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Patrizio CINTIOLI

SETS WITH NO SUBSETS OF HIGHER

WEAK TRUTH-TABLE DEGREE

A b s t r a c t. We consider the weak truth-table reducibility ≤wtt

and we prove the existence of wtt-introimmune sets in ∆0
2. This

closes the gap on the existence of arithmetical r-introimmune sets

for all the known reducibilities ≤r strictly contained in the Turing

reducibility.

.1 Introduction

The existence of sets without subsets of higher Turing degree was proved

by Soare [11]. In terms of their complexity, we know by Jockusch [7] that

they cannot be arithmetical, and later Simpson [10] even proved that they

cannot be hyperarithmetical. A natural question is to consider reducibil-

ities ≤r that are strictly contained in the Turing reducibility ≤T and to
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see if there are arithmetical sets without subsets of higher r-degree. The

reader unfamiliar with these reducibilities can see e.g. [6, 8, 9, 12]. The

approach of to consider such reducibilities ≤r and to study the existence of

arithmetical sets without subsets of higher r-degree was initiated in [5], in

which r-introimmune sets have been introduced. An infinite set A of nat-

ural numbers is r-introimmune if for every subset B of A with |A\B| = ∞
we have A �≤r B. Some common reducibilities strictly contained in ≤T

studied in Computability Theory are the following, from the smallest to

the largest: the one-one ≤1, the many-one ≤m, the truth-table ≤tt and

the weak truth-table reducibility ≤wtt. r-introimmune sets have no subsets

of higher r-degree for all the reducibilities ≤r of the list. In [5] it was

proved the existence of arithmetical c-introimmne sets, where ≤c is the

conjunctive reducibility, a particular truth-table reducibility. More specif-

ically, it was proved the existence of c-introimmune ∆0
4 sets. This was

improved by Ambos-Spies [1] by showing the existence of tt-introimmune

∆0
2 sets. So, from Ambos-Spies’ result we know that there are arithmetical

r-introimmune sets for all the reducibilities ≤r of the above list up to ≤tt.

In this paper we close the gap by considering the weak truth-table reducibil-

ity ≤wtt, and we prove the existence of arithmetical wtt-introimmune sets,

in particular wtt-introimmune ∆0
2 sets. Since we currently do not know

intermediate reducibilities between ≤wtt and ≤T , we deduce that for all

the known reducibilities ≤r strictly contained in ≤T there are arithmetical

r-introimmune sets.

.2 Notation

Our notation is standard and we mainly refer to [9, 12]. Letter N denotes the

set of natural numbers. We identify each subset of N with its characteristic

function. Given any two sets A,B ⊆ N, A\B denotes the set difference of

A and B. We fix a computable permutation 〈·, ·〉 : N × N → N. A string

is any function α : {0, 1, . . . , n} → {0, 1}, where n ∈ N. ∅ denotes the

empty string. The length of a string α, in short |α|, is the cardinality of its

domain. Given two strings α and β, we write:

- α ⊆ β if |α| ≤ |β| and α(m) ≤ β(m) for every m < |α|,
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- α � β if |α| ≤ |β| and α(m) = β(m) for every m < |α|,

- α � β if α � β and α �= β.

For every string β and every m ≤ |β|, β � m is the string α � β with

|α| = m. If α is a string and b ∈ {0, 1} then αb denotes the string of

length |α| + 1 such that α � αb and αb(|α|) = b. We fix an effective

acceptable enumeration Φ0,Φ1, . . . of the Turing functionals. We fix also

an effective acceptable enumeration ϕ0, ϕ1, . . . of the Turing-computable

unary functions. Finally, given two sets A,B ⊆ N, A is weak truth table

reducible to B, in short A ≤wtt B, if there exists a number e ∈ N and

a total computable function ϕ : N → N such that:

i) ΦB
e = A,

ii) for every x ∈ N, the computation of the e-th oracle Turing machine

with oracle B on input x asks the oracle only numbers less than ϕ(x).

In this case we say that (Φe, ϕ) wtt-reduces A to B. The weak truth-

table reducibility is also known in literature as the bounded Turing reducibil-

ity ≤bT .

.3 Main result

Given any reducibility ≤r and given any set A ⊆ N, the r-degree of A is

the class {B ⊆ N : A ≡r B}, where A ≡r B if and only if A ≤r B and

B ≤r A. A set A does not have subsets of higher r-degree if A �<r B for

every B ⊆ A. So a wtt-introimmune set does not have subsets of higher

wtt-degree. In this section we prove the existence of a wtt-introimmune set

in the class ∆0
2. Thus, for each known reducibility ≤r strictly contained

in ≤T there are arithmetical r-introimmune sets. As for the arithmetical

complexity we observe that for each reducibility ≤r such that ≤1⇒≤r there

cannot be r-introimmune sets in Σ0
1, because such sets are immune. This

follows from the fact that each 1-introimmune set is immune.

Proposition 3.1. Each 1-introimmune set is immune.

Proof. Let A ⊆ N be an infinite set and let us suppose that A is not

immune. Then there exists an infinite recursive set R ⊆ A. Let f : N → N
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be a total one-one computable function such that R = {f(0), f(1), . . .}. Let
us consider the infinite set

R0 = {f(〈0, n〉) : n ∈ N} ⊆ R.

Then,

A\R0 ⊆ A

and

|A\(A\R0)| = |R0| = ∞.

It follows that A is not 1-introimmune, because A ≤1 A\R0 is witnessed by

the total one-one computable function g : N → N defined in the following

way:

1. g(x) = x for every x �∈ R, and

2. g(f(〈n,m〉)) = f(〈n+ 1,m〉) for every n,m ∈ N.

It is routine to check that for every x ∈ N, x ∈ A ⇔ g(x) ∈ A\R0. �

We know of the existence of m-introimmune sets in the class Π0
1 [3, 4].

We leave as an open question the existence of wtt-introimmune sets in Π0
1.

Theorem 3.2. There exists a wtt-introimmune set in ∆0
2.

Proof. By the finite-extension method we construct a set A satisfying

the following requirements for every a, b, e ∈ N:

P2e : |A| ≥ e,

and

N2〈a,b〉+1 : (Φa, ϕb) does not wtt-reduce A to any X ⊆ A with |A\X| = ∞.

The satisfaction of all the requirements P2e guarantees that A is infinite,

while the satisfaction of all the requirements N2〈a,b〉+1 guarantees that A is

wtt-introimmune. �



SETS WITH NO SUBSETS OF HIGHER WEAK TRUTH-TABLE DEGREE 7

.3.1 Strategy

Set A will be constructed by infinitely many stages s = 0, 1, . . .. At every

stage s we define the finite set As, and the final set will be

A = lim
s→∞

As,

with As ⊆ As+1 for every s ≥ 0. Set A will be a subset of {h(n) : n ≥ 0},
where h : N → N is a suitable dominating function.

Definition 3.3. (dominating function). A function g : N → N is dom-

inating if for every total computable function ϕ : N → N, ϕ(n) < g(n) for

almost every n.

Let K = {x ∈ N : ϕx(x) ↓} be the halting set, and let g be any

increasing dominating K-computable function with g(0) > 0. Let us define

the increasing sequence (gn(0) : n ≥ 1) in the following way: g1(0) = g(0),

and for every n ≥ 1 gn+1(0) = g(gn(0)). Let us define for every n ≥ 1

h(n) = gn(0),

with h(0) = 0. Then, h is a dominating K-computable function which

satisfies the following property.

Proposition 3.4. Let ϕ : N → N be any total computable function.

Then for almost every n ∈ N, for every m ≤ n

ϕ(h(m)) < h(n+ 1).

Proof. Given any such ϕ, let us consider the total computable function

ϕ̃(n) = max{ϕ(u) : u ≤ n}.

Let n0 be such that for every n ≥ n0

ϕ̃(gn(0)) < g(gn(0)). (1)

Then, for every n ≥ n0 and for every m ≤ n

ϕ(h(m)) = ϕ(gm(0)) (2)

by definition of h, and

ϕ(gm(0)) ≤ ϕ̃(gn(0)) (3)
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by (gn(0) : n ≥ 1) increasing and by the definition of ϕ̃. Finally

ϕ̃(gn(0)) < g(gn(0)) = gn+1(0) = h(n+ 1) (4)

by (1) and by the definition of h. �

.3.2 Strategies to satisfy requirements

To satisfy each requirement P2e we add an element to A at e opportune

stages. The strategy to satisfy each requirement N2〈a,b〉+1 is essentially the

method used in [1]. To satisfy N2〈a,b〉+1 means in particular to prevent (5):

(∃X)[X ⊆ A and |A\X| = ∞ and ΦX
a = A]. (5)

But (5) implies that there is an infinite sequence (ns : s ≥ 0) of natural

numbers such that

ΦX
a (h(ns)) = A(h(ns)) = 1 and X(h(ns)) = 0. (6)

So, we wait for a stage s+ 1 at which

ϕb(h(s)) < h(s+ 1) (7)

and for some X ⊆ As ⊆ {h(0), h(1), . . . , h(s− 1)} it is

ΦX
a (h(0)) = As(h(0)), . . . ,Φ

X
a (h(s− 1)) = As(h(s− 1)) (8)

and

ΦX
a (h(s)) = 1. (9)

Then, we force ΦX
a (h(s)) to be wrong by setting As+1(h(s)) = 0. Observe

that by (7) and by X ⊆ As ⊆ {h(0), · · · , h(s − 1)} the computation of

ΦX
a (h(s)) depends only on number less than or equal to h(s).

.3.3 Formalization

We formalize the above strategies and the construction of the set A. First,

we define formally the conditions under which a requirement requires at-

tention. Then, we will give an algorithm for the construction of the set A
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by defining the actions needed to satisfy all the requirements. In order to

better handle some proofs later we introduce first the following notation:

given any string α, let Xα be the set

{h(n) : n < |α| ∧ α(n) = 1}.

From now on, Φα stands for ΦXα for each string α. The algorithm with

which we will construct our set A =
⋃

s≥0As will generate by stages in-

finitely many strings α0 � α1 � · · · . The final set A will be

A = lim
s→∞

αs,

where αs is the string obtained by the end of stage s with |αs| = s and

denoting As = Xαs .

.3.3.1 Requirements requiring attention

Fix a stage s+1, and let αs be the string constructed by the end of stage s.

- Requirement P2e requires attention at stage s+ 1 if

|As| < e.

- Requirement N2〈a,b〉+1 requires attention at stage s+ 1 via the string α

with |α| = |αs| = s if the following conditions hold.

C1: ϕb(h(s)) < h(s+ 1),

C2: Φα
a (h(m)) asks only elements less than ϕb(h(m)), for every

m < s,

C3: α ⊆ αs,

C4: (for every m < s), [Φα
a (h(m)) = αs(m)],

C5: Φα0
a (h(s)) = 1.

We describe the meaning of each condition. Condition C1 makes the com-

putation of Φα
a (h(s)) depending only on numbers less than or equal to h(s).

Condition C2 says that (Φa, ϕb) could be a wtt-reduction. Condition C3



10 PATRIZIO CINTIOLI

says that the set Xα is a subset of the constructed set As. Conditions C4

and C5 formalize (8) and (9), that is

ΦXα
a (h(0)) = As(h(0)), . . . ,Φ

Xα
a (h(s− 1)) = As(h(s− 1))

and

ΦXα
a (h(s)) = 1.

.3.3.2 Construction of the set A

We say that a N -requirement requires attention at stage s+1 if it requires

attention at stage s + 1 via some string α of length s. A requirement Rn

has higher priority than a requirement Rm if n < m. At any stage s + 1

a requirement Rn is active if it is the highest priority requirement requiring

attention. The algorithm to construct the set A is the following.

Algorithm

- Stage 0. Set α0 = ∅.

- Stage s+ 1. Let αs be the string constructed by the end of stage s, and

let Rn be the active requirement. If n is even, then set αs+1 = αs1,

otherwise set αs+1 = αs0.

End of algorithm

Set A = lims→∞ αs. The construction of A is by the finite extension

method, thus for every stage s ≥ 0 and for every n < |αs|, αs(n) = A(h(n)).

Now we have to prove that the construction is correct, that is that each

requirement is met and that A ∈ ∆0
2.

Lemma 3.5. Every requirement requires attention at most finitely often

and is met.

Proof. By induction on the index n of the requirement Rn. Let n ≥ 0

be given, and let s0 be the minimum stage such that no requirement of

higher priority than Rn requires attention after s0. Distinguish two cases

on n.

- Rn = P2e. Let us suppose that it requires attention at stage s+ 1 > s0.
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By hypothesis P2e is active from stage s + 1 onwards. At each of

these consecutive stages we add one element, so in at most t ≤ e

stages starting from s + 1 the cardinality of As+t will be e, P2e is

satisfied and it will no longer require attention.

- Rn = N2〈a,b〉+1. By Proposition 3.4 we can make the following further

hypothesis on s0: for every s ≥ s0 and for every m < s,

ϕb(h(m)) < h(s). (10)

From (10) we get the following

Claim 3.6. For every string α and α′ of length at least s0, if α � α′,

then

(∀m < |α|)[Φα
a (h(m)) = Φα′

a (h(m))]. (11)

Proof. Let α � α′ with |α| ≥ s0. For every m < |α| the computation

of ΦXα
a (h(m)) can ask the oracle only numbers less that ϕb(h(m)) < h(|α|),

where

Xα ⊆ {h(0), h(1), . . . , h(|α| − 1)}.

On the other hand, α � α′ means that

α = α′ � |α|,

that is Xα is equal to Xα′ up to h(|α|−1). Therefore the two computations

ΦXα
a (h(m)) and Φ

Xα′
a (h(m)) are equal for every m < |α|. End of proof of

Claim 3.6.

The proof that N2〈a,b〉+1 requires attention at most finitely often is

distributed in the following three claims1.

Claim 3.7. If N2〈a,b〉+1 requires attention at stage s + 1 > s0 via α,

then for every s′ with s0 ≤ s′ < s it holds that α(s′) = A(h(s′)).

Proof. Let αs be the string constructed by the end of stage s. For the

sake of contradiction, let s′ be the minimum such that s0 ≤ s′ < s and

α(s′) �= A(h(s′)). By hypothesis N2〈a,b〉+1 requires attention via α at stage

s+ 1, thus by condition C3

1 Technically, the proofs of these three claims are based on [2].
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α(s′) ≤ A(h(s′)), (12)

that is

α(s′) = 0 and A(h(s′)) = 1. (13)

Let us consider β = α � s′, that is

β � α and |β| = s′. (14)

We prove that N2〈a,b〉+1 requires attention at stage s′ + 1 via β, and this

implies αs′+1 = αs′0, that is αs′+1(s
′) = 0; but αs′+1 � αs, whence αs(s

′) =

0, that is A(h(s′)) = 0, contradicting (13). In order to prove that N2〈a,b〉+1

requires attention at stage s′ + 1 via β it is enough to check that all the

conditions C1, C2, C3, C4 and C5 hold for β and αs′ at stage s′ + 1.

- C1: ϕb(h(s
′)) < h(s′ + 1)) holds by (10) because s′ + 1 ≥ s0.

- C2: Φβ
a(h(m)) asks only elements less than ϕb(h(m)) for every m < s′ <

|α|, because C2 holds at stage s+ 1 w.r.t. α.

- C3: β ⊆ αs′ , because αs′ � αs, α ⊆ αs and β = α � s′.

- C4: β � α with both the lengths of β and α at least s0, so by Claim 1

for every m < |β|
Φβ
a(h(m)) = Φα

a (h(m)). (15)

Moreover, for every m < |β|

Φα
a (h(m)) = A(h(m)) (16)

because C4 holds at stage s + 1 w.r.t. α. Thus, by equations (15)

and (16)

Φβ
a(h(m)) = A(h(m)) (17)

for every m < |β|.

- C5: We observe first that β0 � α, because by (13) it is α(s′) = 0 and

by (14) it is |β| = s′. Then, by (10) the computation of Φβ0
a (h(s′))

depends only on numbers ≤ h(s′), which means that

Φβ0
a (h(s′)) = Φα

a (h(s
′)).
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But by hypothesis N2〈a,b〉+1 requires attention at stage s+ 1, that is

at stage s + 1 condition C4 holds for every m < s, in particular for

m = s′ < s, so by the second equality of (13)

Φα
a (h(s

′)) = A(h(s′)) = 1.

Therefore

Φβ0
a (h(s′)) = 1

andC5 is satisfied. Hence, all the conditionsC1,C2,C3,C4 andC5

are satisfied by β and αs′ , so N2〈a,b〉+1 requires attention at stage s′+1

via β with |β| = s′. But as before observed this causes A(h(s′)) = 0,

contradicting (13). End of proof of Claim 3.7.

Claim 3.8. Let us suppose that N2〈a,b〉+1 requires attention via α at

stage s + 1 > s0, and let α′ be such that α � α′. Then, N2〈a,b〉+1 does not

require attention via α′.

Proof. By hypothesis, at the end of stage s+ 1 is

A(h(s)) = 0. (18)

Let s′ > s, and for the sake of contradiction let us suppose that N2〈a,b〉+1

requires attention via α′ at stage s′ + 1. First, we note that it cannot be

α1 � α′, because otherwise it would be

α′(s) = 1

and by (18) A(h(s)) = 0, that is αs′(s) = 0, from which α′ �⊆ αs′ , contra-

dicting condition C3 α′ ⊆ αs′ at stage s′ + 1. Thus it has to be

α0 � α′. (19)

Since by hypothesisN2〈a,b〉+1 requires attention via α at stage s+1 it follows

that C5 is satisfied, that is

Φα0
a (h(s)) = 1.

On the other hand, by (19)

Φα′
a (h(s)) = Φα0

a (h(s)) = 1.
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But at stage s′ + 1 N2〈a,b〉+1 requires attention via α′, so by condition C4

for m = s < s′

Φα′
a (h(s)) = A(h(s)),

that is A(h(s)) = 1, which contradicts (18). End of proof of Claim 3.8.

Claim 3.9. For every string α of length s0, there is at most one string

α′ properly extending α such that N2〈a,b〉+1 requires attention via α′.

Proof. Let α be a string such that |α| = s0, and let α′ and α′′ be two

strings properly extending α, that is

α(m) = α′(m) = α′′(m)

for every m < s0. Let us suppose that N2〈a,b〉+1 requires attention via α′ at

stage s′+1 > s0 and via α′′ at stage s′′+1 > s0. Without loss of generality

let us suppose that |α′| ≤ |α′′|. By Claim 3.7, for every t with s0 ≤ t < s′

it is

α′(t) = A(h(t)) = α′′(t).

If |α′| = |α′′|, then α′ = α′′. Otherwise α′ � α′′, but this contradicts Claim

3.8. End of proof of Claim 3.9

Since there are 2s0 string of length s0, by Claim 4 requirement N2〈a,b〉+1

requires attention at most 2s0 times after stage s0.

We prove now that N2〈a,b〉+1 is met. For the sake of contradiction let

us suppose that N2〈a,b〉+1 is not met. This means that there exists B ⊆ A

such that

ΦB
a = A (20)

and

|A\B| = ∞. (21)

Moreover, for every x ∈ N all the queries made in the computation ΦB
a (x)

are bounded by ϕb(x). We proved that N2〈a,b〉+1 requires attention at most

finitely often. Hence, there is a minimum stage s0 after which N2〈a,b〉+1

does not require attention. By Proposition 3.4 and by (20) and (21) let

s+ 1 > s0 such that the following three conditions are satisfied:

ϕb(h(s)) < h(s+ 1), (22)

ΦB
a (h(s) = A(h(s)) = 1 (23)
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and

B(h(s)) = 0. (24)

We show that N2〈a,b〉+1 requires attention at s+1, which is a contradiction.

By (22) at stage s+ 1 condition C1 holds. Let us consider the string α of

length s such that

α(m) = B(h(m)) (25)

for every m < s. String α satisfies all the conditions C2, C3, C4 and C5:

- C2: Φα
a (h(m)) asks only elements less than ϕb(h(m)) for every m < s,

because we are assuming that (Φa, ϕb) wtt-reduces A to B;

- C3: α ⊆ αs because B ⊆ A;

- C4: by (20) and (25), for every m < s Φα
a (h(m)) = A(h(m)) = αs(m);

- C5: by (24) and (25), for every m ≤ s

α0(m) = B(h(m)),

therefore by (23)

Φα0
a (h(s)) = ΦB

a (h(s)) = 1.

Thus N2〈a,b〉+1 requires attention at stage s+1 via α, which is a contradic-

tion. �

It remains to prove that the set A is in ∆0
2.

Lemma 3.10. A is in ∆0
2.

Proof. We show that A is Turing reducible to the halting set K. It

is enough to observe that oracle K suffices to find the active requirement

at any stage, hence to generate the sequence (αs : s ≥ 0). We describe

first an algorithm that at any stage s+ 1 finds the active requirement and

computes the extension αs+1 of αs. Fix a stage s+1 and let αs be the string

obtained by the end of stage s. Enumerate and check all the requirements

R0, R1, . . ., stopping as soon as one of them satisfies the conditions under

which it requires attention. For the part concerning the check, let Rn be

a requirement of the above list and distinguish two cases:
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- Rn = P2n. It is decidable whether or no P2e requires attention, and in

this case oracle K is unnecessary.

- Rn = N2〈a,b〉+1. With oracle K compute first h(s) and h(s + 1). Let

F (a, b,Xα, αs, s, h(s), h(s + 1)) be the formula obtained by the con-

junction of the formulas expressing conditions C1,C2,C3,C4 and

C5 with Xα in place of α. Then, N2〈a,b〉+1 requires attention at stage

s+ 1 if the formula

(∃α)[|α| = |αs| ∧ F (a, b,Xα, αs, s, h(s), h(s+ 1))] (26)

is true. In (26) the existential quantifier on the oracle variable α

is bounded, and for each such α oracle K suffices to compute the

relative finite set Xα. All the values h(m) for m < s required

in the formula are also computable with K. Finally, observe that

F (a, b,Xα, αs, s, h(s), h(s+1)) is a Σ0
1 formula, so oracle K is enough

to test its truth. This shows that K suffices to generate (αs : s ≥ 0).

To decide A, given any x ∈ N generate the sequence α0, α1, . . . , αm+1,

where m is the minimum such that h(m) ≥ x. If h(m) > x then reject

x. Otherwise, accept x if and only if αm+1(m) = 1.

This concludes the proof of Lemma 3.10 and the proof of the theorem. �
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