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CONTINUOUS DEPENDENCE OF MILD SOLUTIONS ON INITIAL NONLOCAL
DATA, OF THE NONLOCAL SEMILINEAR FUNCTIONAL-DIFFERENTIAL
EVOLUTION CAUCHY PROBLEMS OF THE FIRST AND SECOND ORDER

CIAGLA ZALEZNOSC CALKOWYCH ROZWIAZAN OD NIELOKALNYCH
WARUNKOW POCZATKOWYCH, NIELOKALNYCH SEMILINIOWYCH
EWOLUCYJNYCH FUNKCJONALNO-ROZNICZKOWYCH ZGADNIEN

CAUCHY EGO PIERWSZEGO I DRUGIEGO RZEDU

Abstract

The aim of the paper is to prove two theorems on the continuous dependence of mild solutions, on initial
nonlocal data, of the nonlocal semilinear functional-differential evolution Cauchy problems of the first and
second orders. The paper is based on publications [ 1-10] and is a generalization of paper [3].
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Streszczenie

W artykule udowodniono dwa twierdzenia o ciaglej zaleznosci rozwiazan catkowych od nielokalnych wa-
runkéw poczatkowych, semiliniowych funkcjonalno-rézniczkowych zagadnien ewolucyjnych Cauchy'ego
pierwszego i drugiego rzedu. Artykul bazuje na publikacjach [1-10] i jest uogdlnieniem publikacji [S].
Stowa kluczowe: ewolucyjne zagadnienia Cauchy’ego, funkcjonalno-rézniczkowe zagadnienia, zagadnienia pierwszego
i drugiego rzedu, ciagha zalezno$¢ rozwiazan, warunki nielokalne.




Part1
Continuous dependence of mild solutions, on initial nonlocal data, of the nonlocal
functional-differential evolution Cauchy problem of the first order

1. Introduction to PartI

In this part of the paper, we assume that E is a Banach space with norm ” ” and — A is the
infinitesimal generator of a C, semigroup {T(zf)}t>0 onE.
Throughout this part of the paper, we use the notation:

I=1[0,a], wherea >0,

M=sup{||T(t)||: teI}
and:
X=C(I,E).

Let p be a positive integer and £, ..., t, be given real numbers such that 0 < ¢, <...< t,<a
Moreover, let Ci(i =1, ..., p) be given real numbers and:

4
K:=Y|c}|
i=1
Consider the nonlocal functional-differential evolution Cauchy problem of the first order:

u'(t)—l—Au(t)=f(t,u(t),u(bl(t)),...,u(bm(t))), teI\{0}, (1)

u(O)-i—ZP:Ciu(ti):xo, (2)

where:
fiIXxE™ —>E, b:I1->1I (i=1,2,...,m) and x, €E.

In this part of the paper, we shall study a continuous dependence of the mild solution, on
initial nonlocal data (2), of the nonlocal semilinear functional-differential evolution Cauchy
problem (1)-(2).The definition of this solution will be given in the next section.

This part of the paper is based on publications [ 1, 3-10] and generalizes some results from
[5] in this sense that, now, we consider functional-differential problems in contrast to [5],
where differential problems were considered.



2. Theorem about a mild solution of the nonlocal functional-differential
evolution Cauchy problem of the first order

A function u belonging to X and satisfying the integral equation:
u(t)=T(t)x, —T(t)(zplciu(ti )J +jT(t —s)f(s,u(s),u(b1 (s)),. . .,u(bm (s)))ds, tel, (3)
is said to be a mild sohll:tzon of the n((;nlocal Cauchy problem (1)-(2).

Theorem 2.1. Assume that:

(i) f:IxE™'—E is continuous with respect to the first variable on I,
b,eC(I,I) (i=1,2,...,m) and there exists constant L > 0 such that:

m+1
||f(s,z1,...,zm+l)—f(s,Zl,...,Emﬂ)”SLGzi—2”:1.” for sel, z;,z,€E(i=1,2,...,m). (4)

i=1
(i) M((m+1)aL+K)<1.
(iii) x, € E.
Then the nonlocal Cauchy problem (1)-(2) has a unique mild solution.
Proof. See [3], Theorem 2 and page 13.

3. Continuous dependence of a mild solution, on initial nonlocal data (2),
of the nonlocal Cauchy problem (1)-(2).

In this section, there is the main result of Part I.

Theorem 3.1. Let all the assumptions of Theorem 2.1 be satisfied. Suppose that u is the
mild solution (satisfying (3)) from Theorem 2.1. Moreover, let v € X, satisfying the equation:

v(t)=T(t)y, —T(t‘)(viciv(ti)J-i—J‘T(t—s)f(s,v(s),v(b1 (s)),. . .,v(bm (s)))ds, tel, (5)

be the mild solution to the nonlocal problem:
v'(t)+Av(t) = f(t,v(t),v(b1 ®)),...,v(b, (t))), teI\{0},
i
v(0)+ Zciv(ti) =Yo»
i=1

where y, €l




Then for an arbitrary e > 0 there is 8 > 0 such that if:

||x0 _yo||<8 (6)
then:

= <. @
Proof. Let € be a positive number and let:

_ l—MK—(m—i-l)aMLS
I .

o:

(8)

Observe that, from (3) and (5),

u(t)—v<t>=T(t><xo—y@—T(t)[ﬁ@(a(t,)—v(t,-))J

+IT(t—s)(f(s,u(s),u(b1 (s)),. ) .,u(bm (s)))—f(s,v(s),u(b1 (5)),. ) .,v(bm (s))))ds, tel. (9)

Consequently, by (9) and (4),
=l < Ml = 3o+ M [ju—v] +(m+1) aML fu—v]] .
From the above inequality:
(1= MK —(m+1)aML)[u—v||, <M]x,— | (10)
By (10), (6) and (8),

M M
. < — < 62 .
=y 1—MK—(m+1)aML"x0 ol I-MK—(m+DaML

Therefore, (7) holds. It means that the mild solution of the nonlocal Cauchy problem
(1)-(2) is continuously dependent on the initial nonlocal data (2).
The proof of Theorem 3.1 is complete.

PartII
Continuous dependence of mild solutions, on initial nonlocal data, of the nonlocal
functional-differential evolution Cauchy problem of the second order

4. Introduction to PartII

In the second part of the paper, we consider the nonlocal functional-differential evolution
Cauchy problem of the second order:

u'(8) = Au(t)+ f(t,u(t),u(b,(1)),...,u(b, (1)), teI\{0}, (11)



u(0)=x,, (12)
”,(0)+iciu(ti)=x1: (13)

where A is the infinitesimal generator of a strongly continuous cosine family { C(t):te R}
of bounded linear operators from the Banach space E (with norm |[-| ) into itself, u:I = E,

f:IXE"™' 5 E,beC(I,I)(i=12,...,m), I1=[0,a], a>0, x,,x, €E, C,eR (i=1,..,p)
and | y-st, areasin Part L.
‘We will use the set:

E:= {x € E:C(t)x is of class C' with respect to t}

and the sine family {S (t):te R} defined by the formula:
t
S(t)x :=J.C(s)xds, xeE, teR.
0

In this part of the paper, we shall study a continuous dependence of a mild solution, on

initial nonlocal data (12)-(13), of the nonlocal Cauchy problem (11)-(13). The definition
of this solution will be given in the next section.

The second part of the paper is based on papers [2, S, 6] and generalizes some results from
[S] in this sense that, now, we consider functional-differential problems in contrast to [S],
where differential problems were considered.

S. Theorem about a mild solution of the nonlocal functional-differential
evolution Cauchy problem of the second order

A function u belonging to C'(I,E) and satisfying the integral equation:

u(t)=C(t)x, +S(t)x, —S(t)(iciu(ti)]+
+J.S(t—s)f(s,u(s),u(b1 (s)),. . .,u(bm (s)))ds, tel,
0 (14)

is said to be a mild solution of the nonlocal Cauchy problem (11)-(13).

Theorem 5.1. Assume that:

(i) f:IxE™' —E is continuous with respect to the first variable t€l, b,eC(I,I)
(i=1,2,...,m) and there exists a positive constant L > 0 such that:




b »

m+1

||f(s,z1,...,zmﬂ)—f(s,'zl,...,Zmﬂ)”SLGzi —z|forsel, 2,z €E(i=1,2,...,m+1),(15)

i=1

(ii) C((m+1)aL+K)<1, where:

C:={sup||C(t)|+[S®)[+[S'(®)||:t €I} and K ::ZP:|Ci|,

i=1

(iii) «, €F and x, €E.
Then, the nonlocal Cauchy problem (11)-(13) has a unique mild solution.
Proof. See [2], Theorem 2.1.

6. Continuous dependence of a mild solution, on initial nonlocal data (12)-(13),
of the nonlocal Cauchy problem (11)-(13)

In this section, there is the main result of Part II.

Theorem 6.1. Let all the assumptions of Theorem 5.1 be satisfied. Suppose that u is the
mild solution (satisfying (14)) from Theorem S.1. Moreover, let v satisfying the equation:

v(t)ZC(t)y0+S(t)yl—S(t)[zplciv(ti)J+IS(t—s)f(s,v(s),v(bl(s)),...,v(bm(s)))ds, tel, (16)

be the mild solution of the nonlocal problem:
o"(£)=Av(t)+ f(£,0(8),v(b, (1)),...,v(b, (1)), teI\{0},
v(0)=yo,
r
v'(0)+ ch"(tf )=,
i=1

where y, €E and y, €E.
Then, for an arbitrary € > 0 there is § > 0 such that if:

o =30l <8, [l =3[ <3 (17)
then:
lu=2ll, <&, (18)

where X = C(I, E).
Proof. Let € be a positive number and let:
_ 1-CK—aCL(m+1) c
2C '

o: (19)




Observe that, from (14) and (16),

u(t)—v(t) :C(t)(xo —y0)+S(t) (x1 _yl)_s(t)(zp:ci (u(ti)_v(ti))J+

—i—J-S(t—s)(f(s,u(s),u(b1 (s)),...,u(bm (s)))—f(s,v(s),v(b1 (s)),...,v(bm(s))))ds, tel.(20)

Consequently, by (20) and (15),
||u—v||X SC”xO —y0||+C||x1 —y1||+CK||u—v||X +aCL(m+1)||u—v||X .

From the above inequality:

(1-CK—aCL(m+1))|u—v|, SC(”xO =30+ [%: —y1||). (21)
By (21), (17) and (19),
C C
”u_V"X < (”xo ~Jo ||+||x1 _)’1”)< 28=¢.

1-CK —aCL(m+1) 1-CK—aCL(m+1)

Therefore, (18) holds. This means that the mild solution of the nonlocal Cauchy problem

(11)-(13) is continuously dependent on the initial nonlocal data (12)-(13).

The proof of Theorem 6.1 is complete.

Remark

The nonlocal problems considered in the paper have a physical interpretation. For this

purpose, see [4].
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