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CONTINUOUS REDUCIBILITY:

FUNCTIONS VERSUS RELATIONS

A b s t r a c t. It is proved that the Tang-Pequignot reducibil-

ity (or reducibility by relatively continuous relations) on a second

countable, T0 space X either coincides with the Wadge reducibil-

ity for the given topology, or there is no topology on X that can

turn it into Wadge reducibility.

.1 Introduction and basic definitions

For X a topological space, denote by ≤X
W the Wadge reducibility, or re-

ducibility by continuous functions, on P(X), the powerset of X. It is the

preorder defined by letting A ≤X
W B if there exists a continuous function

f : X → X such that A = f−1(B). Let ≡X
W be the associated equivalence

relation, whose equivalence classes are the Wadge degrees. The relation

≤X
W induces a preorder, still denoted ≤X

W , on the Wadge degrees.
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Wadge reducibility and several variations of it have been extensively

considered in the literature. This paper focuses on a notion of reducibility

introduced by Tang in [8] for the Scott domain and recently generalised by

Pequignot in [5] to any second countable, T0 space X: for this reason in

this paper I denote it by �X
TP and call it Tang-Pequignot reducibility ; the

associated equivalence relation is denoted �X
TP .

Notice that ≤X
W ,�X

TP really mean ≤T
W ,�T

TP , respectively, where T is

the topology of X. When several topologies are being considered on X, the

latter notation will be preferred. Similarly for the associated equivalence

relations.

In [5], the preorder �X
TP is called reducibility by relatively continuous

relations, since it can be defined and motivated by introducing the concept

of a relatively continuous, everywhere defined relation on the space X. As

every continuous function is a relatively continuous relation ([5, Theorem

2]), one has that A ≤X
W B implies A �X

TP B, that is ≤X
W⊆�X

TP .

However, for practical purpose, �X
TP can be defined as follows, without

explicit mention to relations on X. Let X be a second countable, T0 space.

Recall from [10] that an admissible representation of X is a continuous

function ρ : Y ⊆ NN→X such that for every continuous σ :Z ⊆NN→X there

is a continuous h : Z→Y such that σ = ρh. Then (see [5, Lemma 3]) given

A,B ∈ P(X), let A �X
TP B if for some (or any) admissible representation

ρ : Y ⊆ NN → X the relation ρ−1(A) ≤Y
W ρ−1(B) holds.

In [3], Duparc and Fournier prove that the conciliatory preorder ≤c

(a hierarchy on subsets of N≤ω introduced in [2] by a purely game theoretic

definition) coincides with �T
TP , where T is the prefix topology on N≤ω, and

raise the question ([3, Question 1]) of whether there exists a topology τ on

N≤ω such that ≤c=≤τ
W .

This suggests the following more general problem: given a second count-

able, T0 space (X, T ), when does there exist a topology τ on X such that

≤τ
W=�T

TP ? Section 2 addresses this question, proving that there is a posi-

tive answer if and only if one already has ≤X
W=�X

TP (for the original topol-

ogy T ). In fact, the main result (Theorem 2.4) shows that there are three

possibilities:

(0) There is no topology τ whatsoever on X such that ≤τ
W=�T

TP .

(1) There is a unique topology τ on X such that ≤τ
W=�T

TP , namely

τ = T .
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(2) There are exactly two topologies τ on X such that ≤τ
W=�T

TP . In this

case, X must have more than one point and T must be an Alexandrov

topology, that is a topology where arbitrary intersections of open sets

are open. Moreover:

• if T is the discrete topology, then case (2) occurs and the two

topologies τ satisfying the equality are T and the trivial topol-

ogy;

• if T is not discrete and case (2) occurs, then the two topologies

τ satisfying the equality are T and Π0
1(T ), where Π0

1(T ) is the

closed family of T — see below.

Theorem 2.4 suggests the question of what are the second countable, T0

spaces X that satisfy the equality ≤X
W=�X

TP . Section 3 settles the problem

for Hausdorff spaces, showing in Theorem 3.4 that if X is second countable

and Hausdorff, then ≤X
W=�X

TP if and only if X is zero-dimensional (such

spaces are necessarily metrisable).

For spaces that are not Hausdorff, a satisfactory characterisation is still

lacking, but partial information is provided in Section 4. In particular,

a negative answer to the motivating question [3, Question 1] is given in

Corollary 4.4.

In this paper, I stick to the classical topological and descriptive set

theoretic notation. Notice that this does not coincide with the notation

used in some papers like [7] or [5], as in such articles Σ0
2 sets and Π0

2 sets

are defined differently.

A subset A of a set X is proper if A �= X; this is denoted A ⊂ X. If A is

a subset of a topological space X, the frontier of A in X is denoted FrX(A):

this is the set of points that belong to the closure of A but not to its interior.

The set A is self-dual if A ≤X
W X \A, or equivalently A ≡X

W X \A; as this
concept is invariant under ≡X

W , the terminology extends to Wadge degrees.

A set I is countable if card(I) = ℵ0; it is at most countable if card(I) ≤ ℵ0.

For X a topological space, let Σ0
1(X) be the family of open subsets of

X. Denote Π0
1(X) the family of closed subsets of X; by Σ0

2(X) the family

of Fσ subsets of X, that is unions of at most countably many closed sets;

by Π0
2(X) the family of Gδ subsets of X, that is intersections of at most

countably many open sets. If Γ is a class of subsets of topological spaces,

let Γ̌ be the dual class of Γ, that is the collection of all complements of
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elements of Γ; let also ∆(Γ) be the collection of sets that are both in Γ

and in Γ̌: particular cases are ∆0
1(X) = Σ0

1(X)∩Π0
1(X) = ∆(Σ0

1)(X), the

family of clopen subsets of X, and ∆0
2(X) = Σ0

2(X)∩Π0
2(X) = ∆(Σ0

2)(X).

Finally, for α an ordinal, let Dα(Γ) be the family of all α-differences of

members of Γ (see for instance [4, §22.E]).
I wish to thank Yann Pequignot for several helpful discussions on the

subject of this paper and for his detailed criticism on an earlier draft of it.

.2 The main theorem

A standard tool for the study of the Wadge hierarchy on the Baire space is

the Wadge game, which was introduced in Wadge’s thesis [9].

If X is a subspace of NN, for A,B ∈ P(X) consider the following game

GX
W (A,B), which is an adaptation of the Wadge game on the Baire space.

The rules are the same: players I and II alternate moves, playing a natural

number at each of their turns; player II is allowed to skip. Let x ∈ NN, y ∈
N≤ω be the sequences played by player I and II, respectively, in a run of

the game; then player II wins if and only if one the following conditions is

satisfied:

• x /∈ X; or

• x ∈ A, y ∈ B; or

• x ∈ X \A, y ∈ X \B.

Player II has a winning strategy in GX
W (A,B) if and only if there exists

a continuous function f : X → X such that A = f−1(B). Notice that if

X,A,B are Borel subsets of NN, then the game GX
W (A,B) is determined;

this implies that either A ≤X
W B or X \ B ≤X

W A, in other words, the

semi-linear ordering principle for Borel subsets of X holds.

The following lemma describes a small initial segment of the Wadge

hierarchy, for general topological spaces and for subspaces of NN. Parts (1)

through (3) are used in the proof of the main theorem, parts (4) and (5)

are needed later.
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Lemma 2.1. Let X be any topological space. Then:

(1) ∅, X are the two bottom elements with respect to ≤X
W , and they precede

all other elements of P(X):

∀A ∈ P(X) \ {∅, X} (∅ ≤X
W A ∧X ≤X

W A).

(2) If ∆0
1(X) \ {∅, X} �= ∅, then ∆0

1(X) \ {∅, X} is a Wadge degree and

precedes under ≤X
W every Wadge degree different from {∅}, {X}:

∀A ∈ ∆0
1(X) ∀B ∈ P(X) \ {∅, X} A ≤X

W B.

Assume now X ⊆ NN. Then:

(3) If X is not discrete then Σ0
1(X) \ ∆0

1(X),Π0
1(X) \ ∆0

1(X) are non-

self-dual Wadge degrees, and precede every Wadge degree not included

in Π0
1(X),Σ0

1(X), respectively:

∀A ∈ Σ0
1(X) ∀B ∈ P(X) \Π0

1(X) A ≤X
W B,

∀A ∈ Π0
1(X) ∀B ∈ P(X) \Σ0

1(X) A ≤X
W B.

(4) P(X) �= Σ0
1(X)∪Π0

1(X) if and only if X has at least two limit points.

In this case ∆(D2(Σ
0
1))(X) \ (Σ0

1(X) ∪Π0
1(X)) is a self-dual Wadge

degree and precedes under ≤X
W every Wadge degree not included in

Σ0
1(X) ∪Π0

1(X):

∀A ∈ ∆(D2(Σ
0
1))(X) ∀B ∈ P(X) \ (Σ0

1(X) ∪Π0
1(X)) A ≤X

W B.

(5) P(X) �= ∆(D2(Σ
0
1))(X) if and only if the set of limit points of X is

not discrete. In this case, D2(Σ
0
1)(X) \∆(D2(Σ

0
1))(X), Ď2(Σ

0
1)(X) \

∆(D2(Σ
0
1))(X) are non-self-dual Wadge degrees, and precede every

Wadge degree not included in Ď2(Σ
0
1)(X), D2(Σ

0
1)(X), respectively:

∀A ∈ D2(Σ
0
1)(X) ∀B ∈ P(X) \ Ď2(Σ

0
1)(X) A ≤X

W B,

∀A ∈ Ď2(Σ
0
1)(X) ∀B ∈ P(X) \D2(Σ

0
1)(X) A ≤X

W B.

Proof. (1) If A ∈ P(X) \ {∅}, any constant function with value in A

reduces X to A and ∅ to X \A. Similarly, if A ∈ P(X)\{X}, any constant

function with value in X \A reduces ∅ to A and X to X \A.
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(2) If A ∈ ∆0
1(X), B ∈ P(X) \ {∅, X}, then any two-value function

sending all elements of A to a fixed element of B, and all elements of X \A
to a fixed element of X \ B is continuous and reduces A to B. This in

particular shows that all non-empty, proper, clopen subsets of X are ≡X
W -

equivalent, so that ∆0
1(X) \ {∅, X} is indeed a ≡X

W -degree.

(3) Since X is not discrete, there are non-clopen points; as every point

is closed, it follows that Π0
1(X)\∆0

1(X) �= ∅, and then Σ0
1(X)\∆0

1(X) �= ∅
as well. Consequently, it is enough to show that ∀A ∈ Σ0

1(X) ∀B ∈ P(X)\
Π0

1(X) A ≤X
W B. Let S be a subset of N<ω such that A =

⋃
s∈S NX

s ,

where NX
s = {x ∈ X | s ⊆ x}, and pick x ∈ FrX(B) \ B. The following

is a winning strategy for II in GX
W (A,B): as long as I ’s does not extend

any element of S, player II enumerates x; if at some moment I ’s position

extends an element of S, then player II continues until the end of the game

by enumerating a fixed element of B extending his current position.

(4) If X is discrete, then P(X) = ∆0
1(X). If X has one limit point, say

x, then every set containing x is closed and every set not containing x is

open. So assume that x, y are distinct limit points of X. Let U ∈ ∆0
1(NN)

be such that U ∩ {x, y} = {x}. Then

((U ∩X) \ {x}) ∪ {y} = (X \ {x}) ∩ (U ∪ {y}) ∈
∈ ∆(D2(Σ

0
1))(X) \ (Σ0

1(X) ∪Π0
1(X)) �= ∅.

Let A ∈ ∆(D2(Σ
0
1))(X), B ∈ P(X) \ (Σ0

1(X) ∪ Π0
1(X)), so that there

are pruned trees T0, T1, S0, S1 on N such that

[T0] ⊆ [T1],

[S0] ⊆ [S1],

A = ([T1] \ [T0]) ∩X,

X \A = ([S1] \ [S0]) ∩X.

Moreover, there are points b ∈ FrX(B) ∩B, b′ ∈ FrX(B) \B.

The following describes a winning strategy for II in GX
W (A,B). Player

II first enumerates b ∩ b′. Then he skips his turn as long as I ’s position

stays in T0 ∩ S0. If player I never leaves T0 ∩ S0, then at the end of the

game he will have produced a sequence x /∈ X, so that II wins this run.

If player I reaches a position s /∈ T0 ∩ S0, there are various cases to

consider.

CONTINUOUS REDUCIBILITY: FUNCTIONS VERSUS RELATIONS 51

(i) s ∈ T1 \ T0. Then player II continues the enumeration of b, as long

as I ’s position remains in T1.

• If player I never leaves T1, at the end of the game either his run

is outside X, or belongs to A. In both cases player II wins, as

b ∈ B.

• If player I reaches a position in N<ω \T1, then II plays until the

end of the game by enumerating an element in X \ B; this can

be done, as b ∈ FrX(B). Since the final sequence produced by I

is not in A, player II wins.

(ii) Case (i) does not apply, and s ∈ S1 \ S0. Then player II continues

the enumeration of b′, as long as I ’s position remains in S1.

• If player I never leaves S1, his final run is outside A, so II wins

as b′ /∈ B.

• If player I reaches a position in N<ω \ S1, then II continues by

producing at the end of the game an element in B. This can be

done, as b′ ∈ FrX(B). Since the final sequence produced by I is

either outside X or in A, player II wins.

(iii) Case (ii) does not apply, and s /∈ T1 (so case (i) does not apply

either). Then player II continues with the enumeration of b′ and

wins the game, since the final sequence produced by I is not in A.

(iv) Cases (i) and (iii) do not apply, and s /∈ S1 (so case (ii) does not apply

either). Then II plays by continuing the enumeration of b. Since the

final sequence produced by I is either outside X or in A, player II

wins.

(5) LetD be the set of limit points ofX. Assume first thatD is discrete.

It can be assumed that D �= ∅, otherwise X is discrete. Since every subset

of D is closed in X and every subset of X \D is open in X, it follows that

P(X) = ∆(D2(Σ
0
1))(X).

Assume now that D has a limit point a, and fix a sequence an of distinct

points of D\{a} converging to a. For every n ∈ N, let Dn be an open neigh-

bourhood of an such that n �= n′ ⇒ Dn∩Dn′ = ∅ and limn→∞ diam(Dn) =

0. Let F = {a} ∪
⋃

n∈N(Dn \ {an}). Then F is the union of the open set⋃
n∈N(Dn \ {an}) and the closed set {a}, so F ∈ Ď2(Σ

0
1)(X). However, F
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(2) If A ∈ ∆0
1(X), B ∈ P(X) \ {∅, X}, then any two-value function

sending all elements of A to a fixed element of B, and all elements of X \A
to a fixed element of X \ B is continuous and reduces A to B. This in

particular shows that all non-empty, proper, clopen subsets of X are ≡X
W -

equivalent, so that ∆0
1(X) \ {∅, X} is indeed a ≡X

W -degree.

(3) Since X is not discrete, there are non-clopen points; as every point

is closed, it follows that Π0
1(X)\∆0

1(X) �= ∅, and then Σ0
1(X)\∆0

1(X) �= ∅
as well. Consequently, it is enough to show that ∀A ∈ Σ0

1(X) ∀B ∈ P(X)\
Π0

1(X) A ≤X
W B. Let S be a subset of N<ω such that A =

⋃
s∈S NX

s ,

where NX
s = {x ∈ X | s ⊆ x}, and pick x ∈ FrX(B) \ B. The following

is a winning strategy for II in GX
W (A,B): as long as I ’s does not extend

any element of S, player II enumerates x; if at some moment I ’s position

extends an element of S, then player II continues until the end of the game

by enumerating a fixed element of B extending his current position.

(4) If X is discrete, then P(X) = ∆0
1(X). If X has one limit point, say

x, then every set containing x is closed and every set not containing x is

open. So assume that x, y are distinct limit points of X. Let U ∈ ∆0
1(NN)

be such that U ∩ {x, y} = {x}. Then

((U ∩X) \ {x}) ∪ {y} = (X \ {x}) ∩ (U ∪ {y}) ∈
∈ ∆(D2(Σ

0
1))(X) \ (Σ0

1(X) ∪Π0
1(X)) �= ∅.

Let A ∈ ∆(D2(Σ
0
1))(X), B ∈ P(X) \ (Σ0

1(X) ∪ Π0
1(X)), so that there

are pruned trees T0, T1, S0, S1 on N such that

[T0] ⊆ [T1],

[S0] ⊆ [S1],

A = ([T1] \ [T0]) ∩X,

X \A = ([S1] \ [S0]) ∩X.

Moreover, there are points b ∈ FrX(B) ∩B, b′ ∈ FrX(B) \B.

The following describes a winning strategy for II in GX
W (A,B). Player

II first enumerates b ∩ b′. Then he skips his turn as long as I ’s position

stays in T0 ∩ S0. If player I never leaves T0 ∩ S0, then at the end of the

game he will have produced a sequence x /∈ X, so that II wins this run.

If player I reaches a position s /∈ T0 ∩ S0, there are various cases to

consider.
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(i) s ∈ T1 \ T0. Then player II continues the enumeration of b, as long

as I ’s position remains in T1.

• If player I never leaves T1, at the end of the game either his run

is outside X, or belongs to A. In both cases player II wins, as

b ∈ B.

• If player I reaches a position in N<ω \T1, then II plays until the

end of the game by enumerating an element in X \ B; this can

be done, as b ∈ FrX(B). Since the final sequence produced by I

is not in A, player II wins.

(ii) Case (i) does not apply, and s ∈ S1 \ S0. Then player II continues

the enumeration of b′, as long as I ’s position remains in S1.

• If player I never leaves S1, his final run is outside A, so II wins

as b′ /∈ B.

• If player I reaches a position in N<ω \ S1, then II continues by

producing at the end of the game an element in B. This can be

done, as b′ ∈ FrX(B). Since the final sequence produced by I is

either outside X or in A, player II wins.

(iii) Case (ii) does not apply, and s /∈ T1 (so case (i) does not apply

either). Then player II continues with the enumeration of b′ and

wins the game, since the final sequence produced by I is not in A.

(iv) Cases (i) and (iii) do not apply, and s /∈ S1 (so case (ii) does not apply

either). Then II plays by continuing the enumeration of b. Since the

final sequence produced by I is either outside X or in A, player II

wins.

(5) LetD be the set of limit points ofX. Assume first thatD is discrete.

It can be assumed that D �= ∅, otherwise X is discrete. Since every subset

of D is closed in X and every subset of X \D is open in X, it follows that

P(X) = ∆(D2(Σ
0
1))(X).

Assume now that D has a limit point a, and fix a sequence an of distinct

points of D\{a} converging to a. For every n ∈ N, let Dn be an open neigh-

bourhood of an such that n �= n′ ⇒ Dn∩Dn′ = ∅ and limn→∞ diam(Dn) =

0. Let F = {a} ∪
⋃

n∈N(Dn \ {an}). Then F is the union of the open set⋃
n∈N(Dn \ {an}) and the closed set {a}, so F ∈ Ď2(Σ

0
1)(X). However, F
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is not the intersection of an open set with a closed set. Indeed every open

set containing a contains also some Dn, and every closed set containing

Dn\{an} contains an too, but an /∈ F . So Ď2(Σ
0
1)(X)\∆(D2(Σ

0
1))(X) �= ∅,

consequently also D2(Σ
0
1)(X) \∆(D2(Σ

0
1))(X) �= ∅. Notice that it can be

assumed that:

• n < m ⇒ an ∩ a ⊂ am ∩ a

• Dn = NX
sn for some sn ⊆ an

It is enough now to show that

∀A ∈ D2(Σ
0
1)(X) A ≤X

W X \ F (1)

,∀B ∈ P(X) \D2(Σ
0
1)(X) F ≤X

W B. (2)

To prove (1), fix A ∈ D2(Σ
0
1)(X). Let T0, T1 be pruned trees on N such

that

[T0] ⊆ [T1],

A = ([T1] \ [T0]) ∩X.

The following describes a winning strategy for II in GW (A,X \ F ). As

long as I ’s position belongs to T0, player II enumerates a, so that if I

never leaves T0 then II wins since I ’s run is not in A. If at any of his moves

player I reaches a position in T1 \ T0, and as long as he stays there, player

II continues by enumerating some an extending his current position: this

is possible since limn→∞ an = a. Thus if player I goes on by playing in

T1 \ T0 until the end of the game, then II wins as I ’s run will be either

outside X or in A. Finally, if at some point player I plays outside T1,

player II continues until the end of the game by enumerating some element

of Dn \{an} extending his current position; again II wins, as player I ’s run

will not belong to A.

To establish (2), fix B ∈ P(X) \D2(Σ
0
1)(X). Note first the following.

Claim. There exists x ∈ B such that for every n ∈ N there is y ∈ X

with the following properties:

y|n = x|n,
y /∈ B,

y ∈ FrX(B).
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Proof of the claim. Deny. Then for every x ∈ B there exists nx ∈ N
such that any y ∈ X \B with y|nx = x|nx is in the exterior of B: this means

that B ∩NX
nx

is closed in X. Thus

B = B ∩
⋃
x∈B

NX
nx

∈ D2(Σ
0
1)(X),

a contradiction. �

It remains thus to show that player II has a winning strategy in GX
W (F,B).

As long as I enumerates a, player II enumerates an element x as granted

by the claim, so that if I ’s final run is a, then II wins. If at some of his

moves player I stops enumerating a, then II skips until one of the following

situations occurs:

(i) I reaches a position incompatible with all sn. Then II continues by

extending his current position producing at the end of the game an

element of X \ B. This can be done by the claim. Player II wins as

I ’s run does not belong to F .

(ii) I reaches a position sn. Then:

• As long as I ’s positions are initial segments of an, player II

continues by enumerating an element y ∈ FrX(B) \ B, which

can be done by the claim; thus if I ’s final run is an, then II

wins.

• If at some of his moves player I reaches a position incompatible

with an, then II continues until the end of the game with the

enumeration of some element of B; again, II wins, as I ’s run is

either outside X or in F .

�

The structure described in Lemma 2.1 can be visualised in Figure 1.

Although the small initial segment of Wadge hierarchy described in

Lemma 2.1 suffices for the purpose of this paper, the natural question arises

about the structure of the hierarchy on general zero-dimensional, separable,

metrisable spaces (for positive dimensional ones see the strong result of [6,

Theorem 2.14]).
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Figure 1: An initial segment of the Wadge hierarchy on a subspace of NN

(Lemma 2.1).

Conjecture. Let X be a zero-dimensional, separable, metrisable space.

Then the Wadge hierarchy on X is well-behaved with respect to ∆0
2 sets,

in the sense that

∀A,B ∈ ∆0
2(X) (A ≤X

W B ∨ (X \B) ≤X
W A),

∀A ∈ ∆0
2(X) ∀B ∈ P(X) \∆0

2(X) A ≤X
W B.

Moreover, this good behaviour does not extend to Fσ or Gδ sets, in the

sense that there exists a zero-dimensional, separable, metrisable space Y

such that

∃A ∈ Σ0
2(Y ) ∃B ∈ P(Y ) \Π0

2(Y ) A �Y
W B.

Of course, such a conjecture makes sense in ZFC, while its second part

is false under AD.

Lemma 2.2. Let X be a topological space such that Σ0
1(X) = ∆0

1(X).

Then there are two possibilities:

• either X is discrete

• or X is not T0, in which case X has exactly four Wadge degrees:

{∅}, {X},∆0
1(X) \ {∅, X},P(X) \∆0

1(X) (see Figure 2)

In particular, all non-empty, proper subsets of X are self-dual.

Proof. Under the hypothesis, the Boolean algebra ∆0
1(X) is closed

under arbitrary unions and intersections. So X is the disjoint union of

clopen subsets that are atoms in this Boolean algebra: X =
⋃

i∈I Di.

Suppose that X is T0: then for any x ∈ X, if Di is such that x ∈ Di, it

must follow that Di = {x}, which means that X is discrete.
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∅
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1 P(X)

Figure 2: The Wadge hierarchy on a non-discrete space whose open sets

are clopen (Lemma 2.2).

Assume now that X is not T0, so that in particular P(X) �= ∆0
1(X),

and let A ∈ P(X), B ∈ P(X) \∆0
1(X). Since Σ0

1(X) = ∆0
1(X), there exist

no J ⊆ I such that B =
⋃

i∈J Di; consequently there is i ∈ I for which

there exist b ∈ Di ∩B, b′ ∈ Di \B. If f : X → X is defined by letting

f(x) =

{
b if x ∈ A,

b′ if x ∈ X \A,

then f is continuous and witnesses A ≤X
W B. �

The following fact will be used several times.

Lemma 2.3. Let X be a second countable, T0 space, and let ρ : Y ⊆
NN → X be an admissible representation. Then, for every A,B ∈ P(X), 1 ≤
α < ω1:

(1) ρ−1(A) ∈ Dα(Σ
0
1)(Y ) ⇔ A ∈ Dα(Σ

0
1)(X),

(2) if A �X
TP B ∈ Dα(Σ

0
1)(X), then A ∈ Dα(Σ

0
1)(X),

(3) ρ−1(A) ∈ Dα(Π
0
1)(Y ) ⇔ A ∈ Dα(Π

0
1)(X),

(4) if A �X
TP B ∈ Dα(Π

0
1)(X), then A ∈ Dα(Π

0
1)(X).

Proof. Part (1) is an instance of [1, Theorem 68], and part (2) an

instance of [5, Theorem 4].

However, an inspection of the proof as given in [5] shows that the argu-

ment goes through when Σ0
1 is replaced by Π0

1 as well, which gives (3). So,

similarly to [5, Theorem 4], part (4) follows from the definition of �X
TP . �
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Theorem 2.4. Let X = (X, T ) be a second countable, T0 space. Then

there are three possibilities:

(0) there is no topology τ on X such that ≤τ
W=�T

TP ; or

(1) there is a unique topology τ on X such that ≤τ
W=�T

TP , namely τ = T ;

or

(2) there are exactly two topologies τ on X such that ≤τ
W=�T

TP . In this

case, X must have more than one point and T must be an Alexandrov

topology. Moreover:

– if X is not a singleton and T is the discrete topology, then case

(2) occurs and the two topologies τ satisfying the equality are T
and the trivial topology;

– if T is not discrete and case (2) occurs, then the two topologies

τ satisfying the equality are T and Π0
1(T ).

Proof. Suppose τ is a topology on X such that

≤τ
W=�T

TP (3)

in order to show that ≤T
W=�T

TP .

Notice that both the T -open sets and the τ -open sets form an initial

segment of �T
TP : for the T -open sets, see Lemma 2.3(2); for the τ -open

sets, this is just the definition of continuity of a function and equality (3).

Recall from Lemma 2.1(1,2) that {∅}, {X} are the two bottom ≡τ
W -degrees,

which precede every other ≡τ
W -degree, and moreover any clopen set is the

continuous preimage of every set that is not empty nor the entire space (in

particular, proper, non-empty clopen sets are self-dual).

The case when {∅}, {X} are the only ≡τ
W -degrees is equivalent to X

being a singleton; in this situation there is only one topology on X, so that

τ = T . For the rest of the proof it can then be assumed that X has more

than one point.

If there are exactly three ≡τ
W -degrees, say {∅}, {X},D, then all non-

empty, proper subsets of X are pairwise ≡τ
W -equivalent so, as ≡τ

W=�T
TP ,

either none of them is T -open or they are all T -open, again by Lemma

2.3(2). The first alternative does not apply, as T is T0; consequently T is

discrete, and ≤T
W=�T

TP . In this case, the equation ≤τ
W=�T

TP is satisfied
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also if τ is the trivial topology, since all functions X → X are continuous

for the trivial as well as the discrete topology on X. On the other hand, if τ

is not discrete nor trivial, then ≤τ
W �=�T

TP , since given A,B ∈ P(X)\{∅, X}
with A ∈ Σ0

1(τ), B /∈ Σ0
1(τ), then A �≡τ

W B.

Conversely, if T is discrete then �T
TP , which is the same as ≡τ

W , has

at most three equivalence classes. So it can be assumed for the rest of the

proof that there are more than three ≡τ
W -degrees and consequently T , τ

are not discrete.

Fix an admissible representation ρ : Y ⊆ NN → X. Using Lemma

2.3 and the fact that admissible representations are surjective, for all A ∈
P(X),

ρ−1(A) ∈ ∆0
1(Y ) \ {∅, Y } ⇔ A ∈ ∆0

1(T ) \ {∅, X},
ρ−1(A) ∈ Σ0

1(Y ) \∆0
1(Y ) ⇔ A ∈ Σ0

1(T ) \∆0
1(T ).

Since T is T0 and not discrete, by Lemma 2.2 it follows that Σ0
1(T ) \

∆0
1(T ) �= ∅. Consequently, {∅}, {X}, ∆0

1(T ) \ {∅, X} (if non-empty),

Σ0
1(T ) \ ∆0

1(T ), and Π0
1(T ) \ ∆0

1(T ) are distinct �T
TP -classes, they con-

stitute an initial segment of �T
TP , they are ordered like the corresponding

Wadge degrees in Y , and by Lemma 2.1(3) they �T
TP -precede all other

�T
TP -classes.

Claim. Either τ = T , or τ = Π0
1(T ).

Proof of the claim. Recalling that τ -open sets form an initial

segment with respect to �T
TP , it is enough to observe the following facts:

• τ is not trivial, as there are more than three ≡τ
W -degrees.

• τ �= ∆0
1(T ): otherwise Σ0

1(τ) = ∆0
1(τ) and all non-empty, proper

subsets of X would be τ -self-dual by Lemma 2.2, which is not the case

as the elements of Σ0
1(T ) \∆0

1(T ) are not τ -self-dual since Σ0
1(T ) \

∆0
1(T ),Π0

1(T ) \∆0
1(T ) are distinct ≡τ

W -degrees.

• τ cannot contain both Σ0
1(T )\∆0

1(T ) and Π0
1(T )\∆0

1(T ): otherwise

Σ0
1(T ) ⊆ ∆0

1(τ), and all members of Σ0
1(T ) \∆0

1(T ) would be τ -self-

dual, which is again not the case.

�
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and the trivial topology;

– if T is not discrete and case (2) occurs, then the two topologies
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1(T ).

Proof. Suppose τ is a topology on X such that

≤τ
W=�T

TP (3)

in order to show that ≤T
W=�T

TP .

Notice that both the T -open sets and the τ -open sets form an initial

segment of �T
TP : for the T -open sets, see Lemma 2.3(2); for the τ -open

sets, this is just the definition of continuity of a function and equality (3).
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W -degrees,
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W -degrees, say {∅}, {X},D, then all non-
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W -equivalent so, as ≡τ

W=�T
TP ,
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discrete, and ≤T
W=�T

TP . In this case, the equation ≤τ
W=�T

TP is satisfied
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also if τ is the trivial topology, since all functions X → X are continuous
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with A ∈ Σ0

1(τ), B /∈ Σ0
1(τ), then A �≡τ

W B.

Conversely, if T is discrete then �T
TP , which is the same as ≡τ

W , has

at most three equivalence classes. So it can be assumed for the rest of the

proof that there are more than three ≡τ
W -degrees and consequently T , τ

are not discrete.
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2.3 and the fact that admissible representations are surjective, for all A ∈
P(X),

ρ−1(A) ∈ ∆0
1(Y ) \ {∅, Y } ⇔ A ∈ ∆0

1(T ) \ {∅, X},
ρ−1(A) ∈ Σ0

1(Y ) \∆0
1(Y ) ⇔ A ∈ Σ0

1(T ) \∆0
1(T ).

Since T is T0 and not discrete, by Lemma 2.2 it follows that Σ0
1(T ) \

∆0
1(T ) �= ∅. Consequently, {∅}, {X}, ∆0

1(T ) \ {∅, X} (if non-empty),

Σ0
1(T ) \ ∆0

1(T ), and Π0
1(T ) \ ∆0

1(T ) are distinct �T
TP -classes, they con-

stitute an initial segment of �T
TP , they are ordered like the corresponding

Wadge degrees in Y , and by Lemma 2.1(3) they �T
TP -precede all other

�T
TP -classes.

Claim. Either τ = T , or τ = Π0
1(T ).
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TP , it is enough to observe the following facts:

• τ is not trivial, as there are more than three ≡τ
W -degrees.

• τ �= ∆0
1(T ): otherwise Σ0

1(τ) = ∆0
1(τ) and all non-empty, proper

subsets of X would be τ -self-dual by Lemma 2.2, which is not the case

as the elements of Σ0
1(T ) \∆0

1(T ) are not τ -self-dual since Σ0
1(T ) \

∆0
1(T ),Π0

1(T ) \∆0
1(T ) are distinct ≡τ

W -degrees.

• τ cannot contain both Σ0
1(T )\∆0

1(T ) and Π0
1(T )\∆0

1(T ): otherwise

Σ0
1(T ) ⊆ ∆0

1(τ), and all members of Σ0
1(T ) \∆0

1(T ) would be τ -self-

dual, which is again not the case.

�
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To finish the proof, notice that if Π0
1(T ) is a topology, then it induces

the same Wadge hierarchy as T , since these topologies have the same con-

tinuous functions. �

All cases dealt with in Theorem 2.4 can occur: for cases (0) and (1),

see Theorem 3.4; for case (2) concerning a non-discrete space, see Example

5.2.

Theorem 2.4 leads to ask whether there is a nice characterisation of

those second countable, T0 spaces X such that ≤X
W=�X

TP . Though the

question remains open, in the rest of the paper some specific cases are

discussed.

Since for any second countable, T0 space X the relation ≤X
W⊆�X

TP

always holds, to show equality it is enough to establish the implication

A �X
TP B ⇒ A ≤X

W B.

The following facts will be used repeatedly.

Lemma 2.5. Let X be any second countable, T0 space such that

≤X
W=�X

TP . Then

• ∀A ∈ Σ0
1(X) ∀B ∈ P(X) \Π0

1(X) A ≤X
W B,

• ∀A ∈ Π0
1(X) ∀B ∈ P(X) \Σ0

1(X) A ≤X
W B,

• there is no triple of pairwise ≤X
W -incomparable sets in D2(Σ

0
1)(X).

Proof. By Lemmas 2.1 and 2.3. �

.3 The case of Hausdorff spaces

This section characterises the second countable, Hausdorff spaces X such

that ≤X
W=�X

TP as the zero-dimensional metrisable spaces (Theorem 3.4).

Observe also the following.

Lemma 3.1. If X is a second countable, T0, zero-dimensional space,

then X is metrisable.

Proof. First, notice that X is Hausdorff. Indeed, let x, y be distinct

points in X. Since X is T0, there exists an open set U containing exactly

one of the points x, y. By zero-dimensionality, there exists a clopen set
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V ⊆ U such that V ∩ {x, y} = U ∩ {x, y}. So the clopen sets V,X \ V are

disjoint neighbourhoods of the two points.

Similarly, one establishes that X is T3. Let x ∈ X and let C ⊆ X

be closed, with x /∈ C. Again by zero-dimensionality, there is a clopen

neighbourhood V of x such that V ∩ C = ∅. Then V,X \ V are disjoint

neighbourhoods of x,C, respectively.

Consequently, by Urysohn’s metrisation theorem, X is metrisable. �

Proposition 3.2. Let X be a second countable, T0 space.

1. If X is zero-dimensional, then ≤X
W=�X

TP

2. If X is metrisable, non-zero-dimensional, then ≤X
W �=�X

TP

Proof. (1) IfX is zero-dimensional, then by Lemma 3.1 it is metrisable.

So the result is [5, Proposition 3].

(2) As [6] exhibits an antichain for ≤X
W of size the continuum whose

members are sets in D2(Σ
0
1)(X), to conclude it is enough to apply Lemma

2.5. �

Notice that for Borel representable spaces, that is spaces admitting an

admissible representation whose domain is a Borel subset of NN, Proposition

3.2(2) is [5, Corollary 2].

Proposition 3.3. Let X be a second countable, Hausdorff space. If X

is not T3, then ≤X
W �=�X

TP .

Proof. Let C ∈ Π0
1(X), x ∈ X \C without disjoint neighbourhoods. In

particular, {x} is not clopen. Using Lemma 2.5, it is enough to show C �X
W

{x}. Suppose, towards a contradiction, that f : X → X is a continuous

function reducing C to {x}, and let U, V be disjoint neighbourhoods of

x, f(x) respectively. Then f−1(U), f−1(V ) are disjoint neighbourhoods of

C, x, respectively. �

Theorem 3.4. If X is a second countable, Hausdorff space, then

≤X
W=�X

TP if and only if X is zero-dimensional.

Proof. For the forward implication, apply Proposition 3.3 and Ury-

sohn’s metrisability theorem to obtain that X is metrisable. Then use

Proposition 3.2(2) for zero-dimensionality.

The backward direction is in Proposition 3.2(1). �
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(2) As [6] exhibits an antichain for ≤X
W of size the continuum whose
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1)(X), to conclude it is enough to apply Lemma
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Notice that for Borel representable spaces, that is spaces admitting an

admissible representation whose domain is a Borel subset of NN, Proposition
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is not T3, then ≤X
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Proof. Let C ∈ Π0
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x, f(x) respectively. Then f−1(U), f−1(V ) are disjoint neighbourhoods of
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Theorem 3.4. If X is a second countable, Hausdorff space, then
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sohn’s metrisability theorem to obtain that X is metrisable. Then use

Proposition 3.2(2) for zero-dimensionality.

The backward direction is in Proposition 3.2(1). �
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.4 An application to the conciliatory hierarchy

This section deals with second countable spaces that are T0 but not T1. It

shows that for such a space X the equality ≤X
W=�X

TP implies that X is at

most countable and it carries an Alexandrov topology. As a consequence,

[3, Question 1] gets a negative answer.

Proposition 4.1. Let X be a second countable, T0, non-T1 space such

that ≤X
W=�X

TP . Then X carries an Alexandrov topology.

Proof. Let {Wh}h∈H be a family of open subsets of X, and let A =⋂
h∈H Wh in order to prove that A is open. As X is not T1, let x ∈ X be

such that {x} ⊂ {x}. By T0, there is a closed non-empty C ⊆ {x} \ {x}.
Using Lemma 2.5, it is now enough to show that C �X

W A.

Suppose, towards a contradiction, that f : X → X is a continuous

function such that C = f−1(A). This implies that ∀h ∈ H C ⊆ f−1(Wh); as

every f−1(Wh) is open, it follows that ∀h ∈ H x ∈ f−1(Wh), so x ∈ f−1(A),

a contradiction. �

Lemma 4.2. Let X be a second countable, T0 space carrying an Alexan-

drov topology. Then X is at most countable.

Proof. Let B be an at most countable basis for X. For every x ∈ X,

let Ux =
⋂
{U ∈ B | x ∈ U}. So Ux is open, and it is the smallest open set

containing x, so that Ux ∈ B. As X is T0, the function x �→ Ux is injective,

so X is at most countable. �

Corollary 4.3. Let X be a second countable, T0, non-T1 space such

that ≤X
W=�X

TP . Then X is at most countable.

Proof. By Proposition 4.1 and Lemma 4.2. �

From Corollary 4.3, one obtains in particular a negative answer to [3,

Question 1].

Corollary 4.4. There is no topology on N≤ω such that the conciliatory

preorder ≤c is the Wadge preorder induced by that topology.

Proof. By [3], the relation ≤c is the Tang-Pequignot preorder with

respect to the prefix topology on N≤ω. Since this topology is not T1, the

result follows from Corollary 4.3 and Theorem 2.4. �
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.5 Some examples and questions

The main general question raised by Theorem 2.4 is the following.

Question 5.1. Is there a nice characterisation of those second count-

able, T0 spaces X such that ≤X
W=�X

TP ?

For Hausdorff spaces, the answer to this question is given in Theorem

3.4. In this section, some basic examples of non-Hausdorff spaces are dis-

cussed, together with some related questions.

Example 5.2. Let the Sierpiński space S = {a, b} be a doubleton

endowed with the topology T = {∅, {a}, S}, so S is a second countable, T0,

non-T1 space. Then ≤S
W=�S

TP .

Indeed, {a}, {b} are ≤S
W -incomparable. Also, they are �S

TP -incompar-

able, since for any admissible representation ρ : Y ⊆ NN → S, one has

ρ−1({a}) ∈ Σ0
1(NN) \Π0

1(NN), ρ−1({b}) ∈ Π0
1(NN) \Σ0

1(NN).

Example 5.3. Let X be a countable space with the cofinite topology.

Then X is second countable, T1, non-Hausdorff.

Let A = P(X) \ (Σ0
1(X) ∪ Π0

1(X)). Then X has five Wadge degrees:

{∅}, {X},Σ0
1(X) \ {∅, X},Π0

1(X) \ {∅, X},A.

Indeed, if A ∈ Σ0
1(X), B ∈ P(X) \ Π0

1(X), any f : X → X such that

f |A is finite-to-1 and f−1(B) = A is continuous and witnesses A ≤X
W B.

Similarly, given A,B ∈ A, since A,B are infinite and coinfinite, any finite-

to-1 function f : X → X such that f−1(B) = A is continuous and witnesses

A ≤X
W B.

It follows that ≤X
W=�X

TP .

Up to homeomorphism, the topology of Example 5.3 is the Zariski topol-

ogy on a countable commutative field K. This suggests the following.

Question 5.4. Given a countable commutative field K, does the rela-

tion ≤Kn

W =�Kn

TP hold, when Kn is endowed with the Zariski topology?

To understand uncountable spaces, the following seems a promising first

step, being an uncountable analog of the space in Example 5.3.

Question 5.5. Let T be the compact complement topology on R. Does

≤T
W=�T

TP hold?
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Example 5.2. Let the Sierpiński space S = {a, b} be a doubleton

endowed with the topology T = {∅, {a}, S}, so S is a second countable, T0,

non-T1 space. Then ≤S
W=�S

TP .

Indeed, {a}, {b} are ≤S
W -incomparable. Also, they are �S

TP -incompar-

able, since for any admissible representation ρ : Y ⊆ NN → S, one has

ρ−1({a}) ∈ Σ0
1(NN) \Π0

1(NN), ρ−1({b}) ∈ Π0
1(NN) \Σ0

1(NN).

Example 5.3. Let X be a countable space with the cofinite topology.

Then X is second countable, T1, non-Hausdorff.

Let A = P(X) \ (Σ0
1(X) ∪ Π0

1(X)). Then X has five Wadge degrees:

{∅}, {X},Σ0
1(X) \ {∅, X},Π0

1(X) \ {∅, X},A.

Indeed, if A ∈ Σ0
1(X), B ∈ P(X) \ Π0

1(X), any f : X → X such that

f |A is finite-to-1 and f−1(B) = A is continuous and witnesses A ≤X
W B.

Similarly, given A,B ∈ A, since A,B are infinite and coinfinite, any finite-

to-1 function f : X → X such that f−1(B) = A is continuous and witnesses

A ≤X
W B.

It follows that ≤X
W=�X

TP .

Up to homeomorphism, the topology of Example 5.3 is the Zariski topol-

ogy on a countable commutative field K. This suggests the following.

Question 5.4. Given a countable commutative field K, does the rela-

tion ≤Kn

W =�Kn

TP hold, when Kn is endowed with the Zariski topology?

To understand uncountable spaces, the following seems a promising first

step, being an uncountable analog of the space in Example 5.3.

Question 5.5. Let T be the compact complement topology on R. Does

≤T
W=�T

TP hold?



62 RICCARDO CAMERLO

∅

X

Σ0
1

Π0
1

A

Figure 3: The Wadge hierarchy on a countable space with the cofinite

topology (Example 5.3).

Observe that the spaces of Questions 5.4 and 5.5 are in fact second

countable, T1, non-Hausdorff, and they are hyperconnected.

To end the paper, notice that, as a consequence of Proposition 4.3, the

condition ≤X
W=�X

TP is not stable under very basic topological operations.

Example 5.6. Let X be the disjoint sum of the Baire space and the

Sierpiński space. Then ≤X
W �=�X

TP .

This example shows that the class of spaces for which the two hierarchies

coincide is not closed under disjoint sum.

Example 5.7. LetX be the product of the Baire space and the Sierpiń-

ski space. Then ≤X
W �=�X

TP .

This example shows that the class of spaces for which the two hierarchy

coincide is not closed under product.
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Figure 3: The Wadge hierarchy on a countable space with the cofinite

topology (Example 5.3).

Observe that the spaces of Questions 5.4 and 5.5 are in fact second

countable, T1, non-Hausdorff, and they are hyperconnected.

To end the paper, notice that, as a consequence of Proposition 4.3, the

condition ≤X
W=�X

TP is not stable under very basic topological operations.

Example 5.6. Let X be the disjoint sum of the Baire space and the
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