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Abstract. We investigate performance of a gradient descent optimization (GR)

applied to the traffic signal setting problem and compare it to genetic algorithms.

We used neural networks as metamodels evaluating quality of signal settings

and discovered that both optimization methods produce similar results, e.g., in

both cases the accuracy of neural networks close to local optima depends on an

activation function (e.g., TANH activation makes optimization process converge

to different minima than ReLU activation).
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1. Introduction

The aim of this research is to investigate the gradient descent optimization method
applied to the traffic signal setting problem defined in [1]. We investigate a special
case of the traffic signal setting problem in which the optimized function is the total
time of waiting on a red signal, while a setting of traffic signals is represented as a
vector of 21 offsets corresponding to 21 crossroads with traffic signals in Warsaw, in
the Stara Ochota district.

We present the gradient descent optimization approach which applies a backprop-
agation to modify inputs of the metamodel (built using neural networks) in order
to minimize the network’s output. We compare results of our experiments with re-
sults achieved using genetic algorithms (GA). One of interesting observations is that
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applying a hiperbolic tangent (TANH) as an activation function leads to better per-
formance of neural networks comparing to ReLU in terms of accuracy and symmetry
of error close to local optima. Another observation is that the GR is able to find
similar optima (in terms of a value of the fitness function) as GA and they can be
achieved faster which makes the method very promising for the future applications
in solving the traffic signal setting problem and similar combinatorial optimization
problems with surrogate models.

The rest of the paper is organized as follows: Section 2. presents the state of the
art of the research on the traffic signal setting problem and some other approaches
to traffic optimization. It also discusses some similar works related to applications
of gradient optimization on inputs of neural networks (e.g., producing adversarial
examples). Section 3. describes our approach to solving the traffic signal setting
problem and setup of our experiments: available datasets, the process of training
metamodels, settings of the gradient optimization method and genetic algorithms to
which we compare. Section 4. presents and discusses results of our experiments.
Section 5. concludes the paper and outlines plans for the future research.

2. Related work

Vehicular traffic in cities is a complex process, so it is not easy to manage it opti-
mally. There are many possible traffic management approaches, but in our work we
focus on the traffic signal control, for which there also already exist many research
works, scientific approaches and real-world implementations - the good overview can
be found, e.g., in [2] and [3]. Existing approaches have at least a few drawbacks:

� lack of evaluating impact of introduced changes on traffic,

� limited scalability and coordination on larger areas,

� limited adaptability in case of significant changes (e.g., car accidents),

� adaptation based only on small changes in signal settings.

Our long-term goal is to build a traffic management system solving the aforemen-
tioned issues of existing systems. One of the core elements of our method is solving
the traffic signal setting problem - it is a combinatorial optimization problem which
was formally introduced in [1] (however, some earlier works presented its simplified
versions which in cases of relatively simple mathematical models were proven to be
NP-hard [4]). The goal is to find the optimal settings of traffic signals located in
some vertices of a graph representing the road network. The signal setting can be
represented as a vector of signal offsets, durations of red and green signal phases or,
in general, any strategy making decisions regarding the state of traffic signals. For-
mally, it can be considered as a function which takes as an argument time and traffic
conditions (e.g., positions and speeds of cars) and returns a decision regarding states
of each signal. The optimized function may be, e.g., the total time of travel or the
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total time of waiting on a red signal, and its values can be computed using traffic
simulations.

The standard approaches to solve these combinatorial optimization problems are
metaheuristics [5], e.g., evolutionary algorithms. Past approaches using genetic al-
gorithms and evaluating quality of signal settings using traffic simulations proved
to be successful in finding suboptimal solutions to that problem, but they required
significant computational power and may be time-consuming [1]. The most compute-
demanding component are traffic simulations, so some recent papers aimed to replace
it using metamodels (or surrogate models), e.g., to train machine learning algorithms
(e.g., neural networks or LightGBM [6]) to approximate outcomes of traffic simulations
very fast and with a good accuracy (that approach is related to surrogate modelling
[7] and counterfactual learning [8]). Thanks to that, it was possible to achieve a great
speed up of the traffic optimization task (assuming that the pretrained metamodel is
available) by replacing traffic simulations using accurate metamodels as evaluators of
the quality of traffic signal settings, [9], [10].

However, the method had still some drawbacks, e.g., it was discovered that ge-
netic algorithms converge to local optima close to which the accuracy of metamodels
suddenly decreases, which makes the further optimization process more difficult [10].
It was also discovered that this phenomenon strongly depends on the type of a meta-
model and in case of neural networks also on the type of an activation function (e.g.,
applying hiperbolic tangent may give better results than ReLU and may help mitigate
that effect [10]). In this paper, we investigate this phenomenon in case of the gradient
descent optimization (GR). Nowadays, GR is a standard procedure for training neural
networks, i.e., finding weights of connections minimizing the loss function. However,
the application of GR on the space of inputs to neural networks is much less common,
such approach is used mostly for finding adversarial examples, i.e., after training the
neural network weights are set to be constant, but the inputs to the network are
modified using GO in order to maximize the loss function [11].

For the particular problem studied in this paper, the choice of neuron activation
functions turns out to have a huge influence on approximation accuracy near the model
minima. ReLU activation functions usually result in models that underestimate times
of waiting when they are predicted to be small. This bias is much less visible when
using TANH activation function, which could probably be attributed to the fact that,
as opposed to ReLU, TANH does not grow very large in the yet unexplored regions
of our input space.

The superiority of TANH over ReLU in our problem is not something very typ-
ical in machine learning literature. ReLUs have been popularized by [12] and well
advocated by [13], using arguments such as sparsity of the learned representations
and non-saturation during training. Also in the more recent years researchers have
confirmed superiority of ReLU in a systematic study concerning a typical image recog-
nition task [14]. In short, often ReLUs are the default choice of activation function,
but our study shows that one should sometimes take them with a grain of salt and
explore other options as well.
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3. Setup of experiments

One of the goals of our research was to compare the gradient descent optimization
(GR) approach with genetic algorithms (GA) approach described in [10]. Therefore,
we decided to use the same dataset and the same models of neural networks as in
case of that previous research.

Our dataset was built based on 105336 simulation runs using Traffic Simulation
Framework (TSF) [15] with randomly selected traffic signal settings as an input. Each
traffic signal setting is represented as a vector of 21 elements, each corresponding to a
traffic signal offset (being an integer value from the set {0,1,. . . , 119}) for one of 21
selected crossroads in a specified region (Stara Ochota district in Warsaw). For each
setting, TSF computed the total time of waiting on a red signal in the selected area.
For the purpose of experiments (i.e., training metamodels), we divided that set into
a training set (consisting of the first 85336 elements) and a test set (the remaining
20000 elements). Our dataset was also described in details in [10] and is publicly
available [16].

We tested multiple fully-connected network architectures with and without resid-
ual connections [17], regularized using l2-weight regularization and batch normaliza-
tion layers [18]. Our models were trained using RMSProp optimizer [19], for 200
epochs with the batch size of 128 and a mean squared error as a loss function. In
order to normalize the input data and capture its periodic properties we transformed
each coordinate x of the input data to a pair

(
cos 2πx

120 , sin
2πx
120

)
, what changed the

input shape from (21, ) (21 offsets of traffic signals) to (42, ). We trained 216 models
of neural networks with different values of regularization rates, number of units and
layers and activations (ReLU [20] and TANH [21]) and chose 8 models (from the set
of the best 30 models with the lowest relative error rates) which had the greatest
variability in terms of model metaparameters. All models were trained using Keras
[22] package with TensorFlow [23] backend.

After training metamodels, we ran optimization experiments using GA. We devel-
oped a dedicated Python library and tested 504 configurations of hyperparameters of
GA [24]. For each configuration, we ran experiments for each of our 8 metamodels,
5 times per each model (each run started from a random initial population to test
different initial settings), giving 2520 runs for each model. For the purpose of fur-
ther analysis, we selected 20 best GA runs for each model, so in total we had 160
trajectories of GA.

We had observed earlier that evaluating genotypes using TSF takes about 30
seconds, which is too long, but in case of evaluations using neural networks the time
of inference was much lower (less than 0.1 second), so we were able to conduct such
compute-intensive experiments.

Later, we ran similar traffic optimization experiments using GR. We tried a few
optimizers with properly tuned learning rate: stochastic gradient descent (SGD, with
lr = 0.1), Nesterov[25] (lr = 0.1 and β = 0.9), RMSProp (lr = 1.0) and ADAM[26]
(lr = 0.5). For each method and each of 8 metamodels we ran 1000 gradient descent
experiments (each with 100 iterations) and chose 20 best runs (with the lowest pre-
dicted values). This resulted in 160 trajectories per GR method. Although setting
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high learning rate for both ADAM and RMSProp is believed to harm the training
process [26], it turned out that in our case lower values of a learning rate parame-
ter slowed down the training process and made it stucking in local minima, whereas
higher - made the optimization process highly unstable. In case of RMSProp - the
proposed value of a learning rate helped solve these problems. Unfortunately, even
careful fine-tuning of optimizer hyper-parameters did not work for ADAM.

As an explicit example, the update rules for parameter estimates θt in case of
RMSProp are given by the following formulas:

vt = γvt−1 + (1− γ) g2t (1)

θt = θt−1 +
η√
vt + ε

gt (2)

where gt is a gradient calculated at time t and g2t is gt with all coordinates raised
(component-wise) to power 2. The typical values for γ, η and ε are 0.9, 0.001 and
10−8, respectively.

4. Results of experiments

In order to compare results of different optimization runs (4 based on GO and 1
on GA) we decided to analyze found minima: their simulation values, predicted (by
metamodels) values and errors of each model. In order to perform analysis we chose
last 20 iterations of optimization algorithm trajectories. Analysis of values showed
that before this phase optimization algorithms had already converged, so these points
represent minima to which a given optimization process converged.

4.1. Analysis of minima

During the analysis of the minima to which different optimization runs converged, we
found out that for a given metamodel gradient descent and genetic algorithms tend to
converge to the roughly the same regions of input space, what is visualized on Figure
1 using PCA dimensionality reduction.

4.1.1. Method for comparing optimization algorithms

In order to compare results obtained by different optimization methods we introduced
the following measure of discrepancy between their results:

∆(A | B) = EX∈res(A) min
Y ∈res(B)

δ(X,Y ), (3)
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Figure 1. PCA visualization of points obtained in the last 20 iterations for different
types of optimization algorithms. Most of the points concentrate in roughly the same
input region. In regions on the left of the image, the error is smaller, whereas minima
on the right have much steeper error / simulation structure. The PCA reconstruction
error suggests that these trajectories might be outliers.



25

where A and B are different optimization methods, res(M) is a set of point collections
of last 20 iterations from each of 160 trajectories obtained by method M , and δ is an
Euclidean distance between 2 sets of points given by:

δ(X,Y ) = min
x∈X,y∈Y

||x− y||2. (4)

So, the ∆-discrepancy between method A and B is given by a mean distance of
trajectories obtained by method A from trajectories obtained by method B. Note
that this discrepancy measure is not symmetric, so we computed it for all possible 20
tuples of methods we used.

Figure 2. Distribution of ∆-discrepancy between all 20 possible tuples of different
optimization methods we used (Genetic Algorithm, SGD, Nesterov, RMSProp and
ADAM) and between randomly sampled sets of trajectories (we sampled N = 1000
pairs).

The results of ∆-discrepancy applied to all pairs of methods varied between 0.08
and 3.28 with the mean value equal to 1.8 and 0.84 standard deviation (see Figure
2). In order to confirm that such results could not be obtained by chance we sampled
N = 1000 random pairs of sets of trajectories, which matched the shape of our data
and computed ∆-discrepancy measures between them. The results varied between
4.85 and 4.9, with mean equal to 4.88 and 0.001 standard deviation. All statistical
tests rejected hypothesis that such distribution of ∆-discrepancy might be obtained
by chance. Thus, we conclude that all methods (both gradient based and genetic
algorithm) produce results from roughly the same regions of input space.

4.1.2. Analysis of different regions close to minima

Based on Figure 1 we conclude that there are three main regions to which optimization
algorithms converge. Two on the left have rather small errors. They have also small
PCA-reconstruction error what suggests that they lie close in the space of signal
settings. The region on the right seems to have much steeper error / simulation value
structure. A greater reconstruction error suggests that this region lies far away from
two regions on the center-right and is underrepresented in the trajectory space.
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Figure 3. Distribution of simulation results across different methods.

4.2. Analysis of simulation values

Metric Genetic SGD ADAM RMSProp Nesterov

Min 32620 32565 32406 32383 33026
Max 38320 39143 38062 38015 37602
Mean 34439 34682 34891 34731 34598
Median 34216 34420 34831 34490 34354

Std 1008 1095 817 1060 986

Table 1. Comparison of simulation results across different optimization methods.

As optimization processes make trajectories to settle in roughly the same regions
- ground truth outcomes of simulations, results of predictions and errors should be
similar. This is confirmed by analysis of simulations. Table 1 shows actual results
and Figure 3 compares histograms of different methods.

Multiple statistics of distributions of results of different methods show that all
distributions are quite similar. Analysis of histograms shows that most of methods
produce a bi-modal distribution (which is explained in section 4.4.). The only distri-
bution which differs significantly is a distribution of ADAM simulation values. This
is caused by optimization process instability explained in section 3.

4.3. Analysis of errors

In case of errors of approximations (accuracy of metamodels) we noticed that Nes-
terov algorithm seems to be the most accurate. Moreover, in minima reached by
that algorithm errors are only positive. The second best algorithm with respect to
errors is Genetic Algorithm, which also suffers the least from extreme positive errors.
Other gradient methods (RMSProp, ADAM and SGD) have similar mean, standard
deviation for both error and absolute (ABS) error values.
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Metric Genetic SGD ADAM RMSProp Nesterov

Min -1573 -1688 -731 -1549 -1826
Max 3326 4041 3657 3834 3814
Mean 1112 1363 1442 1432 905
Median 1206 1388 1435 1600 1010

Std 1033 1066 934 1018 1079
Min ABS 20 1 1 4 1
Max ABS 3326 4041 3657 3834 3814
Mean ABS 1294 1470 1460 1508 1171
Median ABS 1239 1393 1435 1600 1115

Std ABS 792 912 905 899 782

Table 2. Comparison of errors (differences between predictions of models and values
from simulations) across different optimization methods. ABS means absolute error.

Figure 4. Distribution of errors across different methods.

4.4. Comparison of activation functions

The most important factor which made the optimization trajectories different was the
activation function. The experiments which used models with the same activation
(ReLU or TANH) were similar (even if a different optimization method was used)
whereas different activations usually resulted in completely different minima (Figure
1). Only models based on TANH activation explored the less frequent region (see
Section 4.1.2. and Figure 1) in the input space. This explains differences in errors and
simulation values distributions, which seem to be bi-modal for TANH-based models.
Although the TANH-based models have lower mean and median absolute errors -
the possibility of reaching poor local minima is greater (what is confirmed by higher
maximal value and standard deviation of simulation values).
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Metric
ReLU
Sim.

TANH
Sim.

ReLU
Error

TANH
Error

ReLU
ABS
Error

TANH
ABS
Error

Min Value 32620 32383 -246 -1826 7 1
Max Value 36787 38320 3834 3198 3834 3198
Mean Value 34464 34883 1872 603 1872 866

Median 34416 34526 1887 524 1887 660
Std 546 1237 683 946 682 713

Table 3. Comparison of simulation results across different optimization methods.

Figure 5. Distribution of simulation results across different methods.

5. Conclusions and future work

We investigated performance of a gradient descent optimization applied to the traffic
signal setting problem and compared it to genetic algorithms. We discovered that
both optimization methods produce similar results and showed that the accuracy of
neural networks and reached minima depend on an activation function. Gradient
optimization gives good results a few times faster than GA which makes it a natural
candidate for the optimization procedure in our future experiments.

As a future work we plan to test other activation functions to see how they influ-
ence performance of optimization algorithms and investigate the influence of activa-
tion function on minima reached on multiple datasets.
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