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Note Added in Proof. Regarding Question 1.1, Somayyeh Tari has

communicated to the author that if we expand the language of ordered

rings by a new unary predicate symbol, we have the following: If R is a real

closed field and V is a proper convex subring of R, then any parameter-free

definable gap in (R, V ) is irregular. This variant of the question would

therefore have witnesses to the unprovability. The proof uses quantifier-

elimination for Th(R, V ), as established by Cherlin and Dickmann in their

1983 paper in Ann. Pure Appl. Logic 25:3 (1983), 213–231.
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ON SOME

HOMOMORPHISM-HOMOGENEOUS

POINT-LINE GEOMETRIES

A b s t r a c t. A relational structure is homomorphism-homogene-

ous if every homomorphism between finite substructures extends

to an endomorphism of the structure. A point-line geometry is

a non-empty set of elements called points, together with a collec-

tion of subsets, called lines, in a way that every line contains at

least two points and any pair of points is contained in at most one

line. A line which contains more than two points is called a reg-

ular line. Point-line geometries can alternatively be formalised

as relational structures. We establish a correspondence between

the point-line geometries investigated in this paper and the first-

order structures with a single ternary relation L satisfying certain

axioms (i.e. that the class of point-line geometries corresponds

to a subclass of 3-uniform hypergraphs). We characterise the

homomorphism-homogeneous point-line geometries with two reg-

ular non-intersecting lines. Homomorphism-homogeneous point-

line geometries containing two regular intersecting lines have al-

ready been classified by Mašulović.
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102 ÉVA JUNGABEL

.1 Introduction

In this article, a structure is a set together with an indexed set of relations

on it. A structure is called homogeneous if any isomorphism between finite

substructures extends to an automorphism. (This is sometimes referred to

as ultrahomogeneous structure.)

In 1953 R. Fräıssé [8] defined the age of a relational structure M to

be the class Age(M) of all finite structures embeddable in M as induced

substructure. In terms of this notion, he gave a necessary and sufficient

condition for the existence of homogenous relational structures with a given

age.

In several classes of combinatorial structures, the homogeneous struc-

tures are classified: e.g. countable partial orders in [19] by Schmerl, count-

able graphs in [15] by Lachlan and Woodrow, finite graphs in [9] by Gar-

diner, countable digraphs in [3] by Cherlin, finite and countable tourna-

ments in [14] by Lachlan, finite or infinite linear spaces in [5] by Devillers

and Doyen. In particular the semilinear spaces which have been classified

in [4] by Devillers are of special interest to us because semilinear spaces are

point-line geometries. A linear space S is a non-empty set of elements called

points, provided with a collection of subsets called lines such that any pair

of points is contained in exactly one line and every line contains at least two

points. A semilinear space S is a non-empty set of elements called points,

provided with a collection of subsets called lines such that any pair of points

is contained in at most one line and every line contains at least two points.

We say that S is d-ultrahomogeneous if every isomorphism from S1 to S2 of

cardinality at most d can be extended to an automorphism of S. In [4] the

authors among other things showed that if S is a 6-ultrahomogeneous non-

connected semilinear space, then S is ultrahomogeneous and the connected

components of S are isomorphic ultrahomogeneous linear spaces. Any fi-

nite connected 6-ultrahomogeneous semilinear space is ultrahomogeneous

and it is contained in one of the classes listed in [4].

P. Cameron and J. Nešetřil [2] introduced the following variant of ho-

mogeneity: a structure is called homomorphism-homogeneous if every ho-

momorphism between finite substructures extends to an endomorphism of

the structure.

The first step to understand homomorphism-homogeneous objects is to

see a few examples and the characterisation of homomorphism-homogeneous
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objects in various classes of structures. A structure belongs to the class

MH if every monomorphism of a finite induced substructure of S into S

extends to a homomorphism from S to S. Properties of the homomor-

phism-homogeneous graphs are investigated by Rusinov and Schweitzer in

[18], where the equivalence to the MH class is shown. A characterisation of

all homomorphism-homogeneous partial orders of arbitrary cardinality was

given in [16] by Mašulović. Furthermore, complete classifications are known

for finite tournaments with loops [12], finite and countably infinite ho-

momorphism-homogeneous lattices [7], finite homomorphism-homogeneous

permutations [6] and homomorphism-homogeneous monounary algebras of

arbitrary cardinalities [13] are classified as well. The classification of fi-

nite MH-homogeneous L-colored graphs where L is a chain is provided by

Hartman, Hubička and Mašulović [10]. They also showed that the classes

MH and HH of L-colored graph classes coincide. In the general case the

classes MH and HH do not coincide. Finite homomorphism-homogeneous

binary relational structures having two relations that are both symmetric

and irreflexive are classified by Hartman and Mašulović [11].

The next natural step would be to characterise homomorphism-ho-

mogeneous graphs and hypergraphs. Like in the case of homogeneous

structures, where 3-uniform homogeneous hypergraphs [1] are far from be-

ing classified, in our case the idea of characterising the homomorphism-

homogeneous hypergraphs seems to be more complicated. Moreover, for

finite graphs this seems to be also a complicated task at least on a compu-

tational level: Rusinov and Schweizer showed in [18] that to decide whether

a finite graph is homomorphism-homogeneous or not is coNP-complete.

A point-line geometry is an ordered pair (X ,L), where X is a non-empty

set of elements called points, L ⊆ P(X ) is a collection of subsets called lines

such that every line contains at least two points and every pair of distinct

points is contained in at most one line. A regular line is a line which con-

tains more than two points. We will show that the category of point-line

geometries is equivalent to a certain subclass of 3-uniform hypergraphs and

therefore a first step in characterising homomorphism-homogeneous hyper-

graphs could be the investigation of point-line geometries. The characteri-

sation of finite homomorphism-homogeneous point-line geometries contain-

ing two regular intersecting lines is given by Mašulović [17].

In our paper we continue this idea of describing finite homomorphism-

homogeneous point-line geometries containing at least two regular non-
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intersecting lines. We will discuss the local behavior of finite homomor-

phism-homogeneous k-stripes, which will allow us to prove our main result,

a complete characterisation of finite homomorphism-homogeneous 2-stripes

(Theorem 3.11).

.2 Preliminaries

A point-line geometry is an ordered pair (X ,L), where X is a non-empty

set of elements, called points, and L ⊆ P(X ) is a collection of subsets,

called lines, such that every line contains at least two points and every pair

of distinct points is contained in at most one line. We only consider finite

point-line geometries.

A subgeometry or substructure (Y,LY) of the point-line geometry (X ,L)
is a point-line geometry, where ∅ �= Y ⊆ X and LY = {l∩Y | l ∈ L∧|l∩Y| ≥
2}. If ∅ �= Y ⊆ X , then the point-line geometry (Y,LY) induced on Y is

a subgeometry of (X ,L).
A line which contains more than two points is called a regular line.

A line which contains exactly two points is called singular. Regular lines

will be denoted by lower case letters a, b, c, . . . and singular lines will mostly

be denoted as AB, where A and B are the points contained in it. An

isolated point is a point which belongs to no line of the geometry. The

points A and B are collinear if there exists a line l ∈ L such that A,B ∈ l.

In this case we write A ∼ B.

A stripe is a point-line geometry in which every point lies on pre-

cisely one regular line. A substripe (Y,LY) of the stripe (X ,L) is a stripe

which is a subgeometry of (X ,L). A stripe that contains exactly k reg-

ular lines is called a k-stripe. We are going to discuss the local behavior

of homomorphism-homogeneous k-stripes, which will allow us to prove our

main result, a complete characterisation of homomorphism-homogeneous

2-stripes.

We will consider 2-stripes as substripes of a homomorphism-homoge-

neous k-stripe and we will apply this result to characterise all homomor-

phism-homogeneous 2-stripes.

For a line l ∈ L and for a point A ∈ X which does not lie on the line l,

let N ′
l (A) be the set of points A′ ∈ l such that A′ ∼ A. In the case when

l is a regular line, we omit apostrophe and just write Nl(A). In the case
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when there are only two regular lines involved we sometimes omit l and

simply write N (A).

A singularity of the first type of (X ,L) in the 2-stripe induced by (X ,L)
on the pair (a, b) of regular lines is a point B ∈ a such that Nb(B) = ∅.
A singularity of the second type of (X ,L) in the 2-stripe induced by (X ,L)
on the pair (a, b) of regular lines is a pair points (B,C), where B ∈ a, C ∈ b,

such that Nb(B) = {C} and Na(C) = {B}. A point is called singular if

itself is a singularity of the first type or it is one of the members of a pair

forming a singularity of the second type.

A mapping f : X → Y is a homomorphism from a point-line geometry

(X ,L) to a point-line geometry (Y,K) if for every l ∈ L, either |f(l)| = 1 or

there is a line k ∈ K such that f(l) ⊆ k. An endomorphism of a point-line

geometry is a homomorphism from the point-line geometry into itself. The

geometry is homomorphism-homogeneous if every homomorphism between

finitely induced subgeometry of the geometry can be extended to an endo-

morphism of the geometry (X ,L). A homomorphism f from an arbitrary

induced subgeometry of a point-line geometry (X ,L) into (X ,L) will be

referred to as a local homomorphism of (X ,L).
We say that a local homomorphism f : S → X , S � X , can be extended

to one point if there exists a local homomorphism f∗ : S ∪ {P} → X for

any P ∈ X \ S and f∗|S ≡ f . We will denote by f∗ a one-point extension

of the local homomorphism of f .

Lemma 2.1. The finite point-line geometry (X ,L) is homomorphism-

homogeneous if and only if every local homomorphism f : S → X can be

extended to one point.

The point-line geometries in our paper are not first-order structures.

In order to relate them to the results mentioned in the introduction, we

will define point-line geometries as first-order structures and show that the

homomorphisms and substructures of this structure are exactly the same as

the homomorphisms and subgeometries according to our definitions. This

way we can consider the class of point-line geometries to be a subclass of

3-uniform hypergraphs.

Let X be a non-empty set of elements. There is a natural correspon-

dence between the point-line geometries and the first-order structures with

a single ternary relation L satisfying the following axioms:
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1. Reflexivity: For all A ∈ X (A,A,A) ∈ L

2. Symmetry: if (A,B,C) ∈ L then (B,C,A) ∈ L and (C,B,A) ∈ L.

(Therefore also (A,C,B) ∈ L, (B,A,C) ∈ L, and (C,A,B) ∈ L.)

3. Transitivity: if A �= B and (A,B,C) ∈ L and (A,B,D) ∈ L then

(B,C,D) ∈ L. (Therefore also (A,C,D) ∈ L.).

We will construct a first-order structure (X , L) from a point-line geom-

etry (X ,L) and vice versa. Further, we will show that the homomorphisms

and substructures of the structure (X , L) are exactly the same as the ho-

momorphisms and subgeometries of the corresponding point-line geometry

(X ,L).

Theorem 2.2. Let X be a non-empty set.

1. For every point-line geometry (X ,L) let us define LX as the ternary

relation such that (A,B,C) is in LX if and only if the points A, B

and C lie on some line l ∈ L or A = B = C. Then this relation

satisfies the axioms of reflexivity 1, symmetry 2 and transitivity 3.

2. Let (X , L) be a first-order structure with ternary relation L defined

with axioms 1, 2 and 3. We define a set L ⊆ P (X ) such that l ∈ L
if and only if |l| ≥ 2, the points of l are related by L and for any two

points A,B ∈ l there is no point C ∈ X \ l such that (A,B,C) ∈ L.

Then (X ,L) is a point-line geometry.

Furthermore, the notion of homomorphisms and substructures (resp.

subgeometries) are stable under the above transformations.

Proof.

1. It is easy to see that the ternary relation L satisfies the axioms 1., 2.

and 3.

If Z ⊆ X and (Z,LZ) is the induced subgeometry of (X ,LX ), then

for all A,B,C ∈ Z it holds that (A,B,C) ∈ LZ = LX ∩ Z3 if and

only if A = B = C or A,B,C are contained in a line l ∈ LZ . If

A = B = C, then this is obvious. If A,B,C are not all equal, then

(A,B,C) ∈ LX if and only if A,B,C ∈ l for some l ∈ LX . It follows

directly from the definition of subgeometry that this holds if and only

if A,B,C ∈ l for some l ∈ LZ .
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Let (X ,LX ) and (Y,LY) be two point-line geometries, where Y is

a non-empty finite set. Let f : X → Y be a homomorphism from the

point-line geometry (X ,LX ) to the point-line geometry (Y,LY) and

let A,B,C ∈ X . If (A,B,C) ∈ LX then the points A,B and C are

on some line lx ∈ LX or this is just one point D = A = B = C, so

there exists a line ly ∈ LY or point D′ ∈ Y such that f(lx) ⊆ ly or

f(D) = D′, so (f(A), f(B), f(C)) ∈ LY .

Now, let f : X → Y be a homomorphism from the structure (X , LX )

to the structure (Y, LY). Let lx ∈ LX . We want to show that |f(lx)| =
1 or f(lx) ⊆ ly for some ly ∈ LY . Assume that |f(lx)| ≥ 2 and let

A,B ∈ lx so that f(A) �= f(B). Since (A,A,B) ∈ LX , it follows that

(f(A), f(A), f(B)) ∈ LY . Since f(A) �= f(B) it follows that there

exists a unique line ly such that f(A), f(B) ∈ ly. Now if C ∈ lx,

then (A,B,C) ∈ LX , and thus (f(A), f(B), f(C)) ∈ LY . This is only

possible if f(C) ∈ ly and therefore f(lx) ⊆ ly.

2. It follows from the definition that every line contains at least two

points, because |l| ≥ 2 for all l ∈ L. Moreover every pair of distinct

points A and B is contained in at most one line l, because the relation

L is transitive, symmetric and there is no point C ∈ X \ l such that

(A,B,C) ∈ L. So, (L,X ) is a point-line geometry.

The fact that the substructures and the homomorphisms coincide

follows from the argument given in the proof of the previous part.

�

.3 2-stripes

In this section we will give some general results for k-stripes and characterise

the homomorphism-homogeneous 2-stripes.

We shall distinguish three kinds of 2-stripes, thin, full and mixed 2-

stripes in the following way: a 2-stripe is thin if all the points are singular,

a 2-stripe is full if it has no singular points, and it is called a mixed 2-stripe

if it is neither thin nor full. We start by the thin types.
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Let (X ,LX ) and (Y,LY) be two point-line geometries, where Y is

a non-empty finite set. Let f : X → Y be a homomorphism from the

point-line geometry (X ,LX ) to the point-line geometry (Y,LY) and

let A,B,C ∈ X . If (A,B,C) ∈ LX then the points A,B and C are

on some line lx ∈ LX or this is just one point D = A = B = C, so

there exists a line ly ∈ LY or point D′ ∈ Y such that f(lx) ⊆ ly or

f(D) = D′, so (f(A), f(B), f(C)) ∈ LY .

Now, let f : X → Y be a homomorphism from the structure (X , LX )

to the structure (Y, LY). Let lx ∈ LX . We want to show that |f(lx)| =
1 or f(lx) ⊆ ly for some ly ∈ LY . Assume that |f(lx)| ≥ 2 and let

A,B ∈ lx so that f(A) �= f(B). Since (A,A,B) ∈ LX , it follows that

(f(A), f(A), f(B)) ∈ LY . Since f(A) �= f(B) it follows that there

exists a unique line ly such that f(A), f(B) ∈ ly. Now if C ∈ lx,

then (A,B,C) ∈ LX , and thus (f(A), f(B), f(C)) ∈ LY . This is only

possible if f(C) ∈ ly and therefore f(lx) ⊆ ly.

2. It follows from the definition that every line contains at least two

points, because |l| ≥ 2 for all l ∈ L. Moreover every pair of distinct

points A and B is contained in at most one line l, because the relation

L is transitive, symmetric and there is no point C ∈ X \ l such that

(A,B,C) ∈ L. So, (L,X ) is a point-line geometry.

The fact that the substructures and the homomorphisms coincide

follows from the argument given in the proof of the previous part.

�

.3 2-stripes

In this section we will give some general results for k-stripes and characterise

the homomorphism-homogeneous 2-stripes.

We shall distinguish three kinds of 2-stripes, thin, full and mixed 2-

stripes in the following way: a 2-stripe is thin if all the points are singular,

a 2-stripe is full if it has no singular points, and it is called a mixed 2-stripe

if it is neither thin nor full. We start by the thin types.
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.3.1. Thin 2-stripe

In this section we describe thin 2-stripes.

Lemma 3.1. Let (X ,L) be a homomorphism-homogeneous k-stripe and

a, b ∈ L two regular lines such that the pair (a, b) induces a thin 2-stripe.

Then either |N (A)| = 0 holds for every A ∈ a ∪ b or |N (A)| = 1 holds for

every A ∈ a ∪ b. (Fig. 1)

Proof. Suppose to the contrary that there exist points A1, A2 ∈ a such

that |Nb(A1)| = 0 and |Nb(A2)| = 1. Similar argument works if B1, B2 ∈ b

with |Na(B1)| = 0 and |Na(B2)| = 1.

Let B1 ∈ b such that B1 ∼ A2 and B2 �= B3 ∈ b. Since the point A2 is

singular, we have A2 � B2 and A2 � B3. Thus the map

f :

(
B2 B3 A2

B2 B3 A1

)

is a local homomorphism. Then f extends to a local homomorphism f∗

defined also on B1. Since B1 ∈ b we have f∗(B1) ∈ b and since B1 ∼ A2,

we have f∗(B1) ∼ A1. So, f
∗(B1) is a point on the line b which is collinear

with the point A1, which is impossible.

�

Proposition 3.2. Let (X ,L) be a thin 2-stripe. This point-line ge-

ometry is homomorphism-homogeneous if and only if |N (X)| = 0 for all

X ∈ X , or |N (X)| = 1 for all X ∈ X . (Fig. 1)

Figure 1: The homomorphism-homogeneous thin 2-stripes.

Proof. If the point-line geometry is homomorphism-homogeneous then

from Lemma 3.1 we have that |N (X)| = 0 for all X ∈ X , or |N (X)| = 1

for all X ∈ X .
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Now, let (X ,L) be a thin 2-stripe and f : S → X be a local homomor-

phism from some S � X .

If we have |N (X)| = 0 for all X ∈ X the proof is trivial. Indeed, we

might assume X ∈ a \ S, then if a ∩ S �= ∅, let f∗(X) = f(A) for some

A ∈ a ∩ S, otherwise f∗(X) = X.

Now, let |N (X)| = 1 for all X ∈ X . One can see that every point of

this point-line geometry lies on exactly one regular and singular line. Also

one can see that for every line l of this point-line geometry and for every

point X /∈ l there exists a unique point X ′ ∈ l which is collinear with the

point X.

Let A ∈ X \S be an arbitrary point, a be the regular line which contains

the point A and AB be the singular line which contains the point A.

If the point A is not collinear with any point from S, then we put

f∗(A) = A. If there is precisely one line c such that A ∈ c and c ∩ S �= ∅,
then we choose A∗ ∈ f(c∩S) arbitrarily and put f∗(A) = A∗. If a∩S �= ∅
and AB ∩ S �= ∅, then let a′ be a line which contains f(a ∩ S). If f(B) /∈
a′ then let f∗(A) be some element of N ′

a′(f(B)). If f(B) ∈ a′ then we

put f∗(A) = f(B). It is easy to verify that these extensions are local

homomorphisms, proving that f extends to a homomorphism of X , since

X is finite. �

.3.2. Full 2-stripes

Recall that a 2-stripe is full if it has no singular points.

Proposition 3.3. Let (X ,L) be a homomorphism-homogeneous k-stripe

and let a and b be two regular lines such that the pair (a, b) induces a full

2-stripe. Then ({Nb(A) | A ∈ a},⊆) is a totally ordered set (Fig. 3).

Proof. We first prove that for every point X there exists a point X ′ �=
X on the same regular line such that N (X) ∩ N (X ′) �= ∅. If |N (X)| = 1

then it is obvious, because the point X is not a singular point. So, let us

assume that |N (X)| ≥ 2 and C �= D ∈ N (X). Moreover, let A and B be

two distinct points on the same regular line as X. Suppose to the contrary

that for every point X ′ �= X lying on the regular line containing X we have

N (X) ∩ N (X ′) = ∅. Let H ∈ b \ N (X). Such a point exists otherwise
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two distinct points on the same regular line as X. Suppose to the contrary

that for every point X ′ �= X lying on the regular line containing X we have
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N (X) ∩ N (X ′) �= ∅ is trivially satisfied since X ′ is not singular. Thus the

map

f :

(
A B C D

A B C H

)

is a local homomorphism since the point D is not collinear with the points

A and B by our assumption and the points C and H are collinear. By

Lemma 2.1 f extends to a local homomorphism f∗ defined also on X. Since

f(A) = A and f(B) = B we have that f∗(X) is on the same regular line as

A, B and X and since X ∼ C, X ∼ D, we have f∗(X) ∼ C, f∗(X) ∼ H.

Then f∗(X) cannot be X since f∗(X) ∼ H. In this case C is a common

point of N (X) and N (f∗(X)), a contradiction.

Let A1 ∈ a be a point such that |Nb(A1)| ≥ 2 and B1 �= B2 ∈ Nb(A1).

We claim that for every pointA2 ∈ a we haveNb(A1)∩Nb(A2) �= ∅. Suppose
the opposite, i.e. there exists a point A2 ∈ a such thatNb(A1)∩Nb(A2) = ∅.
From the previous observation we know that there exist points A3 ∈ a and

B3 ∈ b such that A3 ∼ B3 and A2 ∼ B3 (Fig. 2). Thus the map

f :

(
B1 B2 A2 A3

B1 B2 A2 A1

)

is a local homomorphism. By Lemma 2.1 f extends to a local homomor-

phism f∗ defined also on B3. Since B3 ∈ b we have f∗(B3) ∈ b and because

of B3 ∼ A2 and B3 ∼ A3, we have f∗(B3) ∼ A2 and f∗(B3) ∼ A1. So,

f∗(B3) is a point on the line b which is collinear with points A1 and A2,

which is impossible.

Hence, for every X,X ′ ∈ X such that |Nb(X)| ≥ 2 and |Nb(X
′)| = 1 we

have Nb(X
′) ⊆ Nb(X).

Figure 2: Illustration of the first part of the proof of Proposition 3.3.
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Now, let A1, A2 ∈ a be two distinct points such that |Nb(A1)| ≥ 2,

|Nb(A2)| ≥ 2 and Nb(A1) � Nb(A2) and Nb(A2) � Nb(A1). We know

that Nb(A1)∩Nb(A2) �= ∅. Let B1 and B2 be two distinct points such that

B1 ∈ Nb(A1)\Nb(A2), B2 ∈ Nb(A2)\Nb(A1) and let B3 ∈ Nb(A1)∩Nb(A2).

Then the map

f :

(
B1 B2 A1 A2

A2 B2 A1 B1

)

is a local homomorphism. By Lemma 2.1 f extends to a local homomor-

phism f∗ defined also on B3. Since B3 ∈ b thus its image f∗(B3) lies

on the singular line A2B2. Further we have B3 ∼ A1 and B3 ∼ A2 so

f∗(B3) ∼ A1 and f∗(B3) ∼ B1. Thus f∗(B3) is a point on the line A2B2

which is collinear with points A1 and B1, a contradiction.

Now, in order to finish the proof let A1, A2 ∈ a and B1, B2 ∈ b be points

such that Nb(A1) = {B1} and Nb(A2) = {B2}. Since B1 and B2 are not

singular points, we have that |Nb(B1)| ≥ 2 and |Nb(B2)| ≥ 2. We have

already seen that Na(B1) ⊆ Na(B2) or Na(B2) ⊆ Na(B1). Without loss of

generality we may assume Na(B1) ⊆ Na(B2). Since A1 ∈ Na(B1) it must

be the case that A1 ∈ Na(B2) and we have |Nb(A1)| = |Nb(A2)| = 1, so

B1 = B2. �

Remark 3.4. If (X ,L) is full, then the maximal element of the total

order ({Nb(A) | A ∈ a},⊆) is equal to b. Moreover, it is easy to show that

in every finite full stripe such that ({Nb(A) | A ∈ a},⊆) is a total order,

also ({Na(B) | B ∈ b},⊆) has to be totally ordered.

Proposition 3.5. A full 2-stripe (X ,L) with two regular lines a, b is

homomorphism-homogeneous if and only if ({Nb(A) | A ∈ a},⊆) is a totally

ordered set (Fig. 3).

Figure 3: ({Nb(A) | A ∈ a},⊆) is a totally ordered set.
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Proof. It follows from Proposition 3.3 and Remark 3.4 that ({Nb(A) |
A ∈ a},⊆) and ({Na(B) | B ∈ b},⊆) are totally ordered sets.

For the other direction let A ∈ a be a point such that Nb(A) = b and

B ∈ b be a point such that Na(B) = a. Such points A and B exist by the

condition since the point-line geometry is finite. Let f : S → X be a partial

homomorphism of (X ,L) for some S � X and let X ∈ X \S. By symmetry

we may assume X ∈ a.

If A ∈ S, then let f∗(X) = f(A). As A was originally connected to

every point of b singular lines containing A are preserved by f∗. Also,

f∗((a ∩ S) ∪ {X}) = f(a ∩ S). Thus we have that regular line is taken to

line as well by f∗.

If A /∈ S and if f(a∩S) ⊆ a or f(a∩S) ⊆ b, then define f∗(X) = A or B,

respectively. The map f∗ defined this way is obviously a homomorphism.

If f(a ∩ S) = CD for some singular line CD, where C ∈ a and D ∈ b,

then one of the points C or D is collinear with all points from the set

f(Nb(X)). If |f(Nb(X))| ≤ 1, then it is obvious while if |f(Nb(X))| ≥ 2,

then f(Nb(X)) is contained in a line l. If l is a regular line, then it is also

obvious. If l is a singular line EF , where E ∈ a and F ∈ b, then C ∼ F or

E ∼ D unless D ∈ Nb(C)\Nb(E) and F ∈ Nb(E)\Nb(C). However in this

case Nb(C) and Nb(E) would be incomparible contradicting the assumption

that ({Nb(A)|A ∈ a},⊆) is a totally ordered set. We put f∗(X) = C or

f∗(X) = D depending on that which point of C or D is collinear with all

points from the set f(Nb(X)). Also, the map f∗ is a homomorphism since

the regular line a is taken to a line by f∗. �

.3.3. Mixed 2-stripes

Now we will consider mixed 2-stripes which are stripes that contain both

singular and nonsingular points.

Lemma 3.6. If a k-stripe (X ,L) is homomorphism-homogeneous, then

the mixed 2-stripe induced by the pair of regular lines cannot have two

singular points on the same regular line.

Proof. Assume on the contrary that there are two singular points P1

and P2 on the same regular line. Let a and b be two regular lines which

induce the mixed 2-stripe. There exists a point A1 ∈ a ∪ b such that
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|N (A1)| ≥ 2. Without loss of generality assume A1 ∈ a. Let B1 �= B2 ∈ b

such that B1 ∼ A1 and B2 ∼ A1. We distinguish two cases:

1. One of the singularities is of the first type. Let it be P2.

If P1, P2 ∈ a (Fig. 4), then the map f :

(
P1 P2 B1

B1 B2 P2

)
is a ho-

momorphism which cannot be extended to the point A1 because

the point f∗(A1) has to be on the line b collinear with the point

P2 which is impossible. Otherwise let P1, P2 ∈ b (Fig. 5) and let

g :

(
P1 P2 A1

A1 A2 P2

)
, where A1 �= A2 ∈ a is an arbitrary point.

Then g is a homomorphism which cannot be extended to the point

B1 because the point f∗(B1) has to be on the line a collinear with

the point P2 which is impossible.

Figure 4: When P1, P2 ∈ a

Figure 5: When P1, P2 ∈ b

2. The 2-stripe has two singularities (P1, Q1) and (P2, Q2) of the second

type (Fig. 6). Then the map f :

(
P1 P2 B1 B2

P1 P2 B1 Q1

)
is clearly
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homomorphism of (X ,L) for some S � X and let X ∈ X \S. By symmetry

we may assume X ∈ a.

If A ∈ S, then let f∗(X) = f(A). As A was originally connected to

every point of b singular lines containing A are preserved by f∗. Also,

f∗((a ∩ S) ∪ {X}) = f(a ∩ S). Thus we have that regular line is taken to

line as well by f∗.

If A /∈ S and if f(a∩S) ⊆ a or f(a∩S) ⊆ b, then define f∗(X) = A or B,

respectively. The map f∗ defined this way is obviously a homomorphism.

If f(a ∩ S) = CD for some singular line CD, where C ∈ a and D ∈ b,

then one of the points C or D is collinear with all points from the set

f(Nb(X)). If |f(Nb(X))| ≤ 1, then it is obvious while if |f(Nb(X))| ≥ 2,

then f(Nb(X)) is contained in a line l. If l is a regular line, then it is also

obvious. If l is a singular line EF , where E ∈ a and F ∈ b, then C ∼ F or

E ∼ D unless D ∈ Nb(C)\Nb(E) and F ∈ Nb(E)\Nb(C). However in this

case Nb(C) and Nb(E) would be incomparible contradicting the assumption

that ({Nb(A)|A ∈ a},⊆) is a totally ordered set. We put f∗(X) = C or

f∗(X) = D depending on that which point of C or D is collinear with all

points from the set f(Nb(X)). Also, the map f∗ is a homomorphism since

the regular line a is taken to a line by f∗. �

.3.3. Mixed 2-stripes

Now we will consider mixed 2-stripes which are stripes that contain both

singular and nonsingular points.

Lemma 3.6. If a k-stripe (X ,L) is homomorphism-homogeneous, then

the mixed 2-stripe induced by the pair of regular lines cannot have two

singular points on the same regular line.

Proof. Assume on the contrary that there are two singular points P1

and P2 on the same regular line. Let a and b be two regular lines which

induce the mixed 2-stripe. There exists a point A1 ∈ a ∪ b such that
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|N (A1)| ≥ 2. Without loss of generality assume A1 ∈ a. Let B1 �= B2 ∈ b

such that B1 ∼ A1 and B2 ∼ A1. We distinguish two cases:

1. One of the singularities is of the first type. Let it be P2.

If P1, P2 ∈ a (Fig. 4), then the map f :

(
P1 P2 B1

B1 B2 P2

)
is a ho-

momorphism which cannot be extended to the point A1 because

the point f∗(A1) has to be on the line b collinear with the point

P2 which is impossible. Otherwise let P1, P2 ∈ b (Fig. 5) and let

g :

(
P1 P2 A1

A1 A2 P2

)
, where A1 �= A2 ∈ a is an arbitrary point.

Then g is a homomorphism which cannot be extended to the point

B1 because the point f∗(B1) has to be on the line a collinear with

the point P2 which is impossible.

Figure 4: When P1, P2 ∈ a

Figure 5: When P1, P2 ∈ b

2. The 2-stripe has two singularities (P1, Q1) and (P2, Q2) of the second

type (Fig. 6). Then the map f :

(
P1 P2 B1 B2

P1 P2 B1 Q1

)
is clearly
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a local homomorphism. It cannot be extended to the point A1 since

its image should be on the line a collinear with the points B1 and Q1,

which is impossible.

Figure 6: Illustration of the second part of the proof of Lemma 3.6.

�

Lemma 3.7. If a 2-stripe (X ,L) is a homomorphism-homogeneous

mixed 2-stripe, then it has just one singularity either of the first type or

of the second type.

Proof. Lemma 3.6 shows that (X ,L) can have at most two singularities

of the first type on different regular lines.

Suppose that the mixed 2-stripe has two singularities of the first type

P1 ∈ a and P2 ∈ b, where a and b are the regular lines of the 2-stripe. We

may assume that there is a point A1 ∈ a such that |Nb(A1)| ≥ 2 and let

B1, B2 ∈ Nb(A1). Then the map f :

(
P1 B2

P1 P2

)
is a homomorphism since

there is no line containing P1 and B2. Then f cannot be extended to the

point A1 since f(A1) should be collinear with the points f(P1) = P1 and

f(B2) = P2 lying on the regular line a or b which is impossible. �

Lemma 3.8. Let (X ,L) be a homomorphism-homogeneous k-stripe with

a, b ∈ L two regular lines spanning a mixed 2-stripe. Then any two nonsin-

gular points of a and b are connected by a line.

Proof. Let P be a singular point of a. Assuming on the contrary that

there are nonsingular points A2 and B1 which are not connected by any

line. Then we may assume A2 ∈ a and B1 ∈ b such that B1 � A2. On the
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regular line a we have at least three points and the point B1 is a nonsingular

point. Thus there exists a point A1 ∈ a such that A1 ∼ B1. We distinguish

two cases.

If P is a singularity of the first type, then the map f :

(
A2 P B1

B1 B2 P

)

is a homomorphism, but cannot be extended to the point A1, where B2 ∈ b

is an arbitrary point different from B1.

Otherwise there is a singularity of the second type (P,Q), where Q ∈ b.

Now, if |Nb(A1)| ≥ 2, let B2 ∈ b such that A1 ∼ B2. Then the map

f :

(
A2 P B1 B2

B2 B1 P A2

)
is a homomorphism, but cannot be extended to

the point A1, because the point f∗(A1) has to be on the line b collinear

with the points P and A2 which is impossible. If |Nb(A1)| = 1, then

|Na(B1)| ≥ 2. Let A3 ∼ B1, A3 �= A1 and B2 ∈ b, B2 �= Q. Then the map

f :

(
B2 Q A1 A3

P Q B1 A3

)
is a homomorphism, but cannot be extended to

the point B1, because the point f∗(B1) has to be on the line PQ collinear

with the points B1 and A3 which is impossible. �

Proposition 3.9. Let (X ,L) be a mixed 2-stripe which has a singularity

P ∈ a of the first type and for all A,B ∈ (a∪ b)\{P} we have A ∼ B (Fig.

7). Then (X ,L) is homomorphism-homogeneous.

Figure 7: Illustration of Proposition 3.9.

Proof. Let f : S → X be a local homomorphism for some S � X and

let X ∈ X \ S.
If a ∩ S = ∅ or b ∩ S = ∅, then pick any A ∈ S and let f∗(X) = f(A).

This f∗ clearly maps lines to lines.
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a local homomorphism. It cannot be extended to the point A1 since

its image should be on the line a collinear with the points B1 and Q1,

which is impossible.

Figure 6: Illustration of the second part of the proof of Lemma 3.6.
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regular line a we have at least three points and the point B1 is a nonsingular

point. Thus there exists a point A1 ∈ a such that A1 ∼ B1. We distinguish

two cases.

If P is a singularity of the first type, then the map f :

(
A2 P B1

B1 B2 P

)

is a homomorphism, but cannot be extended to the point A1, where B2 ∈ b

is an arbitrary point different from B1.

Otherwise there is a singularity of the second type (P,Q), where Q ∈ b.

Now, if |Nb(A1)| ≥ 2, let B2 ∈ b such that A1 ∼ B2. Then the map

f :

(
A2 P B1 B2

B2 B1 P A2

)
is a homomorphism, but cannot be extended to

the point A1, because the point f∗(A1) has to be on the line b collinear

with the points P and A2 which is impossible. If |Nb(A1)| = 1, then

|Na(B1)| ≥ 2. Let A3 ∼ B1, A3 �= A1 and B2 ∈ b, B2 �= Q. Then the map

f :

(
B2 Q A1 A3

P Q B1 A3

)
is a homomorphism, but cannot be extended to

the point B1, because the point f∗(B1) has to be on the line PQ collinear

with the points B1 and A3 which is impossible. �

Proposition 3.9. Let (X ,L) be a mixed 2-stripe which has a singularity

P ∈ a of the first type and for all A,B ∈ (a∪ b)\{P} we have A ∼ B (Fig.

7). Then (X ,L) is homomorphism-homogeneous.

Figure 7: Illustration of Proposition 3.9.

Proof. Let f : S → X be a local homomorphism for some S � X and

let X ∈ X \ S.
If a ∩ S = ∅ or b ∩ S = ∅, then pick any A ∈ S and let f∗(X) = f(A).

This f∗ clearly maps lines to lines.
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Now, suppose that a∩S �= ∅ and b∩S �= ∅. If X ∈ b pick some B ∈ b∩S
and let f∗(X) = f(B). If X ∈ a and there is an A ∈ (a∩S)\{P}, then put

f∗(X) = f(A). If X ∈ a and (a∩S)\{P} = ∅, then f(P ) is defined. If f(A)

is not defined for any other A ∈ a then let f∗(X) = X. This extension f∗

is clearly a homomorphism because the point X is collinear with all points

including f(P ). �

Proposition 3.10. Let (X ,L) be a mixed 2-stripe which has a singu-

larity (P,Q) of the second type and A ∼ B for all A,B ∈ (a ∪ b) \ {P,Q}
(Fig. 8). Then (X ,L) is homomorphism-homogeneous.

Figure 8: Illustration of Proposition 3.10.

Proof. Let f : S → X be a local homomorphism for some S � X and

let X ∈ X \ S. Without loss of generality suppose that X ∈ a.

If a ∩ S = ∅ or b ∩ S = ∅, then pick any A ∈ S and let f∗(X) = f(A).

This f∗ clearly is a local homomorphism extending f to X.

Now, suppose that a ∩ S �= ∅ and b ∩ S �= ∅. If Q /∈ S, then a similar

argument applies as in Proposition 3.9. If Q ∈ S, then if X = P , we put

f∗(P ) = P ′, where P ′ ∈ N ′
a′(f(Q)) and f(a ∩ S) ⊆ a′ for some line a′.

Else, if P /∈ S or |a ∩ (S \ {P})| ≥ 1, pick some A ∈ (a ∩ S) \ {P} and

let f∗(X) = f(A), otherwise P ∈ S and |a ∩ (S \ {P})| < 1, i.e. the point

P is the only point from the set a ∩ S which is mapped by f . Then we

put f∗(X) = f(Q). Obviously, f∗ is a homomorphism because f∗(X) is

collinear with all points of the line b including f(P ). �

.3.4. Characterisation of 2-stripes

In this subsection we will show the result in final form.
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Theorem 3.11. Let (X ,L) be a 2-stripe induced by the pair (a, b),

where a, b ∈ L are regular lines. It is homomorphism-homogeneous if and

only if it is contained in one of the following classes (Fig. 9):

1. |N (X)| = 0 for all X ∈ X ,

2. |N (X)| = 1 for all X ∈ X ,

3. (X ,L) is a full 2-stripe and ({Nb(A) | A ∈ a},⊆) is a totally ordered

set.

4. (X ,L) is a mixed 2-stripe with only one singularity of the first or of

the second type and any other two points are connected by a line.

Proof. Propositions 3.2 and 3.5 handle thin and full 2-stripes which

correspond to the first three cases. The possible structures of mixed 2-

stripes are given in Lemmas 3.7 and 3.8 and the description coincide with

the case 4. Propositions 3.9 and 3.10 handle the other direction for mixed

2-stripes. �

Figure 9: Illustration of Theorem 3.11.
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