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Comparative analysis of the coarse aggregate shapes used to 
manufacturing high performance self-compacting concrete

Analiza porównawcza kształtu kruszyw stosowanych 
w produkcji wysokowartościowych betonów 

samozagęszczalnych 

Abstract
The influence of the shape of coarse aggregate on the properties of fresh concrete mixes, and the strength of 
high-performance self-compacting concrete (HPSCC) is important issue. In this study, irregular and regular 
grains were separated from the basalt, porphyry and granite coarse aggregate. The shape of these grains was 
determining using digital image analysis and was in accordance with the European Standard [19]. The aspect 
ratio (AR) and roundness (R) were ascertained in order to highlight the differences in the coarse aggregate 
shape used the design HPSCC. The study indicates that using the same crushing system, varied parameters 
of the shape of coarse aggregates were obtained. It was determined that the best fitting distribution for aspect 
ratio and roundness at a 95% confidence level is the generalised extreme value distribution.
Keywords: coarse aggregate, shape, computer image analysis, self-compacting concrete

Streszczenie
Wpływ kształtu kruszywa grubego na właściwości świeżej mieszanki betonowej i wytrzymałość 
samozagęszczalnego betonu wysokowartościowego (HPSCC) są bardzo znaczące. W  badaniach 
wydzielono nieregularne i  regularne ziarna kruszyw, takich jak bazalt, porfir i  granit. Kształt ziaren tych 
kruszyw został wyznaczony przy pomocy komputerowej analizy obrazu oraz w  zgodzie z  obowiązującą 
normą. W  rezultacie zostały wyznaczone wskaźniki kształtu kruszywa, takie jak AR i  R, w  celu 
podkreślenia różnic w kształcie kruszyw stosowanych do produkcji betonów HPSCC. Badania wskazują, 
iż przy zastosowaniu tego samego systemu kruszenia uzyskano różne parametry kształtu dla analizowanych 
kruszyw. Stwierdzono, iż wskaźniki kształtu kruszywa AR oraz R  mogą być opisywane poprzez rozkład 
uogólnionej wartości ekstremalnej na poziomie istotności wynoszącym 95%.
Słowa kluczowe: kruszywo, kształt, komputerowa analiza obrazu, beton samozagęszczalny.
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1.  Introduction

Self-compacting concrete (SCC) was developed in 1988 [15] and since then, it has been 
widely used in the construction industry due to the fact that the laying and quality control 
of SCC are easier than those of conventional vibrated concrete (CVC); this is because of 
its characteristics of super fluidity and self-consolidation [23]. Use of SCC has brought 
substantial advantages to the productivity of construction work [4]. Currently, SCC is used 
in many developing countries for versatile applications, such as high-rise skyscrapers, urban 
infrastructure and structural configurations [6]. By using appropriate constituent materials 
such as Portland cement, the new generation of superplasticizer silica fume, and coarse 
aggregate, it is possible to obtain HPSCC.

Coarse aggregate is a very important proportion of the concrete volume and therefore 
has a major influence on its quality [11]. This is especially true in the case of HPSCC, where 
the quality of coarse aggregate determines the behaviour of the concrete. In Poland, the 
following main aggregates are used for the production of HPSCC: basalt, granite, diabase, 
porphyry [9]. This material is characterised by its high bulk density, mechanical strength 
and Young’s modulus.

In the concrete industry, HPSCC mixes mostly use aggregates comprised of magmatic 
rocks. The type of rocks, their mineralogical composition and crushing manner are the main 
elements which influence the shape of coarse aggregate. It has been widely shown that the 
type of crusher plays an important role in the manufacturing of the aggregates and in their 
different shape parameters [20].

Considering the importance of the shape of aggregate components, the aim of this study 
is to present a comparative analysis of the coarse aggregate shapes used to produce HPSCC 
using the examples of granite, basalt and porphyry. The rest of the paper is organised as 
follows: Section 2 presents the research significance; Section 3 presents the literature; Section 
4 presents materials and methods; Section 5 presents the test results and discussion; Section 
6 presents the conclusions. 

2.  Research significance

In general, during design of HPSCC mixes we take into account the quantity and type 
of binder, the type of admixtures affecting the rheology of the concrete mixture and the 
granular class of the aggregate. As is widely known, SCC is characterised by properties such 
as: flowability, segregation resistance and passing ability. It transpires that the shape of the 
aggregate grains affects these parameters which define SCC. The condition for gain HPSCC 
is also the use of broken aggregates of high strength mainly obtained from igneous rocks. 
Therefore, the authors decided to analyse how the shape parameters of different aggregates 
used in the production of HPSCC are changed during the crushing process. In this study, 
coarse aggregates of basalt, granite and porphyry were analysed. 
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3.  Literature survey

It has been showed many times that coarse aggregates of the same type and composition but 
with random angularity indices and aspect ratios have an impact on the mechanical properties 
of the concrete [22]. The interaction between specific surfaces of the coarse aggregate and 
the difference in densities between the aggregate and the mortar phase can be considered to 
be the explanation for this phenomenon [21]. The segregation of concrete mixture which 
ultimately influences the strength and durability of concrete, is one of the major problems 
that occurs during construction. The segregation tendency of concrete mixture is primarily 
apparent in the difference in density between the aggregate and the mortar phase [14]. This is 
crucial aspect in design HPSCC, where bulk density of coarse aggregate could be more than 
3000 kg/m3 in the case of basalt. 

It has already been proven that the cement paste content and water/binder ratio are 
significant parameters of the mix design due to the appropriate rheological properties [8]. 
Ostrowski et all. [18] showed that the shape of the grain aggregate has a significant impact on 
the rheological parameters of concrete mixture. It has been revealed that usage of regular grains 
of coarse aggregate causes a higher slump flow and a lower plastic viscosity of concrete mixtures 
in comparison to situations in which the aggregate is comprised of irregular grains. Experimental 
research [16] has indicated that the difference in the slump flow of concrete mixtures in the 
case of using regular and irregular coarse aggregate can reach 150 mm. Furthermore, the type 
of the coarse aggregate shape determines the compressive strength of concrete. The importance 
of coarse aggregate in designing and predicting the behaviour of SCC has been emphasised 
many times [7]. In comparison to normal concrete, the mix design of HPSCC is more difficult 
and should take into account adequate static and dynamic stability. The selection of coarse 
aggregate is a significant parameter for the mix design and mixture optimisation of HPSCC. 

There are many indicators to assess the shape of the particles; these can be divided into 
two groups. The first group is made up of two-dimensional shape factors such as aspect ratio 
[10], roundness, sphericity [1] and area ratio [2]. The second group is comprised of three-
dimensional shape factors such as flat and elongation ratios [1]. 

4.  Materials and methods

The feed material was basalt and porphyry with a maximum size of 200 mm. The material 
was separately crushed and sieved in a laboratory-scale comminution circuit (Fig. 1).

The final product (4–8 mm) from comminution was then sieved into three grades: 4–5 mm, 
5–6.3 mm and 6.3–8 mm with the use of square sieves. In the next step, each narrow grade was 
sieved with the use of bar sieves, in line with the European Standard [19]. The bar sieves (Fig. 2) 
were selected to be about half of the maximum size of certain fraction’s particles (dmax/2):

▶▶ 2.5 mm for 4–5 mm grade fraction
▶▶ 3.15 mm for 5–6.3 mm grade fraction
▶▶ 4 mm for 6.3–8 mm grade fraction
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On the basis of the sieve analysis, the particle-size distribution for each of the examined 
materials was plotted (Figs. 3a, 3b). Particle-size distributions of granite were based on the 
article in [17] (Fig. 4).

For each type of coarse aggregate, Flakiness Index (FI) was performed [19]. 

	 FI
M
M

� �2

1

100 	 (1)

where:
M2 – mass of irregular grains
M1 – mass of regular and irregular grains

Fig. 1.	 Comminution circuit with jaw crusher Fig. 2.	 Laboratory bar sieves.

Fig. 3.	 Particle-size distribution of: a) prepared basalt coarse aggregate; b) porphyry coarse aggregate 
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The FI for basalt, porphyry and granite was 32%, 27% and 24%, respectively. The same 
crushing process yielded the highest content of regular grains for granite and the lowest 
content of regular grains for basalt. Circuits with closed recirculation for selective screening 
and crushing operations designed by Gawenda [3] allows the obtaining of final aggregates 
with contents of less than 2–3% of irregular particles.

Representative samples of coarse aggregate were selected for computer image analysis 
while maintaining the percentage mass fraction of particular particle-size grades:

▶▶ 0.05 kg of regular basalt coarse aggregate
▶▶ 0.05 kg of irregular basalt coarse aggregate
▶▶ 0.05 kg of regular porphyry coarse aggregate
▶▶ 0.05 kg of irregular porphyry coarse aggregate

High resolution photos were taken of the samples’ with adequate lighting and special 
photo filter. Example photos of basalt are shown in Fig. 5. Subsequently, with the use of ‘Fiji 
Is Just’ open source digital image analysis software [5], image analysis was carried out to 
determine selected shape indicators.

Two shape factors [22] were chosen to determine:
▶▶ Aspect ratio (AR):

	 AR
L

W
= 	 (2)

The aspect ratio of a particle describes its form using a 2-dimensional system. It is defined 
as the ratio of the particle’s length (L) to width (W) (Fig. 6). The aspect ratio of circle and 
equilateral polygon is 1.

Fig. 4.	 Particle-size distribution of prepared granite coarse aggregate [17]
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▶▶ Roundness (R):
The value of roundness is equal to or greater than 1. The roundness describes how close 

a particle shape is to a circle. 

 	 R
A

�
1

4

2

�
	 (3)

where: 
l – perimeter in 2-dimensional projection, 
A – area in 2-dimensional projection (Fig. 6).

Fig. 5.	 Top view of regular (on left side) and irregular (on right side) basalt coarse particles 

Fig. 6.	 An aggregate image with the length, width and perimeter in a 2-dimensional projection

→

→

→
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Aspect ratio and roundness are based on 2-dimensional analysis. In order to obtain more 
accurate results, regular and irregular coarse aggregate should be compared with eatch other using 
3-dimensional shape indicators [22].

5.  Results and discussion

For regular and irregular coarse aggregate, statistical parameters were determined, such as: 
mean values, standard deviations and coefficients of variation of the two shape factors (aspect ratio 
and roundness). Statistical data was calculated for both the entire range of particle sizes 4–8 mm 
and the different grades: 4–5 mm, 5–6.3 mm and 6.3–8 mm. Complete statistical parameters for 
regular coarse aggregates of basalt and porphyry are presented in Table 1; these values for the 
irregular coarse aggregates of basalt and porphyry are presented in Table 2. In addition, Table 
3 shows the results for regular and irregular granite coarse aggregate in 4–8 mm size fraction [17].

Table 1.	 Statistical parameters for shape factors of regular basalt and porphyry coarse aggregate 

Regular basalt coarse aggregate

Shape 
parameters

Size 
fractions 

[mm]
Valid N Mean Minimum Maximum Std. 

dev.
Coef. var. 

[%]

AR

4–5 83 1.424 1.048 3.051 0.369 25.883

5–6.3 90 1.378 1.039 2.438 0.244 17.740

6.3–8 47 1.484 1.055 2.389 0.323 21.739

4–8 220 1.418 1.039 3.051 0.314 22.147

R

4–5 83 1.524 1.272 2.114 0.160 10.513

5–6.3 90 1.365 1.195 1.812 0.110 8.026

6.3–8 47 1.378 1.167 1.689 0.118 8.568

4–8 220 1.428 1.167 2.114 0.152 10.631
Regular porphyry coarse aggregate

Shape 
parameters

Size 
fractions 

[mm]
Valid N Mean Minimum Maximum Std. 

dev.
Coef. var. 

[%]

AR

4–5 106 1.518 1.027 3.154 0.404 26.645

5–6.3 115 1.414 1.018 2.930 0.301 21.273

6.3–8 50 1.373 1.015 2.196 0.253 18.415

4–8 271 1.447 1.015 3.154 0.342 23.624

R

4–5 106 1.408 1.176 2.169 0.169 12.032

5–6.3 115 1.463 1.258 2.075 0.157 10.751

6.3–8 50 1.423 1.239 1.709 0.119 8.353

4–8 271 1.434 1.176 2.169 0.158 10.983
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Table 2.	 Statistical parameters for shape factors of irregular basalt and porphyry coarse aggregate

Irregular basalt coarse aggregate

Shape 
parameters

Size 
fractions 

[mm]
Valid N Mean Minimum Maximum Std. 

dev.
Coef. var. 

[%]

AR

4–5 207 1.575 1.055 3.875 0.474 30.090

5–6.3 129 1.630 1.029 3.034 0.462 28.352

6.3–8 63 1.653 1.025 3.371 0.486 29.394

4–8 399 1.605 1.025 3.875 0.472 29.405

R

4–5 207 1.552 1.203 2.703 0.246 15.833

5–6.3 129 1.491 1.232 2.160 0.187 12.519

6.3–8 63 1.472 1.229 2.151 0.198 13.428

4–8 399 1.519 1.203 2.703 0.223 14.675

Irregular porphyry coarse aggregate

Shape 
parameters

Size 
fractions 

[mm]
Valid N Mean Minimum Maximum Std. 

dev.
Coef. var. 

[%]

AR

4–5 253 1.568 1.029 4.761 0.475 30.271

5–6.3 160 1.552 1.018 3.552 0.441 28.423

6.3–8 63 1.560 1.037 3.235 0.455 29.143

4–8 476 1.561 1.018 4.761 0.460 29.464

R

4–5 253 1.460 1.136 2.703 0.198 13.536

5–6.3 160 1.526 1.211 2.915 0.250 16.353

6.3–8 63 1.468 1.247 2.110 0.175 11.897

4–8 476 1.483 1.136 2.915 0.216 14.534

Table 3.	 Statistical parameters for shape factors of regular and irregular granite coarse aggregate

Regular coarse aggregate

Shape 
parameters

Size fraction 
[mm] Mean Minimum Maximum Std. dev. Coef. var. 

[%]

AR 4–8 1.496 1.032 3.093 0.339 22.693

R 4–8 1.371 1.181 1.859 0.113 8.236

Irregular coarse aggregate

Shape 
parameters

Size fraction 
[mm] Mean Minimum Maximum Std. dev. Coef. var. 

[%]

AR 4–8 1.645 1.032 3.473 0.429 26.076

R 4–8 1.427 1.172 2.075 0.163 11.390

For both shape parameters, a  value of 1  indicates that the shape is completely circular. It 
has been proven that the shape of regular coarse aggregate is closer to the shape of a circle than 
shapes of irregular coarse aggregate. It is worth noting that the selected shape factors are based on 
2-dimensional analyses. Therefore, in subsequent tests, 3-dimensional analysis will be performed. 
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Analysing particle grade 4-8 mm of coarse aggregate, it can be said that:
▶▶ The AR shape factor for regular grains has the lowest value for basalt coarse aggregate 

and the highest for granite. For the irregular aggregate, the highest value of AR is for 
granite and the lowest for porphyry. 

▶▶ The R shape factor for regular grains has the lowest value for granite coarse aggregate 
and the highest for porphyry. For the irregular aggregate, the highest value of R is for 
basalt and the lowest for granite.

Pearson’s Chi-squared test has been used to verify the normality and log-normality 
distribution of the selected shape factors. Three hypothesis were assumed:

▶▶ H0 states that the distribution is a normal distribution.
▶▶ H1 states that the distribution is a log-normal distribution.
▶▶ H2 states that the distribution is a generalised extreme value distribution.

Histograms and the Chi-square test results [12, 13] are presented in Figs. 7a, 7b and Figs. 
8a, 8b. The confidence level was set at 95%. On analysis of the results, it can be observed that the 
assumption of normal or log-normal distribution was not fulfilled in any case. The assumption 
of generalised extreme value distribution was fulfilled for both shape factors in every case. 

Fig. 7.	 Histograms and Chi-square test results for the normal, log-normal distribution and generalised 
extreme value distribution of AR and R of: a) regular basalt coarse particles; b) irregular basalt 

coarse particles
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6.  Conclusions

This work presents an experimental investigation of the comparative analysis of the coarse 
aggregate shapes used to manufacturing high-performance, self-compacting concrete. The 
main conclusions of the tests are as follows:
1.	 The FI indicator allows the quantitative assessment of regular and irregular coarse 

aggregate shapes. With the same crushing technology, the highest percentage of regular 
coarse aggregate was achieved for granite and the lowest for basalt. 

2.	 The aspect ratio and roundness allows the qualitative assessment of regular and irregular 
coarse aggregate shapes. The following dependences have been shown:
▶▶ according to AR shape factor, the regular coarse aggregate of basalt has the best quality;
▶▶ the irregular coarse aggregate of porphyry has the lowest AR shape factor value;
▶▶ according to R shape factor, the regular coarse aggregate of granite has the best quality; 
▶▶ the irregular coarse aggregate of granite has the lowest value for the R shape factor.

3.	 The best fitting distribution for aspect ratio and roundness at a 95% confidence level is 
the generalised extreme value distribution.

Fig. 8.	 Histograms and Chi-square test results for the normal, log-normal and generalised extreme value 
distribution of AR and R of: a) regular porphyry coarse particles; b) irregular basalt coarse particles
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