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Abstract. In this paper we discuss a class of AutoEncoder based generative

models based on one dimensional sliced approach. The idea is based on the

reduction of the discrimination between samples to one-dimensional case. Our

experiments show that methods can be divided into two groups. First consists of

methods which are a modi�cation of standard normality tests, while the second

is based on classical distances between samples. It turns out that both groups

are correct generative models, but the second one gives a slightly faster decrease

rate of Fréchet Inception Distance (FID).
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1. Introduction

In recent years a number of generative models based on AutoEncoder architecture
were constructed (see, e.g., [5, 6, 10, 11]). Some of them have applied elegant geometric
properties of the optimal transport (OT) problem and the Wasserstein distances. An
important example is given in [6], where the authors construct Sliced-Wasserstein
AutoEncoder (SWAE) � a generative model that performs well without the need for
training an adversarial network but, on the other hand, with necessity of sampling
from the prior distribution PZ on the latent Z. Speci�cally, the method applied there
uses the sliced Wasserstein distance between the distribution of encoded training
samples (zi) and PZ [6]. SWAE has an e�cient numerical solution that provides
similar capabilities to Wasserstein AutoEncoders (WAE-MMD) [11] and Variational
AutoEncoders [5]. A typical choice for PZ is the Gaussian distribution N(0, 1) even
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though SWAE is valid for any prior distribution. In this case, there is no need to
sample from PZ , as long as we can analytically calculate a closed formula for the
distance between a given sample (xi) and N(0, 1).

In our paper we follow the idea of [6] and make a comparison of few AutoEncoder
based generative models, for which the loss functions are given by appropriately chosen
sliced distanced between (zi) and N(0, 1) that can be expressed in a closed form.
Speci�cally, we use respective one-dimensional �measures of normality�, including the
2nd Wasserstein [6] or the Cramer-Wold [10] distances, as well those derived from
some classical one dimensional goodness of �t tests for normality, i.e the Cramér-von
Mises and the Kolmogorov-Smirnov. Let us also note that our approach is, up to
some extent, related to that of [8], where the authors propose a method for training
generative AutoEncoders by explicitly testing PZ via the Shapiro-Wilk test for (one-
dimensional) normality, applied to a �vectorized� (multidimensional) sample (zi).

Consequently, we use the following models:

- Sliced Wasserstein AutoEncoder (SWAE) [6],

- Sliced Closed Form Wasserstein AutoEncoder (SCFWAE) � an upgrade of SWAE,

- Sliced Cramer-Wold AutoEncoder (SCWAE), based on one dimensional Cramer-
Wold distance [10],

- Sliced Cramér-von Mises AutoEncoder (SCvMAE)using Cramér-von Mises normal-
ity test,

- Sliced Kolmogorov-Smirnov AutoEncoder (SKSAE), based on Kolmogorov-Smirnov
normality test.

There is also an important novelty which we have adopted from [10], namely we
use the logarithm-like modi�cation of the cost function. The main idea is that instead
of considering the cost function of the form

RecError + λ ·NormalityIndex,

which needs a grid search over λ for the proper weighting of reconstruction error
RecError and divergence from normality we can, typically with similar or better
results, use

RecError + log(NormalityIndex).

Thanks to this formulation, the cost function, from the optimization point of view,
does not change with rescaling of the normality index by a constant λ (in this case
cost functions di�er only by a constant log λ, which results in the same gradient).

Our experiments show that applied methods can be divided into two groups given
their generalization properties. The �rst consists of those which are a modi�cation of
standard normality tests: SCvMAE, SKSAE, see Fig. 1, while the second is based on
classical distances between samples: SWAE, SCFWAE, SCWAE, see Fig. 2. Methods
from both groups are correct generative models, but those from the second one give
a slightly faster decrease rate of Fréchet Inception Distance FID [4].
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2. Related works

The �eld of representation learning was initially driven by supervised approaches, with
impressive results using large labelled datasets. Unsupervised generative modeling,
in contrast, used to be a domain governed by probabilistic approaches focusing on
low-dimensional data. The situation was changed with introduction of Variational
AutoEncoders (VAE) [5], which were the �rst AutoEncoder based generative models.
As a deep learning techniques for learning latent representations, VAE are used to
draw images, achieve state-of-the-art results in semi-supervised learning, as well as
interpolate between sentences.

One of the the most important aspect in generative models is computational com-
plexity and e�ectiveness of a distance between the true and the model distribution.
Originally in VAE this computation was carried out using variational methods. An
important improvement was brought by using the Wasserstein metric to measure the
mentioned distance, which relaxed the need for variational methods and led to the
construction Wasserstein AutoEncoder (WAE) [11].

The next contribution into this research trend was made in [6], where the authors
used a sliced version of the Wasserstein distance, instead of the JS-divergency as
in WAE-GAN or the maximum mean discrepancy as in WAE-MMD, to penalize
dissimilarity between the distribution of encoded training samples and the prior on
the latent space. The obtained generative model was called the Sliced-Wasserstein
AutoEncoder (SWAE).

The other related concept can be found in [10], where the authors constructed the
Cramer-Wold AutoEncoder (CWAE), by replacing the sliced Wasserstein distance in
SWAE by the newly introduced CW-distance between distributions, which based on
the Cramer-Wold Theorem [1]. It should be noticed here that, despite the fact that
CWAE can be also considered as a version of WAE-MMD method (with a choice of
a speci�c kernel), it involved a closed formula of the CW-distance that came from
the application of a sliced approach. Thus, CWAE can be seen as a borderline model
between SWAE and WAE-MMD.

With reference to the above mentioned models, in the next section we derive the
detailed concept of this paper.

3. Model

For convenience of the reader and to establish notation let us start from a classical
AutoEncoder (AE) architecture. Let X = (xi)i=1..n ⊂ RN be a given data set, which
can be considered as sample from (true but unknown) data distribution PX . The basic
aim of AE is to transport the data to a (typically, but not necessarily) less dimensional
latent space Z = RD with reconstruction error as small as possible. Thus, we search
for an encoder E : RN → Z and decoder D : Z → RN functions, which minimize the
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Figure 1. Results of SCvMAE and SKSAE models trained on CELEB A dataset.
In �test reconstructions� odd rows correspond to the real test points.

reconstruction error on the data set X:

MSE(X; E ,D) = 1

n

n∑
i=1

‖xi −D(Exi)‖2.

In turn, AutoEncoder based generative model is a modi�cation of AE model by
introducing a cost function that forces the model to be generative, i.e., ensures that
the data transported to the latent space Z come from the (typically Gaussian) prior
distribution PZ . A usual way to obtain this is through adding to MSE(X; E ,D) a
regularized (using appropriately chosen hyper-parameter λ > 0) term that penalizes
dissimilarity between the distribution of the encoded data PE(X) and PZ :

COST (X; E ,D) =MSE(X; E ,D) + λ · d(PE(X), PZ). (1)

The main idea of WAE was based on the use of the Jensen-Shannon divergence
(in WAE-GAN) or the maximum mean discrepancy (in WAE-MMD) as d(PE(X), PZ),
which required sampling from PZ . Note that the Wasserstein metric was applied there
to measure only the distance between PX and the model distribution PD(E(X)) (this
approach is, in fact, a generalization of the reconstruction error MSE(X; E ,D) and
coincide with it in the case of 2nd Wasserstein metric).

As mentioned in the introduction in this paper, we apply a modi�cation of the
cost function, which uses logarithm of the dissimilarity measure instead of (potential
grid search over) hyperparameter λ:

COST (X; E ,D) =MSE(X; E ,D) + log(d(PE(X), PZ)). (2)

The modi�cation introduced in SWAE relied on the use of the sliced Wasser-
stein distance to express d(PE(X), PZ). The main idea was to take the mean of the
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Figure 2. Results of SWAE, SCFWAE and SCWAE models trained on CELEB A
dataset. In �test reconstructions� odd rows correspond to the real test points.

Wasserstein distances between one-dimensional projections of PE(X) and PZ on a sam-
pled collection of one-dimensional directions. Note that SWAE, similarly to WAE,
also needed sampling from PZ . Consequently in SWAE two types of sampling were
applied: sampling over one-dimensional projections and sampling from the prior dis-
tribution PZ . The method is e�ective, but as we show in SCWAE model, it is possible
to improve on it by reducing one of the above samplings by using distance between
sample and the Gaussian distribution.

To the best of our knowledge, CWAE was the �rst WAE-like concept that required
no sampling. Assuming the Gaussian prior PZ , it used (newly de�ned) the Cramer-
Wold metric to represent d(PE(X), PZ), which was expressed in an elegant closed form
as the distance of a sample from standard multivariate normal distribution N(0, I).

As it was mentioned before, in this paper we examine few variants of sliced dis-
tances, which possess computable closed form when considered as a measure of non-
normality of a given sample, applied as a penalization term d(PE(X), PZ), where
PZ = N(0, I). Speci�cally, assuming that we have k one-dimensional projections on
the spaces spanned by the unit vectors vi ∈ RD for i = 1, . . . , k, we de�ne:

d(PE(X), PZ) =
1

k

k∑
i=1

dS(v
T
i X,N(0, 1)), (3)
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Figure 3. Metrics assessing normality of the model output distributions, during
training: FID score, Mardia's skewness, kurtosis and classical SWAE distance of
models SCFWAE, SCWAE, SCvMAE, SKSAE and SWAE, on the CELEB A test
set. Optimal value of kurtosis (i.e. for normal distribution) is given by a dash line.

where dS denotes a speci�ed one-dimensional distance function (note that if a random
variable Z ∈ RD has the N(0, I) distribution, then vTi Z has the N(0, 1) distribution).

4. Dissimilarity measures

In this section we make few choices of dS 's, which were used (via (2) and (3)) to
construct generative AutoEncoders that are discussed in this paper.

Sliced Wasserstein AutoEncoder (SWAE). In the original SWAE paper [6],
to express dS the authors use the square of the 2-nd Wasserstein distance between
the (empirical) distributions generated by the respective samples.

This leads to the following formula:

dS(Y,Z) =

∫ 1

0

(P−1Y (t)− P−1Z (t))2 dt =

∫ 1

0

(
n∑
i=1

(y(i) − z(i))1 i−1
n <t≤ i

n

)2

dt

=
1

n

n∑
i=1

(y(i) − z(i))2,
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where P−1∗ (t) = inf{x ∈ R : P∗(x) ≥ t} for t ∈ (0, 1), whereas (y(1), . . . , y(n)) is
an ordered sample Y = (y1, . . . , yn) and (z(1), . . . , z(n)) represents an ordered sample
Z = (z1, . . . , zn) derived from N(0, 1).

Sliced Closed Form Wasserstein AutoEncoder (SCFWAE). In the original
SWAE paper authors have used Wasserstein distance between samples [6]. We show
in SCFWAE a model that we can simplify it by using distance between sample and
Gaussian density distribution (consequently, no sampling from the normal distribution
is necessary). We de�ne dS as the square of the 2nd Wasserstein distance:

dS(Y,N(0, 1)) =

∫ 1

0

(P−1Y (t)− P−10 (t))2 dt =

∫ 1

0

(
n∑
i=1

y(i)1 i−1
n <t≤ i

n
− P−10 (t)

)2

dt

=
1

n

n∑
i=1

y2(i) − 2

n∑
i=1

y(i)

∫ i
n

i−1
n

P−10 (t) dt+

∫ ∞
−∞

y2 · p0(y) dy

=
1

n

n∑
i=1

y2(i) − 2

n∑
i=1

y(i)

∫ Q i
n

Q i−1
n

y · p0(y) dy + 1

= 1 +
1

n

n∑
i=1

y2(i) −
√

2

π

n∑
i=1

y(i)

∫ Q i
n

Q i−1
n

y · exp(−y
2

2
) dy

= 1 +
1

n

n∑
i=1

y2(i) +

√
2

π

n∑
i=1

y(i)(exp(−
1

2
Q2

i
n
)− exp(−1

2
Q2

i−1
n

)),

where P0, p0, and Qr denote the distribution function, the density function and the
r-th quantile of N(0, 1).

Sliced Cramer-Wold AutoEncoder (SCWAE). Following [10], as dS we
choose the square of the one dimensional Cramer-Wold distance, which is de�ned
as an `2 distance between a sample Y = (y1, . . . , yn) ⊂ R and N(0, 1), both smoothen
using a Gaussian kernel N(0, γ), where γ = ( 4

3n )
2/5 is a bandwidth constant given by

the Silverman's rule of thumb (see [9]). This leads to the following formula:

dS(Y,N(0, 1)) =
∥∥ 1
n

n∑
i=1

pyi,γ − p0,1+γ
∥∥2
2
=

1

n2
〈 n∑
i=1

pyi,γ ,

n∑
i=1

pyi,γ
〉
2

+
〈
p0,1+γ , p0,1+γ

〉
2
− 2

n

〈 n∑
i=1

pyi,γ , p0,1+γ
〉
2

=
1

n2

n∑
i,j=1

pyi−yj ,2γ(0) + p0,2+2γ(0)−
2

n

n∑
i=1

pyi,1+2γ(0),

where by pm,σ we denote the density function of N(m,σ).
In addition to the classic distances used in generative models, we can use various

dissimilarity measures related to classical statistical tests. In the literature there are
many tests for normality, which work well in the case of one dimensional datasets. In
the paper we verify a possibility of application of that classical statistical models in
deep generative architectures.

Sliced Cramér-von Mises AutoEncoder (SCvMAE). The �rst statistical
model we apply is the Cramér-von Mises test for normality. It can be easily derived
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from an application of the Wasserstein distance. Indeed, basing on the known fact
that if Y is a random variable then the variable PY (Y ) has the continuous uniform
distribution U(0, 1), as dS we use the square of the 2nd Wasserstein distance between
the distribution of PY (Y ) and U(0, 1), i.e.:

dS(Y,N(0, 1)) =

∫ 1

0

(P−1Z (t)− P−11 (t))2 dt

=

∫ 1

0

(
n∑
i=1

z(i)1 i−1
n <t≤ i

n
− P−11 (t)

)2

dt

=
1

n

n∑
i=1

z2(i) − 2

n∑
i=1

z(i)

∫ i
n

i−1
n

t dt+
1

4
+

1

12
(4)

=
1

n

n∑
i=1

z2(i) −
1

n2

n∑
i=1

z(i) · (i2 − (i− 1)2) +
1

3

=
1

n

n∑
i=1

z2(i) +
1

n2

n∑
i=1

z(i)(2i− 1) +
1

3
,

where P1 is the distribution function of U(0, 1) and (z(1), . . . , z(n)) is an ordered
sample Z = (P1(y1), . . . , P1(yn)). Then it is easy to verify (see, e.g., [7]) that (4)
coincides with the Cramér-von Mises distance between PY and P0, which is used in
the Cramér-von Mises goodness of �t test for normality.

Sliced Kolmogorov-Smirnov AutoEncoder (SKSAE). Our last choice of
dS is a clasical Kolmogorov-Smirnov distance, which is used as a statistics in the
Kolmogorov-Smirnov goodness of �t test for normality. It is expressed (see, e.g., [2])
by the following formula:

dS(Y,N(0, 1)) = sup
y

∣∣PY (y)− P0(y)
∣∣ = max

i

∣∣ i
n − P0(y(i))

∣∣.

5. Experiments

In this section we shall empirically validate proposed models on standard benchmarks
for generative models CELEB A, CIFAR-10 and MNIST. We will compare di�erent
approaches to sliced generative models SCFWAE, SCWAE, SCvMAE, SKSAE, SWAE
with classical SWAE [6]. As we shall see, all the above methods can be divided in
to two groups. The �rst contains methods which are all modi�cations of classical
normality tests: SCvMAE, SKSAE, while the second one those based on classical dis-
tances between multidimensional samples: SCFWAE, SCWAE and classical SWAE.
It can be noticed that the second class of methods gives a slightly better results.

In the experiments we use two basic architecture types. Experiments on MNIST
use a feed-forward network for both encoder and decoder, and a 20 neuron latent
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Figure 4. Metrics assessing normality of the model output distributions, during
training: FID score, Mardia's skewness, kurtosis and classical SWAE distance of
models SCFWAE, SCWAE, SCvMAE, SKSAE and SWAE, on the Cifar 10 test set.
Optimal value of kurtosis, (i.e. for normal distribution) is given by a dash line.

layer, all using ReLU activations. For CIFAR-10 and CELEB A data sets we use
convolution-deconvolution architectures.

The quality of a generative model is typically evaluated by examining generated
samples or by interpolating between samples in the latent space. We present such
a comparison between all approaches in Fig. 1 and Fig. 2. The experiment shows
that there are no perceptual di�erences between considered models. In order to
quantitatively compare all above slicing methods we use three measures. First of all,
we use the Fréchet Inception Distance (FID) [4], which is the most popular measure
of generalization in deep generative models.

Next, following experiments from [10], we veri�ed standard normal distribution in
the latent by using statistical normality tests, i.e. Mardia tests [3]. More precisely we
use skewness b1,D(·) and kurtosis b2,D(·) of a sample X = (xi)i=1..n ⊂ RD:

b1,D(X) = 1
n2

∑
j,k

(xTj xk)
3 and b2,D(X) = 1

n

∑
j

‖xj‖4

are close to that of standard normal density. The expected Mardia's skewness and
kurtosis for standard multivariate normal distribution is 0 and D(D+2), respectively.

Results are presented in Figure 3, Figure 4 and Table 1. In Figure 3 we report
for CELEB A data set the value of FID score, Mardia's skewness and kurtosis during
learning process of SCFWAE, SCWAE, SCvMAE, SKSAE, SWAE (measured on the
validation data set). Methods based on modi�cation of classical normality tests:
SCvMAE, SKSAE obtain a sightly worse skewness and kurtosis in the case of both
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Table 1. Comparison between di�erent models output distributions and the nor-
mal distribution, together with reconstruction error. All model outputs except AE
are similarly close to the normal distribution. Normality is assessed by comparing
Mardia's skewness, kurtosis (normalized), and the reconstruction error. For reference
FID scores are provided as well (except for MNIST, where it is not de�ned).

Data set Method SWAE SKSAE SCWAE SCvMAE SCFWAE

MNIST Skewness 35.86 57.34 34.19 59.22 37.41
Kurtosis (normalized) -57.46 35.33 -10.29 23.82 -31.93
Reconstruction error 5.37 5.01 5.35 5.04 5.42

CIFAR10 Skewness 110.49 238.52 206.50 303.45 91.42
Kurtosis (normalized) -0.96 2093.68 2159.31 1879.98 111.21
Reconstruction error 27.02 24.93 27.29 25.60 26.35
FID score error 134.87 131.32 131.48 130.89 129.07

CelebA Skewness 46.14 91.68 59.07 120.09 37.07
Kurtosis (normalized) -3.60 408.24 296.99 428.18 0.17
Reconstruction error 115.68 115.57 115.30 115.62 115.26
FID score error 60.10 61.49 62.09 63.01 61.16

data-sets. On the other hand all methods gives similar level of FID score but it can
be seen that SCFWAE, SCWAE and classical SWAE faster convergence.

6. Conclusions

In this paper, we have compared a few di�erent approaches to construct sliced Au-
toEncoder based generative models. In particular, we used classical one-dimensional
distances between samples and arbitrary �xed density distribution, some of them de-
rived from classical (one-dimensional) goodness of �t tests for normality. Moreover,
we have constructed SCFWAE � a simpli�ed version of SWAE, where there is no
necessity to sample from the normal prior. Our experiments show that all considered
method are correct generative models, but the methods based on the Wasserstein and
the Cramer-Wold distances have slightly faster decrease rate of the FID score.
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