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The application of nimh batteries in a light-duty  
electric vehicle 

Zastosowanie akumulatorów nimh w lekkim  
użytkowym pojeździe elektrycznym

Abstract
This article presents the results of experimental tests and simulations of a light-duty electric vehicle, in which 
the original lead-acid battery pack was replaced with a lightweight pack of nickel-metal-hydride (NiMH) 
batteries, which enabled a significant increase to the vehicle’s load capacity. The research was mainly focused 
on the aspect of electricity consumption and prediction of the range of the vehicle equipped with a new 
battery pack. The operation of a vehicle with total weights of 500 kg and 740 kg was analysed. Recorded 
vehicle speed waveforms were used to simulate vehicle motion in the Matlab/Advisor environment. The 
experiments showed a  reduction in the specific energy consumption of a  vehicle of lower weight, while 
simulation tests showed good compliance of the results of electricity consumption with experiments in 
relation to both the considered total vehicle weights. 
Keywords: electric vehicle; NiMH battery; energy consumption; simulation; experimental research

Streszczenie
W artykule zaprezentowano wyniki badań eksperymentalnych i  symulacyjnych lekkiego, elektrycznego 
pojazdu użytkowego, w którym oryginalny zestaw akumulatorów kwasowo-ołowiowych został zastąpiony 
lekkim pakietem akumulatorów niklowo-metalowo-wodorkowych, co pozwoliło znacznie zwiększyć 
ładowność pojazdu. Badania skupiono głównie na aspekcie zużycia energii elektrycznej i predykcji zasięgu 
pojazdu wyposażonego w nowy zestaw akumulatorów. Analizowano zachowanie pojazdu o masie 500 kg 
oraz 740 kg. Przebiegi zmian prędkości zarejestrowane podczas jazd testowych użyto do przeprowadzenia 
symulacji ruchu pojazdu w  środowisku Matlab/Advisor. Wyniki badań eksperymentalnych wskazały 
na ograniczenie jednostkowego zużycia energii przez pojazd o  mniejszej masie, natomiast w  badaniach 
symulacyjnych uzyskano dobrą zgodność zużycia energii z  rezultatami eksperymentów w  obu 
analizowanych przypadkach. 

Słowa kluczowe: pojazd elektryczny, akumulatory NiMH, zużycie energii, symulacja, badania eksperymentalne
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1. Introduction 

1.1. Background

Electric vehicles are gaining more and more popularity as a  form of road transport. 
Some experts estimate that in 2030, the share of electric vehicles will be average 25% of 
vehicles travelling on roads across the whole world[3]. According to the same prognosis, 
a  significant proportion of the remaining vehicles will have hybrid propulsion systems, in 
which apart from the internal combustion engine, an electric motor can usually be found. 
Internal combustion engines are still being developed; however, it is clear that over the 
course of dozens of years, the electric drive will be a replacement for the internal combustion 
engine in automotive applications [12]. The basic advantage of replacing propulsion from 
combustion engines in the automotive sector with the electric drive is their zero emission of 
toxic gases at the place of their use. In the wider context, one should take into account not 
only the methods of producing electricity in the area of vehicle use [13] and aspects related to 
energy and emissivity of production processes but also the recycling of waste electric vehicle 
components [6]. Particular attention should be paid to energy storage systems consisting 
mostly of electrochemical batteries. 

Of the less significant benefits of replacing the internal combustion engine with the electric 
motor, one should mention the simplification of the drive system by eliminating the gearbox. 
This is possible due to the convenient output characteristics of electric motors, although 
recently, solutions of two-stage transmissions for electric cars that enable the improvement 
of the traction characteristics of the vehicle have appeared [16]. Among the basic problems 
in the development of pure electric drives in automotive applications, the most important are 
the relatively low capacity of energy storage systems based on the currently available types 
of batteries resulting in a  low vehicle range [17]. Another problem linked to the growing 
popularity of electric vehicles is also the limited electricity supply possibilities in some 
countries resulting from the limited abilities of the electricity production system. In some 
countries, the only remedy is, in principle, the development of nuclear energy [2].

1.2. Batteries in electric vehicles

In the first vehicles with electric drive, lead-acid batteries were used [9]. In the following 
years, nickel-cadmium batteries were also employed; these have now been eliminated 
from vehicle applications due to their use of toxic cadmium. In automotive applications, 
nickel-metal-hydride batteries similar to NiCd battery began to be used [25]. Among other 
applications, these were found in the famous second-generation GM EV1 electric vehicle. For 
various reasons, they have not yet been widely used in vehicles that have exclusively electric 
drive mechanisms. Some authors even see the collusion of a  fuel lobby involving blocking 
the development of high-capacity NiMH batteries [28]. However, it should be noted that 
the energy density of nickel-metal-hydride batteries is lower than for dynamically developing 
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Li-ion batteries, and the price of 1 kWh stored energy is relatively higher. Information from the 
research and development sector regarding the development of NiMH batteries with extremely 
high performance forecasts a wider application of this technology in electric vehicles. [21]. 
However, NiMH batteries have found a very common use in vehicles with hybrid drive systems 
[7] as a mature, non-problematic technology. Nowadays, energy storage systems in vehicles 
with pure electric drives are usually in the form of various types of lithium-ion batteries. The 
objective of engineers is to find batteries characterized by high specific energy and specific 
power with an increased number of work cycles and a reduction in production costs. 

Lead-acid batteries are commonly used in light-duty commercial vehicles. This is 
mainly due to their low price, simple operation and the fact that they do not require battery 
management systems, which lithium-ion batteries require for safe and trouble-free operation 
[18]. The latter has begun to be used in golf buggy type vehicles in recent years however, 
this significantly raises the price of such vehicles. In addition, lithium-ion batteries are a less 
safe solution than lead-acid or nickel-hydride batteries. This is due to the use of flammable, 
organic and usually liquid electrolytes. There are relatively frequent known cases of fires, even 
explosions in electric vehicles equipped with lithium-ion batteries [10]. Moreover, in the 
case of Li-ion batteries, there is the phenomenon of ‘thermal runaway’. This consists of an 
uncontrolled increase in the temperature of the battery leading to its combustion, and initiated 
in the process in which the critical temperature of this type of cell has been exceeded [4]. This 
phenomenon is practically non-existent in the case of nickel-metal-hydride batteries, which is 
their unquestionable advantage. Nickel-metal-hydride batteries do not require the balancing 
of individual cells in a serial connection, which is mandatory for lithium-based batteries. Yet 
another advantage of NiMH batteries in relation to Li-ion batteries is the relatively trouble-
free recycling process of used batteries, in which many rare earth metals are recovered [5]. 

In the case of lithium-ion batteries, the recycling process is more difficult than for other 
batteries due to the significant differences in the chemical composition of materials used for 
the production of particular types of Li-ion cells. In the case of NiMH batteries, there are also 
differences in the materials used, especially for the negative electrode, but they do not cause 
such problems in recycling as is the case with Li-ion batteries.

1.3. Comparison of the key parameters of the most important traction batteries

As mentioned earlier, during the development of electric vehicles, various types of batteries 
have been used. A comparison of the most important parameters of traction batteries used in the 
past and modern electric vehicles is presented in Table 1; lead-acid batteries were also compared. 
Nowadays, these batteries are no longer used in passenger electric vehicles. This is primarily due 
to their low energy density and low cycle life. However, they can still often be found in currently 
produced golf carts, forklifts and vehicles for transport inside workplaces. Low prices of storage 
systems and low maintenance requirements are the most important considerations. 

In modern full-size vehicles with electric drives, various types of lithium-based batteries 
are mainly used; this is especially due to their high specific energy, specific power and cycle 
life. These parameters are crucial for an electric vehicle energy storage system. Nickel-metal-
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-hydride batteries are currently used in vehicles with hybrid drives, but at the beginning of the 
present century they were used in small-series electric vehicles. Working in hybrid propulsion 
systems in the range of around 30-70% of the state of charge (SOC), nickel-metal-hydride 
batteries receive an exceptionally high durability, exceeding 10 years of operation.

Table 1.  Parameters comparison of different type batteries used in electric vehicles [27]

Key parameter Lead-Acid Ni-MH Li-ion

cell voltage [V] 2.0 1.2 3.2–3.7 1

specific energy [Wh/kg] 30–50 60–120 90–250

specific power [W/kg] ~180 up to 1300 even 2500

internal resistance [mΩ] low high very low to moderate 1

cycle life (80% DoD) 200–300 300–500 500–2000

charge time [h] 8–16 2–4 1–4

self-discharge/month [%] 5 30 <5

peak load current <5C usually <5C 2 even>30

coulombic efficiency [%] 90 90 3 99

discharge temperature [°C] –20 to 50 –20 to 65 –20 to 60

management system simple moderate very complex 4

total cost of storage system low moderate high

safety requirements thermally stable thermally stable, 
fuse protection

protection circuit mandatory

1 – depending on cell chemistry; 2 – special design for automotive purposes – even 20C; 3 – fast charging, at slow 
charging 70% max; 4 – precise control at the cell level

The comparison of batteries is not unambiguous in all aspects. This is due to the large 
number of Li-ion battery types and, to a  lesser extent, the differences it the construction of 
NiMH batteries. They differ significantly in the materials used for construction, which results 
in differences in the obtained parameters. For example, LiCo2 batteries have almost twice the 
specific energy as LiFePO4, but they are not suitable for use in vehicles due to the low allowable 
discharge current. Regarding NiMH batteries, those used in hybrid vehicles have low internal 
resistance and a relatively high allowable load current (up to 20C), which also gives them high 
power density; however, specific energy is also lower than in Table 1 – below 50 Wh/kg.

The key advantages and disadvantages of nickel-metal-hydride battery technology 
compared to Li-ion batteries in particular are listed below: 

 ▶ NiMH batteries remain cheaper than batteries made with lithium technologies when 
considering the total cost of the energy storage system.

 ▶ The basic materials necessary for storing energy are hydrogen, nickel and titanium.
 ▶ They are characterised by high durability when used properly.
 ▶ The recycling of waste batteries is much easier than is the case with Li-ion batteries.
 ▶ They have high tolerance for increased temperature and a lack of propensity for self-

ignition.
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 ▶ Complex battery management systems that are mandatory for lithium-based batteries 
are not required for NiMH batteries.

 ▶ Nickel-metal-hydride batteries can be discharged to much lower SOC than lithium-
based batteries to ensure a high cycle life.

 ▶ The memory effect is eliminated in modern NIMH batteries.
 ▶ The lower cell voltage of NiMH batteries requires higher number of cells connected in 

series to have the same voltage. This is not favourable in point of reliability.
 ▶ Currently, mass-produced NiMH batteries have a lower energy density in comparison 

to lithium-based batteries.
 ▶ Due to the intensive heat generation, an efficient battery cooling system is required.
 ▶ They have high self-discharge – up to 30% per month.

In summary, NiMH batteries have some advantages over Li-ion batteries; however, on 
key issues, such as e.g. specific energy, lithium-based batteries are currently preferred for 
application in battery-powered electric vehicles. The recent development in nickel-metal-
hydride batteries which is described in next section can change this situation. 

1.4. Recent developments in the field of NiMH batteries

The development of NiMH batteries is mainly based on the search for metal alloys with 
new structures that enable higher specific energy levels [22].

Alloys known under the names AB5 and AB2 are characterised by their ability to store 
hydrogen and their good working parameters [23]. Alloy AB5 is a mixture of nickel (B) – as 
a  metal that does not form hydrides –  with other metals that do have a  tendency to form 
hydrides, e.g. Ce, Nd, La (A). Nickel doped with other materials, e.g. Sn, Al., Co, shows 
greater stability. In turn, AB2 alloys, called Laves phases, contain metals such as Hf, Zr or Ti on 
the A side and metals like Mn, Ni or Cr on the B side. AB2 alloys are characterised by higher 
capacitances if used as negative electrodes in batteries. AB2 alloys occur in three structures:

 ▶ hexagonal C14
 ▶ regular C15
 ▶ hexagonal C36

NiMH batteries using AB2 alloys were used in the GM EV1 car in 1999. The specific energy 
in these batteries was 52 Wh/kg. Research and development work in the field of NiMH 
batteries focuses mainly on the search for new alloys for electrodes and new electrolytes. In 
general, materials for negative electrodes are called Ni-TM, where TM stands for transition 
metal; the following alloys are considered: Ni-Mn, Ni-Fe, Ni-Co and Ni-Zn. Due to the 
toxic effects of cadmium, the Ni-Cd alloy was abandoned. Of the batteries present on the 
market, the best parameters are characterised by those containing the Ni-Zn alloy [1, 22]. At 
a relatively low cost, they have a high energy density (about 70 Wh/kg) although they do not 
have a very long life, which limits their use in electric vehicles. They are mainly used in power 
backup systems (UPS). As part of a large grant funded by the US DoE, the RANGE (robust 
affordable next-generation energy storage system) project was created [22]. 



202

The global BASF company is performing intensive research on more efficient NiMH 
batteries – the goal is to obtain specific energy in the range of 600–1,200 Wh/kg, and prices 
in the range of 150 $ for 1 kWh. As the main contractor, BASF conducted intensive research 
on the development of electrode and electrolyte materials for the next-generation Ni-MH 
batteries. The main goals are low cost and high specific energy. One of the tasks performed 
by BASF was the development of high-capacity MH alloys that contain MgNi, BCC (body-
-centred cubic) alloys and Si. The second task was to obtain a substitute for the electrolyte 
currently used to reduce corrosion and for the possible improvement of the redox reaction. 
Subsequent tasks include the development of active materials for positive electrodes and 
integration into the form of ready-made battery. The final goal is to commercialize the new 
EV Energy storage. 

In the field of materials for the negative electrode, 5  alloys were tested: MgNi, Mg2Ni, 
BCC-C14, BCC and Si. Of these, the BCC-C14 alloy was rated higher, which showed high 
capacity with correct cycle stability. The capacity the BCC-C14 alloy was 30% higher than 
the classic AB5 alloy. In the research and development of the new electrolyte, many samples 
of the modified aqueous KOH were tested [20]. Research has shown that the way to increase 
energy density is to achieve higher cell voltage; therefore, the focus was on IL fluids (ionic 
liquid), consisting of only anions and cations and characterised by, among other features, high 
thermal stability, high ion conductivity and non-flammability. Finally, three variants of cells 
were made, of which the sealed pouch cell showed a specific energy of 127 Wh/kg [19].

2. Aim and scope of the work

The aim of the described work was to develop a new lightweight energy storage system 
basing on a nickel-metal-hydride battery for a light-duty electric vehicle for a golf cart type 
of vehicle which originally had a  set of lead-acid flooded batteries. The motivation for the 
authors was the fact that examples of the use of a NiMH battery in a similar light-duty electric 
vehicle were not presented in the available sources.

The developed energy storage system was composed on the basis of a battery taken from 
a  hybrid electric vehicle. This operation was aimed at significantly increasing the vehicle’s 
loading capacity by reducing its weight (by around 200 kg). The expense of this approach 
was a reduction in the vehicle’s range; however, in the case of transport within workplaces, 
there are applications in which the 10-km-range of the vehicle on a single charge is sufficient 
and the load capacity of the vehicle becomes the most important factor. In the discussed 
case, replacing batteries with a total weight of 240 kg for a nickel-metal-hydride battery with 
a weight of 40 kg allows increasing the loading capacity to 350 kg or up to over 400 kg if no 
passenger is carried. This is an increase of 130% compared to the original value. 

The used nickel-metal hydride batteries have a power density of 1,000 W/kg, which makes it 
possible to draw high current from them while maintaining a high level of durability. Lead-acid 
batteries with a similar total weight (40 kg) and a nominal voltage of 48 V have a significantly 
lower current capacity. In addition, traction batteries of this size (with a capacity of 30 Ah) that 
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are resistant to deep-cycle discharge are not produced. It would be possible to use a pack of 
starter batteries, but such batteries used in an electric vehicle would be subject to rapid wear.

In the first stage of work, after development of the new storage system and composing 
of data acquisition system, it was possible to conduct experimental tests of the vehicle. Two 
test drives were performed – one without load and one with a load of 240 kg. During the test 
drives, the vehicle’s speed, battery voltage, battery current and temperature were recorded. This 
primarily enabled calculation of the influence of weight on the energy consumption of the 
vehicle. The recorded vehicle’s speed profiles were also needed in the simulation that followed. 

The second stage of work was executed using the Matlab/ADVISOR environment. The 
aim was to develop a model of electric vehicle using a NiMH battery, which allows the fast 
simulation of energy consumption and estimation of the vehicle’s range and how this is 
affected by its weight without the need for experimental tests.

3. Development of a new storage system

3.1. Tested vehicle 

The object of the research was a light-duty vehicle with a Melex type 945DS electric drive. 
Vehicles of this kind are often used to transport goods within workplaces, as golf carts, or with 
increasing frequency to transport tourists in historical city centres. The vehicle is shown in Fig. 1.

The tested vehicle was equipped with an electric system with a nominal voltage of 48 V and 
a DC drive motor. Such motors are still popular in new vehicles of this type, mainly due to the 
low price of a DC motor with a controller compared to an asynchronous motor with an inverter. 
The basic technical data of the test vehicle with the factory battery is presented in Table 2.

Fig. 1. The tested electric vehicle
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Table 2. Technical data of the Melex 945DS tested vehicle with a factory-type battery [8]

Parameter Value Parameter Value

length x width; 
wheelbase

2660 x 1230;  
1660 mm rated armature current 100 A

net vehicle weight 380 kg rated output power 3.9 kW at 4300 rpm

vehicle capacity 2 people + 150 kg load rated torque 8.2 Nm

factory battery type Trojan T-125 (6 V) max. motor efficiency 75 %

nominal voltage 48 V  total gear ratio 16

battery capacity 
(10h) 221 Ah tyre size 145/80 B10

motor type DC, separately excited maximum speed ~30 km/h

motor symbol DV3-4006AA vehicle range ~60 km

The motor was managed using a  programmable Curtis 1266 controller designed for 
operation with a nominal voltage of 36 V or 48 V and with a maximum continuous armature 
current of 140 A. The controller was based on the MOSFET technology with the voltage, 
armature current, and excitation current adjustable by means of pulse width modulation 
(PWM). The frequency of PWM is 16 kHz. In the control circuit of the excitation winding, 
the transistors are connected in an H-bridge configuration, so that the polarity of the supply 
voltage can be changed, which allows changing the direction of motor rotation. There is the 
possibility of changing the number of configuration parameters, such as maximum speed, 
allowable motor armature and excitation currents, and generator operation. There is also the 
possibility to delay the start and intensity of the regenerative braking process. Changing of the 
controller settings is made using a dedicated Curtis 1311 programming tool.

The original electricity storage system is based on lead-acid batteries with a capacity of 
221 Ah (10 hrs.). The energy stored in the original battery pack is 10.61 kWh, which allows 
driving a distance of about 60 km.

3.2. Applied NiMH modules and development of a new battery pack

For the work described in this article, a traction battery pack from a Toyota Prius NHW11 
produced in 2000–2003 (MY ‘00) was used. The pack is composed of 38 modules with 
a nominal voltage of 7.2 V connected in series; this gives a nominal voltage of 273.6 V for 
the whole pack. The modules were manufactured by Panasonic, and in a slightly modified 
form, they were also used in the 2nd generation Prius (MY ‘03) and 3rd generation (MY ‘09) 
vehicles. The list of basic data of the NiMH battery modules used in the test vehicle is 
presented in Table 3.

As shown in Table 3, the applied batteries have a relatively low specific energy; however, 
they have a  very high specific power, which allows drawing a  high current. The nominal 
voltage of the electric system of a Melex commercial vehicle is 48 V. In order to match the 
voltage of the NiMH battery pack to the voltage of the Melex vehicle electric system five 
adjacent modules were connected in parallel. This resulted in there being seven sections of 
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five modules with an equivalent capacity of 32.5 Ah. The sections were connected in series, 
which allowed the obtaining of a nominal voltage of 50.4 V; this is a value very similar to the 
48 V mentioned above. In this way, 35 of the 38 Prius batteries in the package were used. 
Figure 2 shows a fragment of the connection diagram of the NiMH battery of the Prius MY 
‘00, as well as a battery pack after adapting the connections for use in the Melex vehicle.

A view of the rear part of the vehicle with the installed battery pack from the Prius is 
shown in Fig. 3. The combining of modules in sections was established using connectors 
made of 2-mm-thick copper sheeting.

During the tests, the battery was positioned as shown in Fig. 3. Currently work is underway 
to locate the battery in the place of the original battery (under the driver and passenger seats).

In the summary of this part of the work, Table 4  presents a  comparison of the key 
parameters of both energy storage systems: the original lead-acid system; the newly-
developed, lightweight system built on the basis of nickel-metal-hydride battery modules.

Table 3. Basic technical data of Toyota Prius NHW11 battery modules [14, 15]

Parameter Value/Description

cell type NiMH

manufacturer Panasonic

module shape prismatic

width x length x height, mm 275 x 19.6 x 106

rated voltage, V 7.2 (6 cells in series)

module capacity, Ah 6.5

module weight, kg 1.05

specific energy, Wh/kg 44.6

specific power, W/kg 1000

C-rate during discharge (peak) ~20

Fig. 2. A fragment of the Prius battery pack before (a) 
 and after adaptation for use in a Melex electric vehicle (b)
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Table 4. Comparison of key parameters of the original lead-acid and the newly-developed NiMH  
packs for a light-duty electric vehicle

Parameter Lead-acid NiMH

module rated voltage, V 6 7.2

connection type inside a module 3S 6S

module rated capacity, Ah 221 6.5

module weight, kg 30 1.05

number of modules used in the pack 8 35

type of connection of modules in the pack 8S 7S 5P

pack rated voltage, V 48 50.4

pack rated capacity, Ah 221 32.5

stored energy, kWh 10.61 1.638

pack weight, kg 240 40

specific energy for a pack, Wh/kg 44.2 41

specific power for a pack, W/kg ~180 920

allowable peak load, A ~1100 650

internal resistance of a pack, mΩ 21.0 at 99 % SOC
23.2 at 75% SOC
24.5 at 51% SOC

20.7 at 99% SOC
17.7 at 75% SOC
17.5 at 53% SOC

As mentioned earlier, 35 of the 38 NiMH modules were used in the newly-developed 
package. The remaining three unused modules remained in the package housing; to some 
extent, this reduces the specific energy and specific power of the pack. Leaving unused modules 
was necessary because, due to the expanding dimensions of modules during operation, they 
must work with appropriately small dilatations provided by the housing elements designed for 
38 modules. Removal of three unnecessary modules would require designing a new housing 
or at least the laborious retrofitting of the existing housing, which was not needed at this 
stage. The initial value of the internal resistance of the NIMH battery pack obtained a very 

Fig. 3. Rear part of the tested vehicle with NiMH battery
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similar value to the resistance of the lead-acid battery pack, even though the NiMH battery has 
a significantly lower capacity and a larger number of cells connected in series. This indicates 
the special construction of the used NiMH cells for automotive applications. As known, the 
energy losses dissipated on heat depend on the internal resistance values. At a high resistance 
value, there would also be the need for significantly more intensive cooling of the pack.

From the point of view of using low-capacity batteries in an electric vehicle, the allowable 
value of the peak load is a very important parameter. For a newly developed package it is around 
650 A, which, with sufficient reserve, exceeds the value of the maximum current drawn by the 
motor of the tested vehicle, even at dynamic acceleration. This enables the use of the same 
settings of the vehicle motor controller with the original 48 V, 221 Ah lead-acid battery pack.

3.3. Measuring path

In order to conduct measurements of the energy consumption of the tested vehicle, it was 
necessary to record the current drawn and returned to the battery and the battery voltage. The 
voltage measurement was made using a resistive voltage divider with an attenuation of 1:6 (to 
match the input range of the acquisition card), while the current was measured using a contactless 
sensor using the Hall effect with a sensitivity of 0.625 V per 150 A. In addition, the temperature 
of the battery was also recorded using a thermistor sensor. The rotational speed of the motor was 
determined based on the Hall sensor signal giving five pulses per shaft revolution. The vehicle 
speed and the distance travelled were determined using a GPS device operating at a frequency 
of 10 Hz. All signals were recorded in the measuring system on the memory card. The diagram 
of the measuring path and the main power circuit used in the test vehicle is shown in Fig. 4.

The battery temperature sensor was placed in one of the modules close to the centre of the 
pack in the space provided for this purpose.

Fig. 4. Diagram of the measuring path with the main power circuit applied in the test vehicle
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4. Results

4.1. Experimental tests

Two test drives were performed on a vehicle equipped with a NiMH battery pack. Both 
test routes were started with a battery charged to 100% SOC. In the first case, the lead-acid 
battery remained in the vehicle, which resulted in a total vehicle weight of 740 kg including 
the driver. In the second case, lead-acid batteries with a total weight of 240 kg were removed 
from the vehicle, so the gross weight of the vehicle was 500 kg. To have both speed profiles as 
similar as possible, the vehicle was driven by the same driver in both cases. Test drives were 
conducted at the Czyżyny campus of Cracow University of Technology in Krakow on roads 
with a flat and smooth surface, mainly asphalt, and with a shorter concrete section. In the area 
where the tests were performed, regular traffic has access (low to moderate intensity and at 
a speed limit of 30 km/h). In situations in which regular traffic was present, it was not possible 
to obtain two identical vehicle speed profiles for both tests. However, it was decided that the 
vehicle would be driven by one driver, maintaining the same driving style for both tests and 
the same average speed of movement across the entire ride. The same conditions produced 
very good results in earlier studies of the same vehicle equipped with lead-acid batteries (these 
results are the subject of a separate article). A linear dependence of the energy drawn from the 
battery on the distance travelled by the vehicle was reached. 

The main goal of the research was to determine the energy consumption of a  vehicle 
equipped with a  set of NiMH batteries and the influence of its total weight on energy 
consumption. The amount of energy taken from the battery while driving Edrv+ was determined 
by the equation (1):

 E V Idt Idrv t

t

! � � +/ , for 0
0

1  (1)
where:
V  – battery voltage, V
I  – battery current, A
t  – time, s
t0  – time of the start of driving, s
t1  – time of the end of driving, s

The amount of energy delivered to the battery Edrv- during regenerative braking was 
determined by the equation (2): 

 E V Idt Idrv t

t

� � � */ , for 0
0

1  (2)

Finally, the balance of energy used during driving, including the energy returned to the 
battery during regenerative braking, was calculated using formula (3):

 E E Edrv drv drv� ! �! �0 8.  (3)
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The value of 0.8 refers to the coulombic efficiency of the used battery. This means that on 
average, 80% of the charge returned to the battery raises its charge, the rest is dissipated to 
heat. The obtained value was determined using a diagnostic tester based on the registration of 
the battery charging current and the SOC increment in a hybrid-drive management system. 
The examined vehicle uses NiMH batteries with parameters very similar to those used in this 
work. Coulombic efficiency values adopted in the hybrid vehicle manufacturer’s calculation 
model are also confirmed in other written materials, e.g. [24].

Figure 5 shows plots of the current and voltage of the battery while driving a vehicle with 
a gross weight of 740 kg.

The open-circuit battery voltage Voc at the beginning of the measurement was 55.6 V. 
After finishing the drive, the Voc voltage was 51.4 V. The lowest recorded voltage during the 
acceleration of the vehicle with a partially discharged battery was 46.71 V. The battery current 
during the acceleration of the vehicle often exceeded 250 A, reaching a maximum value of 
287.1 A. The highest value of the current during regenerative braking was 48.4 A.

Figure 6 shows the plot of vehicle speed and battery temperature over time while driving 
a vehicle with a total weight of 740 kg.

Fig. 5. Battery current and battery voltage as a function  
of time during the test drive of vehicle with a weight of 740 kg

Fig. 6. Vehicle speed and battery temperature as a function  
of time during the test drive of vehicle with a weight of 740 kg
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The maximum vehicle speed was 31.9 km/h and the temperature of the battery increased 
from an initial value of 19°C to a maximum value of 24.5°C obtained around 1,080 seconds 
after the start of the test drive.

Figure 7 shows the current and voltage course of the battery when driving a vehicle with 
a weight of 500 kg.

The open-circuit battery voltage Voc at the beginning of the measurement was 55.59 V. 
Following completion of the route, the Voc voltage was 52.05 V. The lowest recorded voltage 
during the acceleration of the vehicle was 47.91 V. Battery current during the acceleration of 
the vehicle did not exceed 250 A reaching the maximum value of 238.6 A. The highest value 
of current during regenerative braking was 51.9 A.

Figure 8 shows a plot of vehicle speed and battery temperature over time while driving 
a vehicle with a weight of 500 kg.

The maximum vehicle speed reached 33.84 km/h and the temperature of the battery 
increased from an initial value of 18.9 °C to a maximum value of 22.8 °C at the end of the test drive.

A summary of the most important results obtained for both test drives is shown in  
Table 5.

Fig. 7. Battery current and battery voltage as a function  
of time during the test drive of vehicle with a weight of 500 kg

Fig. 8. Vehicle speed and battery temperature as a function  
of time during the test drive of vehicle with a weight of 500 kg
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Table 5. Results of both of the test drives

Experimental test results Vehicle 
weight 740 kg

Vehicle  
weight 500 kg

test duration, s 1512.1 1600.7

distance travelled, km 5.817 5.953

maximum current drawn from the battery, A 287.1 238.6

maximum regenerative braking current. A 51.9 48.4

minimum battery voltage under load, V 46.71 47.91

energy drawn from the battery Edrv+, kWh 0.856 0.707

energy of regen. braking measured on the battery Edrv-, kWh -0.061 -0.051

energy of regen. braking stored in the battery, kWh -0.049 -0.041

energy balance Edrv, kWh 0.807 0.666

specific energy consumption, kWh/km 0.139 0.112

specific energy consumption per 1 t of vehicle weight, kWh/(km·t) 0.187 0.224

maximum vehicle speed, km/h 31.9 33.84

As can be seen in Table 5, the specific energy consumption for a vehicle with a 32% lower 
weight is lower by only 20%; thus, specific energy consumption related to one ton of vehicle 
weight is significantly higher in the case of the lower-weight vehicle.

4.2. ADVISOR software and vehicle model

The simulation model of the tested vehicle was executed in the Advisor program [11]. 
The Advisor environment, in this case release r0116, uses the power of the Matlab/Simulink 
scientific calculation package [26]. The Advisor environment allows, among other features, the 
evaluation of an energy management strategy for an electric vehicle’s propulsion system. The 
subsystem models used in the program are based on test data and are quasi-static, assuming 
constant values in a  given calculation step. The user must provide measured or estimated 
data that define the vehicle and its components. The program’s construction is modular, 
which enables the easy modification of components. Figure 9 shows the course of simulation 
calculations with separated blocks which correspond to individual vehicle components. 
Additionally, the main test vehicle parameters used in the developed model are presented in 
red boxes. Blue arrows indicate the modules in which appropriate parameters are defined.

As can be seen in Fig. 9, in each block, the required values of vehicle speed and torque are 
converted, taking into account the available values. In the first block (drive cycle), the required 
vehicle speeds are defined for each second of the cycle. In each subsequent block, up to the 
electric motor that produces the drive torque, losses of energy at this stage conversion are 
taken into account. Finally, the values of the torque required in a given step are calculated. This 
information is then passed to the preceding blocks in which the real values are determined, 
taking into account input data and losses on the energy conversion path. Finally, the ‘veh’ 
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block calculates the vehicle speed after taking into account the traction force; the result is 
used to determine the acceleration value in the next step.

The simulation uses a  simple thermal model of a  NiMH battery in connection with 
parallel air cooling. The operating parameters of the battery are characterised by the serial 
connection of the internal resistance of the battery and voltage at the terminals of the battery 
being treated as an ideal voltage source. The battery power is limited by the maximum value 
that can be supplied by the system on the one hand and by the maximum power that the 
motor can take on the other. The model uses a parallel cooling air flow along each battery 
module. This approach ensures a fairly even temperature distribution between the modules 
and the individual cells. The simulation model of the NiMH battery used for the tested vehicle 
is based on the data obtained in the laboratory tests of NREL [26]. The internal resistance of 
the cells is shown in the form of a look-up table indexed by the level of the battery cells SOC. 
Separate tables are valid for the charging mode and for the discharging mode. Based on this 
data, an open circuit voltage VOC is obtained for a module composed of six cells connected 
in series. The VOC values are also presented in the model in the form of an array indexed with 
the SOC level. The value of the available power is the result of the model’s operation. The 
electrical parameters calculated in the model are given as follows:

Battery power P is calculated using formula (4): 
 P = (VOC · I) – RI2 (4)
where:
VOC – open-circuit voltage of battery, V
R – battery internal resistance, Ω
I – battery current, A

Fig. 9. Data flow in the Advisor model of the electric vehicle  
with test vehicle parameters used in the developed model

Abbreviations in Fig. 9:
dc – drive cycle
veh – vehicle
wh – wheel
fd – final drive
gr – gear
m/g – motor, generator, controller
pb – power bus
bat – energy storage system
CD – drag coefficient
FA – vehicle frontal area

CG – centre of gravity height
Wb – wheelbase
rr – rolling resistance coefficient
Wr –wheel radius
G – gear ratio (total for gr and fd)
Imax – motor maximum current
Vmin – motor minimum voltage
Cmax – battery capacity
Vn – battery nominal voltage
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After transformation, the following formula (5) is obtained:

 RI2 – (VOC · I) + P = 0 (5)

From the two possible solutions, one rejects the solution in which the same power is 
obtained through extremely high currents and low voltages.

The SOC calculation provides the present amount of charge in the battery and is calculated 
using formula (6) based on values of battery capacity CMAX and battery charge used up to the 
moment of SOC calculation CUS:

 SOC
C C

C
MAX US

MAX

�
�

 (6)

The electric motor model is based on an efficiency look-up table, which is indexed by the 
rotational speed of the rotor and the motor torque. The available motor torque is calculated 
on the basis of the available power. The model takes into account the power losses in the 
form of heat excreted externally through convection, radiation and heat exchange in the 
cooling system. The vehicle model used in the simulation is based on classic vehicle dynamics 
equations and takes into account the rolling resistance, aerodynamic drag and the strength 
necessary to climb a gradient. First, the traction force for a given acceleration is calculated, 
and then the acceleration achieved at a given traction force. During the calculation step (1s), 
the vehicle speed is the mean value of the speed at the end of the previous calculation step and 
the speed required at the end of the current step.

Creation of the calculation model consists of setting the required parameters, e.g. motor 
parameters, vehicle weight, gear ratio and, motor efficiency map. A  model of the applied 
Prius modules was implemented in Advisor; this simplified creating the vehicle model. The 
remaining required parameters were adopted from the technical data set of the tested vehicle 
– the most important of these are presented in Fig. 9. 

4.3. Simulation results

Both of the actual test drives were characterised by a similar style of driving and distance 
covered. The speed profiles of both test runs were registered and used to prepare driving tests 
for simulations. For driving cycles in the simulations, digitised speed profiles of real vehicles 
registered during road tests were used. In the same way as in the case of experiments, two 
simulation tests were carried out:

1. Test drive of a vehicle with a total weight of 740 kg
2. Test drive of a vehicle with a total weight of 500 kg
The simulation results for the case of the vehicle with a total weight of 740 kg are shown 

in Fig. 10.
Similarly, Fig. 11 shows the results for the vehicle with a total weight of 500 kg.
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Fig. 10. Results of the simulation of EV with a total weight of 740 kg

Fig. 11. Results of the simulation of EV with a total weight of 500 kg
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Due to the slightly different speed profiles, a shorter distance for the vehicle weighing 500 
kg was achieved. The lighter vehicle used a little less energy – the specific energy consumption 
was 0.14 kWh/km for the vehicle with a weight of 740 kg and 0.12 kWh/km for the vehicle 
with a weight of 500 kg. The maximum values of the current drawn from the batteries reached 
322.7 A  and 294.85 A  and occurred during fast acceleration values of the vehicle. Table 
6 shows the main results of the driving test simulation in both cases – the vehicle with a total 
weight of 740 kg and the vehicle with a total of weight 500 kg.

Table 6. Driving test simulation results for both cases of total vehicle weight

Simulation test results Vehicle weight 
740 kg

Vehicle weight 
500 kg

drive test duration, s 1370 1370

distance travelled, km 5.57 5.23

used battery charge, % SOC 45 35

maximum current drawn from the battery, A 322.7 294.85

maximum regenerative braking current, A 25.13 22.5

maximum battery voltage under load (at start), V 55.7 55.5

minimum battery voltage under load (end of test), V 42.0 42.89

energy consumed during the test, kWh 0.79 0.62

specific energy consumption, kWh/km 0.14 0.12

maximum motor torque, Nm 26.73 22.91

maximum vehicle speed, km/h 31.15 33.7

The results of the vehicle driving simulation using the same conditions as the actual test 
drives indicated strong conformity of the specific energy consumption between simulation 
and reality. Therefore, in the next step, further simulations were performed to estimate the 
range of the vehicle equipped with a  newly developed lightweight energy storage system. 
It was assumed that the vehicle would travel starting from 100% SOC down to 10% SOC, 
which is a safe value for NiMH batteries. Unlike lead-acid batteries, as well as most lithium-
based batteries, this value does not significantly reduce the NiMH battery life cycle. Figure 12 
presents the result of the simulation aimed at showing the maximum range of the vehicle with 
a total weight of 740 kg using 90% SOC. The test was conducted until 10% of the initial charge 
remained in the battery. To estimate the range, a multiplied, the same real speed profile was used.

After 2960 s and 90% of battery charge consumed, the tested vehicle travelled 10.92 km. 
At the end of the simulation, as a result of the degradation of the electrical parameters of the 
battery, an increasing discrepancy between the required speed and the resultant simulation 
began to appear. The maximum discrepancy reached 6 km/h. Figure 13 presents the result of 
a similar simulation aimed at showing the maximum range of the vehicle with a total weight 
of 500 kg using 90% SOC.
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Similar to the previous case, as a result of the degradation of the electrical parameters of the 
battery, an increasing discrepancy between the required speed and the resultant simulation 
began to appear at the end of the simulation. The maximum discrepancy reached 1.7 km/h. 
Non-compliance of the real speed in relation to the required speed is not high and occurs 
incidentally. The results obtained in both cases (total vehicle weights of 740 kg and 500 kg) 
are listed in Table 7.

Table 7. Vehicle range and energy parameters after using 90% of battery energy

Test results after using 90% of battery energy Vehicle weight 740 kg Vehicle weight 500 kg

vehicle range, km 10.92 12.98

test duration, s 2,960 3,469

energy consumed, kWh 1.56 1.56

specific energy consumption, kWh/km 0.14 0.12

regenerative braking energy, kWh 0.03 0.022

The estimated vehicle range was slightly below 11 km for the vehicle with the higher 
weight, and almost 13 km for the vehicle without load; this is as predicted. However, it should 
be remembered that this relates to a new pack of batteries. In the case of used batteries, it will 
undeniably be lower, depending on the degree of battery wear.

Fig. 12.  EV range with a weight of 740 kg after using 90% of the charge

Fig. 13.  EV range with a weight of 500 kg after using 90% of the charge
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5. Discussion 

Analysing the results of experimental studies, it can be concluded that:
 ▶ When driving with a  higher load, the battery current has higher peak values during 

acceleration; this is due to the increased motor load and the higher inertia forces of the 
heavier vehicle.

 ▶ During braking, slightly higher peak battery currents were obtained for the vehicle with 
the lower weight; this results from the slightly higher maximum speed of the vehicle 
without an additional load.

 ▶ The specific energy consumption of the vehicle with the higher weight is slightly 
higher than that of the vehicle without an additional load; this is caused by the high 
participation of the motion resistance of the vehicle independent of load, such as 
parasitic frictional losses in the drivetrain or and air resistance force.

 ▶ The temperature of the battery in the vehicle with a higher weight obtained a higher 
value at the end of the test drive; this is due to the higher average battery current when 
driving with an additional load.

The results of the simulations performed on the vehicle model in the Advisor program 
indicated that a good convergence of the results of specific energy consumption depending 
on the vehicle weight was obtained. This was the overriding goal of the simulation research 
and this goal should be considered as having been achieved. The results for the less important 
parameters, i.e. peak currents and battery voltage, show some discrepancies in relation to 
the results of measurements on the real vehicle. This is due to the inevitable simplifications 
adopted in the model resulting from a  lack of complete data regarding, for example, the 
motor efficiency map. An improvement in this matter would require a series of tedious motor 
tests. Discrepancies between the battery temperature results obtained in the experiment and 
the results of simulations from the difference in the place where the battery temperature 
is determined in the simulation and where it is measured in the vehicle. The temperature 
obtained by simulation refers to the inside of the battery; however, it is in fact only possible 
to measure the temperature in the hollow of the module housing made of plastic. Simulations 
carried out in the Advisor program also provide results that may be problematic to obtain in 
real-world measurements. This applies, for example, to the curve of motor torque during the 
test. The maximum values of this parameter are included in Table 6. It should also be noted 
that the simulation with the used tool also has some limitations. It is not possible to take 
into account the variable slope of the road or external factors such as wind. In the presented 
situation, this is not a serious problem, because the place of application of the vehicle under 
consideration (e.g. in a factory) significantly limits the possibility of vehicle exposure to such 
variable factors. 

Using the acquired experience, further work in this topic will be executed in the direction of 
developing a system that determines the actual state of charge of the battery and the estimated 
range of the vehicle. It is important to note that the test vehicle is also used in the work of the 
student scientific association, in which a prototype of a range-extender with a low-emission 
internal combustion engine powered with hydrogen is being developed. 
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6. Summary and conclusions

The newly-developed lightweight energy storage system based on NiMH batteries has 
fulfilled its task in the light-duty electric vehicle. The drive system of the vehicle functions 
properly. The assumed goal of the work has been achieved. It was possible to significantly 
increase the loading capacity of the vehicle at the expense of reducing the range. The other 
main traction parameters of the vehicle were retained. From the user perspective, the vehicle 
operates no worse than it did when equipped with the original lead-acid battery. Due to 
slightly higher rated voltage of the newly-developed battery pack and the lower weight of the 
unloaded vehicle, the maximum speed increases by 2 km/h compared with a vehicle equipped 
with the factory lead-acid batteries. Determining the behaviour of a new battery in the long 
term would require more extensive exploitation tests.

Simulation tests confirmed that the vehicle and battery model developed in the Advisor 
program meets the main expectations, i.e. it allows estimating the vehicle’s range depending 
on the load or style of the vehicle with satisfactory accuracy. It should be remembered 
that the driving methods (speed profile) was not exactly the same during both test drives; 
however, the authors made every effort to reach the greatest possible similarity of profiles 
using the available resources. A  sufficient development of the mathematical model of 
the vehicle created in the Matlab/Advisor environment allows conducting other more 
extensive predictive research in the future, especially regarding the range of the vehicle 
depending on its load. This can be achieved in a short time, without conducting additional 
experimental tests.

The vehicle range estimated by way of simulation with battery levels from full charge 
to 10% SOC was approximately 13 km for a  vehicle with a  new battery and no load. For 
a vehicle with a 240 kg load, a range of around 11 km was obtained, which confirmed the 
initial predictions about the range of the vehicle with a NiMH battery of lower capacity –  
about 10 km. Real-world full-load vehicle tests will be possible after the integration of a new 
battery in the space provided for the mounting of the original lead-acid battery and the 
installation of a cargo box.

During the experimental tests, the minimum intensity of regenerative braking was 
defined in order to minimise the impact of this process on the obtained results of energy 
consumption by the vehicle. NiMH batteries can tolerate high-current charging well (unlike 
lead-acid batteries), hence the possibility to adjust the generating braking parameters to 
a higher intensity. This would certainly increase the braking energy recovery rate, reducing 
the energy consumption of vehicle motion. The next works in this topic will be conducted 
in this area.

In summary, in special applications of light-duty electric vehicles, the nickel-metal-hydride 
battery originally foreseen for a hybrid vehicle can be an interesting alternative to not only the 
commonly used lead-acid batteries, but also to the recently increasingly appearing lithium-ion 
batteries. However, recent developments in large-capacity NiMH batteries described in the 
first part of this work give hope that this technology may also appear once again in full-size 
electric vehicles.



219

This research was conducted in the framework of task No. M-4/443/2017/DS, which was a subsidy for 
research granted by the Ministry of Science and Higher Education of the Republic of Poland.

The authors of the article would like to thank the Head of the Institute of Automobiles and Internal 
Combustion Engines of Cracow University of Technology, Prof. Marek Brzeżański for acquiring the Prius 
battery pack from the Toyota Motor Poland Company for research purposes, who was represented in this 
process by Dr. Andrzej Szałek, to whom the authors are also grateful.

References

[1] Aditya J.P., Ferdowsi M., Comparison of NiMH and Li-ion batteries in automotive 
applications, Proceedings of 2008 IEEE Vehicle Power and Propulsion Conference, 
Harbin, China, 3–5 September 2008, 10.1109/vppc.2008.4677500.

[2] Bazaras Z., Timofeev B., Vasilieva N., Vilkauskas A., Raslavicius L., Keršys R., Current 
state of the global electric power engineering, Proceedings of 16th International Scientific 
Conference Transport Means 2012, Kaunas, Lithuania, 25–26th October 2012, 267–269.

[3] Brooke L, Not dead yet: The resilient ICE looks to 2050, Automotive Engineering, vol. 
5(4), 2018, 22–23.

[4] Feng X., Ouyang M., Liu X., Lu L., Xia Y., He X., Thermal runaway mechanism of lithium 
ion battery for electric vehicles: A review, Energy Storage Materials, vol. 10, 2018, 246–
267, 10.1016/j.ensm.2017.05.013.

[5] Gaines L., The future of automotive lithium-ion battery recycling: Charting a  sustainable 
course, Sustainable Materials and Technologies, 1–2, 2014, 2–7, 10.1016/j.
susmat.2014.10.001.

[6] Hao H., Mu Z., Jiang S., Liu Z., Zhao F., GHG Emissions from the Production of Lithium-
Ion Batteries for Electric Vehicles in China, Sustainability, vol. 9(4), 2017, 504, 10.3390/
su9040504.

[7] Johnson N.M., Battery technology for CO2 reduction, [in:] Folkson, R., (Ed.): Alternative 
Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, 
Woodhead Publishing, Sawston, 2014, 582–631, 978-0-85709-522-0.

[8] Juda Z., Noga M., The influence of battery degradation level on the selected traction 
parameters of a light-duty electric vehicle, IOP Conf. Ser.: Mater. Sci. Eng., vol. 148, 2016, 
012042, 10.1088/1757-899x/148/1/012042.

[9] Karden E., Development trends for future automobiles and their demand on the battery, [in:] 
Garche J., Karden E., Moseley P. T., Rand D.A.J., (Eds.): Lead-Acid Batteries for Future 
Automobiles, Elsevier , Amsterdam, 2017, 3–25, 978-0-44463-700-0.

[10] Luo W., Zhu S., Gong J., Zhou Z., Research and Development of Fire Extinguishing 
Technology for Power Lithium Batteries, Procedia Engineering, vol. 211, 2018, 531–537, 
10.1016/j.proeng.2017.12.045.



220

[11] Markel T., Brooker A., Hendricks T., Johnson V., Kelly K., Kramer B., O’Keefe M., 
Sprik S., Wipke K., ADVISOR: A  systems analysis tool for advanced vehicle modeling,  
J of Power Sources, vol. 110(2), 2002, 255-266, 10.1016/s0378-7753(02)00189-1.

[12] Noga M., Various aspects of research of the SI engine with an additional expansion 
process, MATEC Web of Conferences, vol. 118, 2017, 00017, 10.1051/
matecconf/201711800017.

[13] Noga M., Juda Z., Energy Efficiency of a Light-Duty Electric Vehicle, Proceedings of 21st 
International Scientific Conference Transport Means 2017, Juodkrantė, Lithuania, 
20-22 September 2017, 78–85.

[14] Onomura Y., Inazu M., Ito M., Minohara T., Nozaki K., Secondary Battery Development 
for Hybrid Vehicles at Toyota, Toyota Technical Review, vol. 57(2), 2011, 9–18.

[15] Saga K., Development of Powertrain Technology for Even Better Fuel Efficiency. Toyota 
Technical Review, vol. 60, 2014, 4–12.

[16] Shin J.W., Kim J.O., Choi J.Y., Oh S.H., Design of 2-speed transmission for electric commercial 
vehicle, International Journal of Automotive Technology, vol. 15(1), 2014, 145–150, 
10.1007/s12239-014-0016-8.

[17] Ślaski G., Ohde B., A  statistical analysis of energy and power demand for the tractive 
purposes of an electric vehicle in urban traffic – an analysis of a short and long observation 
period, IOP Conf. Ser.: Mater. Sci. Eng., vol. 148, 2016, 012027, 10.1088/1757-
899X/148/1/012027.

[18] Xing Y., Ma E.W., Tsui K.L., Pecht M., Battery Management Systems in Electric and Hybrid 
Vehicles, Energies, vol. 4(11), 2011, 1840-1857, doi:10.3390/en4111840.

[19] Yan S., Meng T., Young K., Nei J., A Ni/MH Pouch Cell with High-Capacity Ni(OH)2, 
Batteries, vol. 3(4), 2017, 38, 10.3390/batteries3040038.

[20] Yan S., Nei J., Li P., Young K., Ng, K., Effects of Cs2CO3 Additive in KOH Electrolyte Used 
in Ni/MH Batteries, Batteries, vol. 3(4), 2017, 41, 10.3390/batteries3040041.

[21] Young K.H., Research in Nickel/Metal Hydride Batteries 2016, Batteries, vol. 2(4), 2016, 
31, 10.3390/batteries2040031.

[22] Young K.H., Ng K.Y.S., Bendersky L.A., A Technical Report of the Robust Affordable Next 
Generation Energy Storage System-BASF Program, Batteries, vol. 2(1), 2016, 2, 10.3390/
batteries2010002.

[23] Zhu J.H., Liu C.T., Pike L.M., Liaw P.K., A thermodynamic interpretation of the size-ratio 
limits for laves phase formation, Metallurgical and Materials Transactions A, vol. 30(5), 
1999, 1449–1452, 10.1007/s11661-999-0292-5.

[24] Zhu W.H., Zhu Y., Davis Z., Tatarchuk B.J., Energy efficiency and capacity retention of Ni–
MH batteries for storage applications, Applied Energy, vol. 106, 2013, 307-313, 10.1016/j.
apenergy.2012.12.025.

[25] 20 Truths About the GM EV1 Electric Car, http://web.archive.org/web/20090123001021/
http://www.greencar.com:80/features/gm-ev1/ (access: 30.06.2018).

[26] ADVISOR Documentation, http://adv-vehicle-sim.sourceforge.net/advisor_doc.html 
(date of access 2018-06-30).



221

[27] BU-107: Comparison Table of Secondary Batteries, https://batteryuniversity.com/learn/
article/secondary_batteries (access: 15.05.2018).

[28] Patent encumbrance of large automotive NiMH batteries, https://en.wikipedia.org/wiki/
Patent_encumbrance_of_large_automotive_NiMH_batteries (access 30.06.2018).

If you want to quote this article, its proper bibliographic entry is as follow: Noga M., Juda Z., The application of nimh batteries 
in a light-duty electric vehicle, Technical Transactions, Vol. 1/2019, pp. 197–222.


