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The evaluation of control quality in automatic systems based 
on maximum error 

Ocena jakości sterowania w układach automatyki na podstawie 
błędu maksymalnego

Abstract
The article presents an approach that uses the value of the maximum error to assess the quality of control 
in automatic control systems. The integral-square-error criterion is analysed together with the signals that 
enable its derivation. Signals with two constraints are considered. 
Keywords: Control error, integral-square criterion, maximising signals, constraints of signals 

Streszczenie
W artykule przedstawiono zastosowanie błędu maksymalnego do oceny jakości sterowania w układach 
automatyki. Analizowane jest kryterium całki z kwadratu błędu oraz sygnały umożliwiające jego 
wyznaczenie. Rozpatrywane są sygnały z jednym oraz dwoma ograniczeniami.
Słowa kluczowe: Błąd sterowania, kryterium całkowo-kwadratowe, sygnały maksymalizujące, ograniczenia sygnałów
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1.  Introduction

In order to evaluate the quality of control in many automatic systems, we need to 
determine the control error. Unless it is equal to zero, the value of the error does not provide 
an unequivocal answer to the question of whether the control system works well or whether 
it behaves poorly. This is because there is no reference to which one could compare the error. 
This paper proposes that a solution to this problem is to refer to the actual error as a percentage 
of the maximum error value for the chosen error criterion. This percentage provides a clear 
measure of the quality or effectiveness of our control. Many different criteria are available 
for measuring error, but the most commonly used is the integral-square-error criterion. The 
method of determining the shape of signals maximising the value of the integral-square-
error criterion is derived in this paper for linear, time invariant control systems. The paper 
presents solutions referring to the existence and attainability of signals with two constraints 
imposed on them. These constraints relate to the amplitude and to the maximum rate of signal 
change. The last constraint is due to the need to match the dynamic properties of the signal 
to the dynamic properties of the control system under testing. It has been proved that signals 
maximising the integral-square criterion always reach one of the constraints imposed on them. 
For this reason, a signal with two constraints always takes the form of triangles or trapezoids 
while a signal with a amplitude constraint only corresponds to a signal of the ‘bang-bang’ type.

2.  Errors in Automatic Control Systems (ACS)

In automatic control systems (Fig. 1) where P is a controlled plant and C its controller, the 
control error expressed in “s” domain has the form 

	 E s D s U s( ) ( ) ( )� � 	 (2.1)
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and can easily be transformed in “t” domain by the inverse Laplace transform

	 e t L D s U s( ) ( ) ( )� �1 	 (2.3)

The quality of control in the automatic control system (ACS) is verified through the 
measurement of a chosen error criterion. The most commonly used criteria here are the 
integral criteria and maximum of over-overshoot criterion. The criterion which presents the 
value of the error surface integral is very popular for monotonic signals. Its value can be easy 
obtained for the error given in the form of E(s). Then we have 
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Criteria with time as a weight function are used in these cases where, for the initial period 
of control, substantial error values are acceptable and in the longer intervals, they should 
decrease
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For non-monotonic signals, the error e(t) in integrals (2.4)–(2.5) is replaced with its 
module value |e(t)|.

The energy criterion presents the integral square error, which we can obtain in a simple 
way having spectral form E(jω)of the transform E(s)
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In [1], the method of calculating the integral (2.6) is presented based on the values ​​of the 
coefficients of the numerator and the denominator of the error transfer function. For E(s) 
given in the form (2.7)
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the first three values of I2 are as follows
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From the non-integral error criteria, it is worth mentioning the overshoot error eovsh(t)
determining in % the ratio of the maximum value of the error emax(t) to its steady value est(t).

Fig. 1.	 Automatic control system
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3.  Controllers

In ACS three basic types of controllers are used. Proportional controller P, presented by 
means of constant gain Kp usually used at ACS in order to reduce the steady state error; 

integral controller I
T si

=
1

 where Ti is integral constant, used at ASC in the case of astatic 

control and derivative controller D=Td s, where Td is derivative constant, which is not used 
separately because it amplifies the noise signals. These controllers in ACS, depending on the 
needs of control, are applied in different combination as a sum of PI, PD or PID. 

Due to the minimisation of the error, for a given model of plant P(s)and error criterion, the 
optimum values of controller parameters can be determined by calculating their derivatives 
relative to individual components
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However, it is worth noting here that in some cases, the solution of the set of equation 
(3.1) can be difficult to solve and a correct result is not always easy to obtain.

4.  Models of ACS

Since more and more physical experiments have been replaced with computer simulations, 
the synthesis of mathematical models has become an important problem in many types of 
ACS. The success of such a simulation is mainly conditioned by the correctness of the model. 
One could think therefore that the best solution would be to create higher order models of 
high accuracy. In practice, however, an advantage coming from the use of models of high and 
very high order is often illusory, since the analysis of their properties is more complicated, 
labour-consuming and costly. This fact leads to the replacement of the high order model by 
simplified models described by differential equations of a lower order [2, pp. 792–800; 3; 4, 
pp. 19–30]. In general, methods of model simplification can be divided into two groups. The 
first group includes methods based on the minimisation of a chosen form of error between 
the responses of the models. The second group is based on neglecting those poles which are 
furthest from the origin and retain only dominant poles. The retention of the dominant poles 
makes the response of the reduced model approximate that of the original, since the neglected 
poles make a highly insignificant contribution to the total response except at the beginning. 

Papers [2, pp. 792–800; 3; 4, pp. 19–30] show also the synthesis of the methods of simplified 
models enabling the creation of a lower order model, which near the beginning of the time interval 
maps the model of the higher order with an error approaching zero. A great advantage of this 
method is that it does not require the computation of poles as in the case of other methods where 
it is often needed. The accuracy of models near the beginning of the time interval is especially 
important with reference to the systems working in a dynamic mode far from a steady state. 
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5.  Maximum errors 

It is easy to observe that the control errors (2.1), (2.3) can be determined if, and only if, 
the mathematical model of the system and the model of the controller are provided in advance 
and the control signal is known. Traditionally, these errors are determined for a standard input 
signal, most often in the form of a unit step function, Dirac’s impulse or, less often, in the form of 
ramp or sinusoidal inputs. As a result, different error values are obtained, since they essentially 
depend on the input signal for which they are computed. This is a significant limitation of 
their usefulness because, in practice, real ACS are not excited by standard signals but usually 
by signals which are decidedly different from the standard signals. In such a situation, the 
received error values will be different from each other even for this same criterion and the lack 
of reference for them makes it impossible to assess the quality of ACS. 

Our proposal is to apply the maximum error as a reference to the actual error in the 
estimation of control quality. It is worth noting that such an estimation is universal for any 
input signal in such a sense that the maximum error ensures that its value will always be 
greater or, at least, equal to the value resulting from a signal of any shape which could appear 
at the input of the ACS. Effectively, all the possible input signals to a real system are taken 
into consideration at the same time. Therefore, the value of maximum errors can create a 
reference valid for the chosen error criterion. However, the procedure of the determination of 
maximum errors requires special input signals to be used which warrant that the error values 
determined with them will always be higher than, or at least equal to, the value generated by 
any other signal. Below, we present an analytical method for determining the shapes of signals 
that maximise the integral-square-error as an example [3; 5, pp. 179–186]. 

Let us express for this purpose the error (2.1) by inner product

	
I u e t dt Du Du u U
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where in (5.1), the error e(t) equals 
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t

� � � � �� ( ) ( )� � �
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Let us assume that U is the set of input signals u piecewise C1 over the interval [0.T] and 
k is the impulse response of D(s).

Let us additionally assume that 

	 � � � � � � �� �0 b c T x U x b c: ,supp 	 (5.3) 
such that 
	 I x2 0( )> 	 (5.4) 
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In order to match the dynamic properties of the signal to the dynamic properties of the 
ACS, let us define a set A of signals with imposed constraints on amplitude a and a rate of 
change θ[3], [6, pp. 550–553; 7, pp. 147–175]

	 A u t U u t a u t u t t T: ( ) : ( ) , ( ) , ( ) , ,� � � � � � �� �� �� �� � 0 	 (5.5) 

where u'+(t) and u'–(t) are increasing and decreasing derivative of u(t), respectively.
Let us assume that u0(t)∈A fulfils the condition

	 I u I u u A2 0 2( ) sup ( ):� �� � 	 (5.6) 

Then, we put the following theorem:

	 � � � � � � �� �t T u t a or u t or u t[ , ] ( ) ( ) ( )0 0 0 0� � 	 (5.7)

The proof (not direct) is as follows:
Suppose that (5.7) is not true. Then

	 � � � � � �� 0 0, b c T 	 (5.8) 

such that
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and for a small r��
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From the optimum condition in u0, it results that
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and
	 0 2 0

2� � �� � �r Du Dx r Dx Dx, , 	 (5.13)

Coming back to the record as in (5.11), we have

	 0 2 2 0
2

2� � �� � �rI u x r I x, 	 (5.14)	

However, it can be easily seen that solution (5.14) represents a parabola crossing zero and 
directed upwards, so that the last inequality will never be fulfilled for I2(x)>0, r∈(–δ,δ). 
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As a result, we get a contradiction to the assumption that I2(x)>0. We can therefore infer 
that I(u0) can fulfil condition (5.6) only if the input signal u0(t)reaches one of the constraints 
given in (5.7). This means that the space of the solution of the signals u0(t) maximising 
functional (5.6) is therefore limited to the form of triangles with the slope inclination |u'0+(t)|=θ 
or |u'0–(t)|=θ or of trapezoids with slopes |u'0+(t)|=θ  and |u'0–(t)|=θ  and an amplitude of a.

Carrying out the proof in an identical manner to that above, it can be shown that if only 
one of the constraints is applied to the signal, either of amplitude a or of the rate of change 
θ, then the functional I2(u0) reaches maximum if the signal reaches this constraint over the 
interval [0, T]. It means that if only amplitude constraint is imposed on signal u(t) it will 
take the shape of ‘bang-bang’ signal with the amplitude a = 1 The analytical solution referring 
to the switching moments of the ‘bang-bang’ signal maximising integral-square-criterion is 
considered in detail in [2, pp. 792–800; 3]. 

6.  Conclusions

The important achievement of this paper is the presentation of the possibility of an 
unequivocal evaluation of the control quality in automatic systems by means of signals 
maximising control errors. The paper also provides mathematical proof that such signals exist 
and shows the space in which they are available. Knowing the shapes of maximising signals 
in advance is especially useful if we waive the requirement of an exact calculation in favour 
of the approximate programs of computation as this narrows down the domain of search for 
the correct signal. This significantly increases the likelihood of obtaining the proper solution 
and considerably reduces the computation time. Good results among others give here, for 
example, the genetic algorithms program. Verification of the results can be easily obtained 
based on analysis of the signal energy density. It transpires that the maximum energy of the 
correctly determined signal is accumulated near the beginning and the end of the time scale. 
For non-maximising signals, energy density is completely asymmetric with respect to the 
centre of the time-scale plane [8, p. 224–232].
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