i.e. q1 is not

incident with any line from C). Let D � M be an extension of C with

a new point q2 under the line p1 ∨ q1. Notice now that the the submatroid

A of D with domain {p1, p2, p3, q2} is such that A � D, since δ(A) = δ(D).

Thus, A,B,C � M, A ∩B = C and A � |�C B (by Corollary 4.29). �

The following four items are an adaptations of items 4.6, 4.8, 4.9, 4.10

of [22]. We will use them to show that M has Morley rank ω, using the

argument laid out in [22, Proposition 4.10].

Lemma 4.34. Let B � C ∈ K0 be a primitive extension (cf. Definition

4.13(2)). Then there are two cases:

(1) δ(C/B) = 1 and C = B ∪ {c};

(2) δ(C/B) = 0.
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Proposition 4.25. Let A,B,C ⊆ω M with C � A,B � M and A∩B =
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d
C B (cf. Definition 4.20(3)), then AB � M.
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4.27, the equivalence (2) ⇔ (3) is Lemma 4.26. �
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The following four items are an adaptations of items 4.6, 4.8, 4.9, 4.10

of [22]. We will use them to show that M has Morley rank ω, using the

argument laid out in [22, Proposition 4.10].
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Proof. Suppose that B � C ∈ K0, δ(C/B) > 0 and c1 �= c2 ∈ C − B.

We make a case distinction:

Case 1. c1 or c2 is not incident with any line from B.

Without loss of generality c1 is not incident with any line from B. Then,

δ(Bc1) = δ(B)+1 � δ(C), where the second inequality is because δ(C/B) >

0, and so B < Bc1 < C. Hence, in this case we have that B � C is not

primitive.

Case 2. c1 and c2 are both incident with a line from B.

Then δ(B) = δ(Bc1) � δ(C) and so B < Bc1 < C. Hence, also in this case

we have that B � C is not primitive.

Thus, from the above argument we see that if B � C is primitive and

δ(C/B) > 0, then C = B ∪ {c}, and so δ(C/B) = 1 (cf. Proposition 4.14).

�

Remark 4.35. Notice that it is possible that B � C ∈ K0 is primitive,

δ(C/B) = 0 and |C − B| � 2. To see this, consider the plane whose

geometric lattice is represented in Figure 2 and let B = {a, b, c} and C =

{a, b, c, d, e, f}. To be more clear we explain how to read Figure 2. The

element ∅ on the first line of the diagram is the element 0 of the lattice.

The elements a, b, c, d, e, f on the second line of the diagram represent the

points of the matroid and thus the elements in the domain of the structure

M = (V,R) as in Definition 3.1. The elements on the third line of the

diagram represent the lines of the geometric lattice, i.e. the closed subsets

of rank 2. Finally the element in the fourth line represent the 1 of the

lattice.

abcdef

ab ac bc adf bd cde ae bef cf

a b c d e f

∅

Figure 2: An example.
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Lemma 4.36. Let B � C ∈ K0 be primitive, C � M, and suppose that

δ(C/B) = 0. Then tp(C/B) is isolated and strongly minimal.

Proof. As in the proof of [22, Lemma 4.8] replacing the free amalgam

A⊗C B with the canonical amalgam A⊕C B (cf. Notation 4.10). �

Corollary 4.37. Let B � C ∈ K0, C � M, and suppose that δ(C/B) =

0. Then:

(1) tp(C/B) has finite Morley rank;

(2) the Morley rank of tp(C/B) is at least the length of a decomposition of

C/B into primitive extensions.

Proof. Exactly as in [22, Corollary 4.9]. �

Proposition 4.38. There exists finite B � M and elements qk, for

k < ω, such that d(qk/B) = 0, and the extension cl(Bqk) has decomposition

length k.

Proof. Let B � M be a simple rank 3 matroid with domain {p1, p2, p3}.
By induction on k < ω, we define B � Qk � M such that qk ∈ Qk . For

k = 0, let Q0 � M be an extension of B with a new point q0 under the line

p1 ∨ p2. For k = m + 1, let Qk � M be an extension of Qm with a new

point qk under the line p2 ∨ qm if m is even, and under the line p1 ∨ qm if

m is odd. Then clearly d(qk/B) = 0, and the extension cl(Bqk) = Qk has

decomposition length k. �

We now restate our main theorem and point out where we have proved

the various items.

Theorem 1.2. There exists a pre-dimension function δ on the class

of finite planes (finite simple rank 3 matroids) such that the corresponding

“Hrushovski’s generic” (cf. Definition 4.16) exists, and so it is a plane

P (i.e. a simple rank 3 matroid, cf. Definition 3.1), and it satisfies the

following conditions:

(1) P contains the “non-Desarguesian” matroid (cf. Figure 1, or [20, pg.

139]), and so it is not algebraic (in the sense of matroid theory);

(2) in Th(P ) intrinsic closure and algebraic closure coincide (cf. Definition

4.22);
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Lemma 4.36. Let B � C ∈ K0 be primitive, C � M, and suppose that

δ(C/B) = 0. Then tp(C/B) is isolated and strongly minimal.

Proof. As in the proof of [22, Lemma 4.8] replacing the free amalgam

A⊗C B with the canonical amalgam A⊕C B (cf. Notation 4.10). �

Corollary 4.37. Let B � C ∈ K0, C � M, and suppose that δ(C/B) =

0. Then:

(1) tp(C/B) has finite Morley rank;

(2) the Morley rank of tp(C/B) is at least the length of a decomposition of

C/B into primitive extensions.

Proof. Exactly as in [22, Corollary 4.9]. �

Proposition 4.38. There exists finite B � M and elements qk, for

k < ω, such that d(qk/B) = 0, and the extension cl(Bqk) has decomposition

length k.

Proof. Let B � M be a simple rank 3 matroid with domain {p1, p2, p3}.
By induction on k < ω, we define B � Qk � M such that qk ∈ Qk . For

k = 0, let Q0 � M be an extension of B with a new point q0 under the line

p1 ∨ p2. For k = m + 1, let Qk � M be an extension of Qm with a new

point qk under the line p2 ∨ qm if m is even, and under the line p1 ∨ qm if

m is odd. Then clearly d(qk/B) = 0, and the extension cl(Bqk) = Qk has

decomposition length k. �

We now restate our main theorem and point out where we have proved

the various items.

Theorem 1.2. There exists a pre-dimension function δ on the class

of finite planes (finite simple rank 3 matroids) such that the corresponding

“Hrushovski’s generic” (cf. Definition 4.16) exists, and so it is a plane

P (i.e. a simple rank 3 matroid, cf. Definition 3.1), and it satisfies the

following conditions:

(1) P contains the “non-Desarguesian” matroid (cf. Figure 1, or [20, pg.

139]), and so it is not algebraic (in the sense of matroid theory);

(2) in Th(P ) intrinsic closure and algebraic closure coincide (cf. Definition

4.22);
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(3) Th(P ) does not have weak elimination of imaginaries (cf. Defini-

tion 4.30);

(4) Th(P ) is not one-based (cf. Definition 4.32);

(5) Th(P ) is ω-stable and has Morley rank ω (cf. [15, Chapter 6]);

(6) over algebraically closed sets forking in Th(P ) corresponds to the canon-

ical amalgamation introduced in [11, Theorem 4.2] (cf. Remark 4.11).

Proof. Concerning item (1), notice that if a matroid is algebraic, then

so is any of its submatroids. Thus, P is not algebraic since it contains the

“non-Desarguesian” matroid from Example 4.6, which is explicitly shown

not to be algebraic in [14, Corollary, pg. 238]. Item (2) is Conclusion

4.24. Item (3) is Corollary 4.31. Item (4) is by Proposition 4.33 and

Conclusion 4.24. Concerning item (5), argue as in [22, Proposition 4.10]

using Corollary 4.37 and Proposition 4.38. Item (6) is by Corollary 4.29

and Conclusion 4.24. �
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