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A CUT-FREE PROOF SYSTEM

FOR A PREDICATE EXTENSION

OF THE LOGIC OF PROVABILITY

A b s t r a c t. In this paper, we introduce a proof system

NQGL for a Kripke complete predicate extension of the logic GL

of provability. While GL is defined by K and the Löb formula

�(�p ⊃ p) ⊃ �p, NQGL does not have the Löb formula as its

axiom, but has a non-compact rule, that is, a derivation rule

with countably many premises, instead. We show that NQGL

enjoys cut admissibility and is complete with respect to the class

of Kripke frames such that for each world, the supremum of the

length of the paths from the world is finite.
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.1 Introduction

In this paper, we introduce a cut-free proof system for a Kripke complete

predicate extension of GL, where GL is a propositional normal modal logic

defined by K and the Löb formula

�(�p ⊃ p) ⊃ �p. (1)

GL is well-known as the logic of provability, in the sense that a proposi-

tional modal formula φ is in GL if and only if f(φ) is provable in the Peano

arithmetic PA for every arithmetical interpretation f (e.g. [3]).

A Kripke frame (W,R) is said to be conversely well-founded, if there

exists no countably infinite list (wi)i∈N of elements of W which satisfies

(wi, wi+1) ∈ R for any i ∈ N, and is said to be of bounded length, if for

any w ∈ W the supremum of the length of the lists w0, w1, . . . , wn which

satisfy (wi, wi+1) ∈ R and w0 = w is finite. We write FI, BL, and CW for

the classes of transitive Kripke frames which are finite and irreflexive, of

bounded length, and conversely well-founded, respectively. For any class

C of Kripke frames, we write MP(C) and MQ(C) for the sets of proposi-

tional modal formulas and predicate modal formulas which are valid in C,

respectively. It is known (e.g. [3]) that

GL = MP(FI) = MP(CW).

Therefore,

GL = MP(BL).

However, the situation in predicate extensions of GL is not so clear.

Let QGL be the smallest predicate normal modal logic which includes GL

as its propositional fragment. Let QPL(PA) be the set of predicate modal

formulas defined by

QPL(PA) = {φ | PA � f(φ) for every interpretation f }.

It is shown in [8] that QGL � MQ(CW) and QGL is incomplete with

respect to any classes of Kripke frames. It is also proved in [8] that

QGL � QPL(PA), that is, QGL is arithmetically sound but incomplete,

and QPL(PA) �� MQ(FI). Subsequently, [1] shows that if a closed predi-

cate modal formula φ is not valid in a finite irreflexive Kripke model with

finite domains then there exists an interpretation f such that PA �� f(φ),
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and [6] shows that MQ(CW) �� QPL(PA). To summarize these results, we

have the following:

� MQ(FI with finite domains)

�

�� MQ(FI)

�

QPL(PA) MQ(BL)

�
�� MQ(CW)

�

� QGL

. (2)

On the other hand, [15] introduces a logic QGLb, a predicate extension

of GL, in which all occurrences of individual variables in a scope of a modal

operator are considered to be bound, and

�φ → �∀xφ

is an axiom schema. It is proved in [15] that QGLb is both arithmeti-

cally complete and Kripke complete with respect to FI, under the above

restriction in the construction of formulas.

Though each of MQ(CW), MQ(BL), and MQ(FI) is not arithmeti-

cally sound nor complete as described in (2), it could be of some interest as

a problem of pure modal logic to give a cut-free proof system for a Kripke

complete predicate extension of GL without any restriction in the construc-

tion of formulas. In this paper, we introduce a proof system NQGL, which

is a modal extension of Gentzen’s sequent calculus LK for predicate logic,

and show the admissibility of the cut-rule and Kripke completeness with

respect to BL. A sequent system for GL is introduced in [7], by means of

the following rule for modal operator:

�Γ,Γ,�φ → φ

�Γ → �φ
. (3)

A proof of the cut-elimination theorem of this system is given in [13] by

a syntactic method, and a semantic proof is given in [2]. However, it is

proved in [2] that the simple predicate extension of this system does not

admit cut-elimination. For a predicate extension with a restriction in the
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construction of the formulas, a cut-free proof system for QGLb is intro-

duced in [9], by extending the system of [7]. On the other hand, the system

NQGL does not include (1) nor (3), although the propositional fragment

of NQGL axiomatizes GL. Instead, it has a non-compact rule, that is,

a derivation rule with countably many premises. In [4] and [10], a gen-

eral theory for model existence theorem for propositional modal logic with

non-compact rules is given, also, in [11], for their predicate extension with

Barcan formula

BF = ∀x�φ ⊃ �∀xφ.

Kripke completeness of the system defined by NQGL and BF follows from

the main theorem of [11].

The outline of the paper is the following: In Section 2, we give basic

definitions for syntax and semantics. In Section 3, we introduce the system

NQGL. In Section 4, the notions of finitely consistent pairs and saturated

pairs are introduced. In Section 5, we show Kripke completeness of NQGL

with respect to BL, as well as the admissibility of the cut-rule.

.2 Preliminaries

The language we consider consists of the following symbols:

1. a countable set V of variables;

2. � and ⊥;

3. logical connectives: ∧, ¬, ⊃;

4. quantifier: ∀;

5. for each n ∈ N, countably many predicate symbols P , Q, R, · · · of

arity n;

6. modal operator �.

The set Φ(V) of formulas over V is the smallest set which satisfies:

1. � and ⊥ are in Φ(V);
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2. if P is a predicate symbol of arity n and x1, . . . , xn are variables in V
then P (x1, . . . , xn) is in Φ(V);

3. if φ and ψ are in Φ(V) then (φ ∧ ψ) and (φ ⊃ ψ) are in Φ(V);

4. if φ ∈ Φ(V) then (¬φ) and (�φ) are in Φ(V);

5. if φ ∈ Φ(V) and x ∈ V then (∀xφ) ∈ Φ(V).

As usual, ∨ and ∃ are the duals of ∧ and ∀, respectively. The symbol � is

an abbreviation of ¬�¬, and for each n ∈ N, �n and �n denote n-times

applications of � and �, respectively. For each set S of formulas, we write

�S and �−1S for the sets

�S = {�φ | φ ∈ S}, �−1S = {φ | �φ ∈ S}

of formulas, respectively. For each formula φ, we write Var(φ) for the set of

variables which have some free or bound occurrences in φ. For each set S

of formulas, Var(S) denotes the set
⋃

φ∈S Var(φ). For each subset U of V,

Φ(U) = {φ ∈ Φ(V) | Var(φ) � U}.

A Kripke frame is a pair (W,R), where W is a non-empty set and R is

a binary relation on W . A system of domains over a frame F = (W,R) is

a family D = (Dw)w∈W of non-empty sets such that for all w1 and w2

in W ,

(w1, w2) ∈ R ⇒ Dw1 � Dw2 .

A predicate Kripke frame over F = (W,R) is a triple (W,R,D), where D is

a system of domains over F . A Kripke model is a four tuple (W,R,D, I),

where (W,R,D) is a predicate Kripke frame and I is a mapping called an

interpretation which maps each pair (w,P ), where w is a member of W

and P is an n-ary predicate symbol, to an n-ary relation I(w,P ) � (Dw)
n

over Dw. The relation |= among a Kripke model M = (W,R,D, I), a world

w ∈ W , and a closed formula φ is defined inductively as follows:

1. M,w |= �, M,w �|= ⊥;

2. for any predicate P of arity n,

M,w |= P (d1, . . . , dn) ⇔ (d1, . . . , dn) ∈ I(w,P );
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3. M,w |= φ ∧ ψ ⇔ M,w |= φ and M,w |= ψ;

4. M,w |= φ ⊃ ψ ⇔ M,w �|= φ or M,w |= ψ;

5. M,w |= ¬φ ⇔ M,w �|= φ;

6. M,w |= ∀xφ ⇔ M,w |= φ[d/x] for any d ∈ Dw;

7. M,w |= �φ ⇔ (w,w′) ∈ R implies M,w′ |= φ for any w′ in W .

The following lemma holds immediately:

Lemma 2.1. For any Kripke model M = (W,R,D, I), the underlying

frame (W,R) is of bounded length if and only if for any w ∈ W there exists

some n ∈ N such that M,w |= ¬�n�.

Validity of a non-closed formula is defined by the validity of the universal

closure of it. Let φ be a formula. If every world w in a Kripke model M

satisfies M,w |= φ, we write M |= φ. If every Kripke model M over a frame

F satisfies M |= φ, we write F |= φ. If every F in a class C of Kripke frames

satisfies F |= φ, we write C |= φ.

.3 Non-compact proof system for predicate extension of the

logic of provability

In this section, we introduce a proof system NQGL for a predicate extension

of GL. The proof system NQGL is a variant of Gentzen-style sequent

calculus. A sequent Γ → ∆ is defined to be a pair of finite sets Γ and ∆

of formulas. The axiom schemta of NQGL are p → p, → �, ⊥ →, and the

derivation rules of NQGL are the following:

Set
Γ → ∆

Γ′ → ∆′ (where Γ � Γ′ and ∆ � ∆′)

Cut
Γ → ∆, φ φ,Λ → Ξ

Γ,Λ → ∆,Ξ

Conjunction

Γ → ∆, φ Γ → ∆, ψ

Γ → ∆, φ ∧ ψ

φ,Γ → ∆

φ ∧ ψ,Γ → ∆

ψ,Γ → ∆

φ ∧ ψ,Γ → ∆
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Implication
φ,Γ → ∆, ψ

Γ → ∆, φ ⊃ ψ

Γ → ∆, φ ψ,Λ → Ξ

φ ⊃ ψ,Γ,Λ → ∆,Ξ

Negation
φ,Γ → ∆

Γ → ∆,¬φ
Γ → ∆, φ

¬φ,Γ → ∆

For all
Γ → ∆, φ[y/x]

Γ → ∆, ∀xφ
φ[z/x],Γ → ∆

∀xφ,Γ → ∆

Here, y is a variable in V which does not occur in any formulas in

the lower sequent, and z is any variable in V.

Box
�Γ,∆ → φ

�Γ,�∆ → �φ

Boundedness of length

Γ → ∆,�n� (for any n ∈ N)
Γ → ∆

Here, the set of upper sequents is countably infinite.

For any sequent Γ → ∆, we write �NQGL Γ → ∆ if it is derivable in

NQGL. A formula φ is said to be derivable in NQGL, if �NQGL→ φ. If this is

the case, we write �NQGL φ. It is easy to see that the rule Box is equivalent

to �p ⊃ ��p plus standard necessitation rule

Γ → φ

�Γ → �φ
.

The rule Boundedness of length denotes that
∧
n∈N

�n1 = 0 (4)

holds in the Lindenbaum algebra of the logic defined by NQGL. Note that if

a Boolean algebra with operators satisfies (4), the following equation holds

in it, either: ∧
n∈N

��n1 = �0.

Theorem 3.1. (Soundness of NQGL). If �NQGL φ, then BL |= φ, for

any formula φ.
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.4 Finitely consistent pairs and saturated pairs

In this section, we introduce some notions which are used to show the

Kripke completeness and the admissibility of the cut-rule for NQGL. We

write NQGL− for the cut-free fragment of NQGL, and �NQGL− Γ → ∆ if

a sequent Γ → ∆ is derivable in NQGL−.

Definition 4.1. A pair (S, T ) of sets of formulas is said to be finitely

consistent if for any finite sets S′ � S and T ′ � T ,

��NQGL− S′ → T ′.

Definition 4.2. Let U be a set of variables. A finitely consistent pair

(S, T ) of subsets of Φ(U) is said to be U-saturated, if the following conditions
are satisfied:

1. If φ1∧φ2 ∈ S, then φ1, φ2 ∈ S, and if φ1∧φ2 ∈ T , then either φ1 ∈ T

or φ2 ∈ T .

2. If φ1 ⊃ φ2 ∈ S, then either φ1 ∈ T or φ2 ∈ S, and if φ1 ⊃ φ2 ∈ T ,

then φ1 ∈ S and φ2 ∈ T .

3. If ¬φ ∈ S, then φ ∈ T , and if ¬φ ∈ T , then φ ∈ S.

4. If ∀xφ ∈ S, then φ[z/x] ∈ S for all z ∈ U , and if ∀xφ ∈ T , then

φ[z/x] ∈ T for some z ∈ U .

Definition 4.3. A finitely consistent pair (S, T ) of formulas is called

a GL-pair, if �¬�n� ∈ S for some n ∈ N.

Theorem 4.4. Let U be a coinfinite subset of V. Suppose (S, T ) is

a finitely consistent pair of subsets of Φ(U). Then, there exists a coinfinite

subset U ′ of V and a U ′-saturated pair (S′, T ′) such that U � U ′, S � S′,

and T � T ′.

Proof. Take a coinfinite subset W of V such that U is a coinfinite

subset of W. Let (φn)n∈N be a sequence of formulas of Φ(W) such that

each formula of Φ(W) occurs infinitely many times in it. For example, if

(γn)n∈N is an enumeration of all formulas of Φ(W), (φn)n∈N could be

γ0, γ0, γ1, γ0, γ1, γ2, γ0, γ1, γ2, γ3, · · · .

Define lists (Un)n∈N and ((Sn, Tn))n∈N which satisfies the following:
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1. for every n ∈ N, Un is a coinfinite subset of W and Un � Un+1;

2. for every n ∈ N, (Sn, Tn) is a finitely consistent pair of subsets of

Φ(Un), Sn � Sn+1, and Tn � Tn+1.

First, let U0 = U and (S0, T0) = (S, T ). Suppose Ui and (Si, Ti) are defined

for every i � n:

• Case φn = ψ1 ∧ ψ2: Define Un+1 by Un. If ψ1 ∧ ψ2 ∈ Sn, then

define (Sn+1, Tn+1) by (Sn ∪ {ψ1, ψ2}, Tn). If ψ1 ∧ ψ2 ∈ Tn, then

define (Sn+1, Tn+1) by (Sn, Tn ∪ {ψ1}) or by (Sn, Tn ∪ {ψ2}), so that

(Sn+1, Tn+1) is finitely consistent.

• Case φn = ψ1 ⊃ ψ2: Define Un+1 by Un. If ψ1 ⊃ ψ2 ∈ Sn, then

define (Sn+1, Tn+1) by (Sn, Tn ∪ {ψ1}) or by (Sn ∪ {ψ2}, Tn), so that

(Sn+1, Tn+1) is finitely consistent. If ψ1 ⊃ ψ2 ∈ Tn, then define

(Sn+1, Tn+1) by (Sn ∪ {ψ1}, Tn ∪ {ψ2}).

• Case φn= ¬ψ: Define Un+1 by Un. If ¬ψ∈Sn, then define (Sn+1, Tn+1)

by (Sn, Tn ∪ {ψ}). If ¬ψ ∈ Tn, then define (Sn+1, Tn+1) by (Sn ∪
{ψ}, Tn).

• Case φn = ∀xψ: If ∀xψ ∈ Sn, then define Un+1 by Un, and define

(Sn+1, Tn+1) by (Sn ∪ {ψ[z/x] | z ∈ Un}, Tn). If ∀xψ ∈ Tn, then

define Un+1 by Un ∪ {z}, where z ∈ W \ Un, and define (Sn+1, Tn+1)

by (Sn, Tn ∪ {ψ[z/x]}).

• Otherwise, Un+1 = Un and (Sn, Tn) = (Sn+1, Tn+1).

It is clear that the conditions 1 and 2 are satisfied. Now, Let

U ′ =
⋃
n∈N

Un, S′ =
⋃
n∈N

Sn, T ′ =
⋃
n∈N

Tn.

Since each formula in Φ(W) occurs infinitely many times in the list (φn)n∈N,

U ′ and (S′, T ′) satisfy the first part of the 4th condition of Definition 4.2.

It is easy to check the other conditions are fulfilled. �

Theorem 4.5. Let U be a coinfinite subset of V and (S, T ) a U-saturated
GL-pair. If �φ ∈ T , there exists a coinfinite subset U ′ of V and a U ′-sa-

turated GL-pair (S′, T ′) such that U � U ′, φ ∈ T ′, and �−1S∪��−1S � S′.
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Proof. Since (S, T ) is finitely consistent, so is (�−1S ∪ ��−1S, {φ}).
Since (S, T ) is a GL-pair, �¬�n� ∈ ��−1S for some n ∈ N. Now, by

Theorem 4.4, there exists a coinfinite subset U ′ of V and U ′-saturated pair

(S′, T ′) such that U � U ′, φ ∈ T ′, and �−1S ∪��−1S � S′. �

.5 Kripke completeness of NQGL−

In this section, we show that the cut-free fragment NQGL− of NQGL is

Kripke complete with respect to BL. The admissibility of the cut-rule

follows from the completeness theorem and Theorem 3.1.

Theorem 5.1. If ��NQGL− Γ → ∆, there exists a coinfinite subset U of

V and a U-saturated GL-pair (S, T ) such that Γ � S and ∆ � T .

Proof. By the rule of boundedness, there exists n ∈ N such that

��NQGL− �¬�n�,Γ → ∆.

Apply Theorem 4.4 to Var(Γ ∪∆) and ({�¬�n�} ∪ Γ,∆). �

Theorem 5.2. (Kripke completeness of NQGL−). A formula φ is deriv-

able in NQGL− if and only if BL |= φ.

Proof. We only show the if-part. Define a model M = (W,R,D, I) as

follows:

• W is the set of all triples (U , S, T ), where U is a coinfinite subset of

V and (S, T ) is a U -saturated GL-pair.

• For any (U , S, T ) and (U ′, S′, T ′) in W ,

((U , S, T ), (U ′, S′, T ′)) ∈ R ⇔ U � U ′ and �−1S ∪��−1S � S′.

• For any (U , S, T ) ∈ W , D(U ,S,T ) = U .

• For any (U , S, T ) ∈ W and any predicate symbol P of arity n,

I((U , S, T ), P ) = {(x1, . . . , xn) ∈ Vn | P (x1, . . . , xn) ∈ S}.
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By definition of R, the frame (W,R) is transitive. We claim that for any

formula φ and (U , S, T ) ∈ W ,

φ ∈ S ⇒ M, (U , S, T ) |= φ, φ ∈ T ⇒ M, (U , S, T ) �|= φ.

We prove the claim only for the cases of φ = P (x1, . . . , xn), ∀xψ(x), and
�ψ:

• Case φ = P (x1, . . . , xn): By definitions of I and |=,

P (x1, . . . , xn) ∈ S ⇔ (x1, . . . , xn) ∈ I((U , S, T ), P )

⇔ M, (U , S, T ) |= P (x1, . . . , xn).

Since (S, T ) is finitely consistent,

P (x1, . . . , xn) ∈ T ⇒ P (x1, . . . , xn) �∈ S

⇔ (x1, . . . , xn) �∈ I((U , S, T ), P )

⇔ M, (U , S, T ) �|= P (x1, . . . , xn).

• Case φ = ∀xψ(x): If ∀xψ(x) ∈ S, then ψ(z) ∈ S for any z ∈ U , since
(S, T ) is U -saturated. Hence, by induction hypothesis, M, (U , S, T ) |=
ψ(z) for any z ∈ D(U ,S,T ). If ∀xψ(x) ∈ T, then, ψ(z) ∈ T for

some z ∈ U , since (S, T ) is U -saturated. By induction hypothesis,

M, (U , S, T ) �|= ψ(z) for some z ∈ D(U ,S,T ).

• Case φ = �ψ: Suppose �ψ ∈ S and ((U , S, T ), (U ′, S′, T ′)) ∈ R. Then

ψ ∈ S′ by definition of R. By induction hypothesis, M, (U ′, S′, T ′) |=
ψ. Suppose �ψ ∈ T . Then, by Theorem 4.5, there exists a coin-

finite subset U ′ of V and a U ′-saturated GL-pair (S′, T ′) such that

U � U ′, ψ ∈ T ′, and �−1S ∪ ��−1S � S′. Then, (U ′, S′, T ′) ∈
W , ((U , S, T ), (U ′, S′, T ′)) ∈ R, and, by the induction hypothesis,

M, (U ′, S′, T ′) �|= ψ.

This completes the proof of the claim. By using the claim and Lemma

2.1, (W,R) ∈ BL. Now, suppose ��NQGL− Γ → ∆. Then, by Theorem

5.1, there exists (U , S, T ) ∈ W such that Γ � S and ∆ � T . Hence,

M, (U , S, T ) �|= Γ → ∆ by the claim. �

Remark. It is not clear whether non-compactness is necessary to ax-

iomatize MQ(BL) or not. Researches from a similar viewpoint can be
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found in common knowledge logic. While the logic CKL, the proposi-

tional common knowledge logic defined by the class of Kripke frames, is

recursively axiomatizable ([5]), the logic QCKL, the predicate common

knowledge logic defined by the class of Kripke frames with constant do-

mains, is not ([14]). Therefore, simple predicate extension of any recursive

proof systems forCKL does not axiomatizeQCKL. On the other hand, by

adopting non-compactness, it is possible to give proof systems for QCKL

([11, 12]), and one of them in [12] is cut-free. It might be an interesting

problem whether the same phenomenon can be found in predicate prov-

ability logic or not.
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