TECHNICAL TRANSACTIONS 2/2018 CHEMISTRY

DOI: 10.4467/2353737XCT.18.025.7998 SUBMISSION OF THE FINAL VERSION: 10/1/2018

Przemysław Woliński

Agnieszka Kącka-Zych (akacka@chemia.pk.edu.pl) Faculty of Chemical Engineering and Technology, Cracow University of Technology

Chemistry of 2-aryl-1-cyano-1-nitroethenes. Part II. Chemical transformations

Chemia 2-arylo-1-cyjano-1-nitroetenów. Część II. Chemiczne transformacje

Abstract

This work is a continuation of our study on the chemistry of 2-aryl-1-cyano-1-nitroethenes. In this paper, we describe the reactivity of 2-aryl-1-cyano-1-nitroethenes as a key component in [2+3] and [2+4] cycloaddition reactions, and in other transformations.

Streszczenie

Praca stanowi kontynuację studiów dotyczących chemii 2-arylo-1-cyjano-1-nitroetenów. W jej ramach dokonaliśmy przeglądu transformacji 2-arylo-1-cyjano-1-nitroetenów jako komponentów [2+3], [2+4] cykloaddycji oraz w innych reakcjach.

Słowa kluczowe: 2-arylo-1-cyjano-1-nitroeten, [2+3] cykloaddycja, [2+4] cykloaddycja, transformacje 2-arylo-1-cyjano-1-nitroetenów

1. Introduction

The chemistry of substituted 2-aryl-1-cyano-1-nitroethenes (ACNs) is a promising field in modern organic chemistry and accessible compounds for preparation of various important organic components [1]. ACNs have been known since the first half of the twentieth century [2]. Currently, several compounds of this group are known; nonetheless, their chemical properties are not well recognized [3–6]. The chemical transformations of these compounds include [2+3] cycloaddition to nitrogen-containing Three-Atoms-Components (TACs), which occupies an important place among the synthetic tools of organic chemistry [7]. Several examples of the participation of ACNs in Diels-Alder reactions as ethylenes as well as heterodienes are also known [3, 8, 9].

This paper is a continuation of our study on the chemistry of 2-aryl-1-cyano-1nitroethenes. In the previous paper we characterized the synthetic protocols as well as the physical description of the compounds studied. In turn this part of our study contains the chemical transformations of ACNs as a component in different types of reactions.

2. [2+3] cycloaddition reactions with 2-aryl-1-cyano-1-nitroethenes

Chemical transformations of substituted cyanonitroethenes include [2+3] cycloaddition reactions (1,3-dipolar cycloaddition) to nitrogen containing TACs, which occupies an important place among the synthetic tools of organic chemists. Formed as a result, nitrogen containing heterocycles demonstrates a broad spectrum of significant properties. In particular the 1,2,3-triazole rings constitute a structural fragment of a number of pharmaceuticals [1], photosensitizers [10], and optical bleaching agents [11].

In 2011, *Nosachev*, *Shchurova* and *Tyrkov* [7] presented a study of the [2+3] cycloaddition reactions of 2-phenyl-1-cyano-1-nitroethene (PCN) (1) with arylazides (**2a,b**). Reactions conducted in diethyl ether at room temperature gave a mixture of regioisomeric 1-aryl-4-nitro-5-phenyl-4,5-dihydro-1H-1,2,3-triazole-4-carbonitriles (**3a,b**) and 1-aryl-5-nitro-4-phenyl-4,5-dihydro-1H-1,2,3-triazole-5-carbonitriles (**5a,b**). Finally, 1-aryl-5(4)-phenyl-1H-1,2,3-triazole-4(5)-carbonitriles (**4a,b**, **6a,b**) (Table 1) were formed as a result of spontaneous nitrous acid extrusion from primary [2, 3] cycloaddition products [7].

124

Entry	Azide	R	Product	Yield [%]
1	2a	Н	4 a	15
2	2b	CH ₃	4b	18
3	2a	Н	6a	10
4	2b	CH ₃	6b	10

Table 1. Synthesis of 1-aryl-5(4)-phenyl-1H-1,2,3-triazole-4(5)-carbonitriles(4a,b, 6a,b) from PCN (1) and arylazides (2a,b) [7]

Piet et al [12] also deal with the [2+3] cycloaddition reactions of PCN (1) with phenylazide (2a) and methylazide (7). They obtained 1-methyl-5-phenyl-1H-1,2,3-triazole-4-carbonitrile (9) and 1-methyl-4-phenyl-1H-1,2,3-triazole-5-carbonitrile as a result (11). In the case of 1,5-diphenyl-1H-1,2,3-triazole-4-carbonitrile (4a) and 1,4-diphenyl-1H-1,2,3-triazole-5-carbonitrile (6a) the authors do not present the quantities of the compounds obtained (Table 2).

Table 2. Synthesis of 1-methyl-5(4)-phenyl-1H-1,2,3-triazole-4(5)-carbonitrile (9)(11) and 1,5(4)-diphenyl-1H-1,2,3-triazole-4(5)-carbonitrile (4a)(6a) [12]

Entry	Azide	R	Product	Ratio
1	2a	C ₆ H ₅	4a:9a	-
2	7	CH ₃	9:11	0.13

Likewise, Amantini et al [13] described the synthesis of 4-aryl-1H-1,2,3-triazole-5carbonitriles (**15a-g**) through tetrabutylammonium fluoride (TBAF) catalysed [2+3] cycloaddition of (E)-ACNs (**1**, **12a-f**) with azido(trimethyl)silane (**13**). These reagents subsequently experienced aromatization and [1.3]–sigmatropic hydrogen shift, leading to 4-aryl-1H-1,2,3-triazole-5-carbonitriles (**15a-g**) with excellent yield (Table 3).

Entry	ACN	R	Time [h]	Product	Yield [%]
1	1	C ₆ H ₅	3	15a	85
2	12a	$(4-Cl)-C_{6}H_{4}$	0.15	15b	90
3	12b	(4-OCH ₃)-C ₆ H ₄	3	15c	75
4	12c	(4-OH)-C ₆ H ₄	3	15d	70
5	12d	(3,4-OCH ₂ O)-C ₆ H ₃	1	15e	85
6	12e	2-furyl	2	15f	75
7	12f	2-thienyl	3	15g	75

Table 3. Synthesis of 4-aryl-1H-1,2,3-triazole-5-carbonitriles (**15a-g**) through TBAF catalyzed [2+3] cycloaddition [13]

Another example of catalysed [2+3] cycloadditions are the reactions investigated by *Fringuelli's* group [14]. The catalysed process was the reaction between (E)-ACNs (**1**, **16a-e**) and azido(trimethyl)silane (**13**) carried out in the presence of Amberlite IRA900F (Amb-F). These reactions are used for the preparation of 4-aryl-1H-1,2,3-triazole-5-carbonitriles (**15a**, **18a-e**); however, the reaction yield is 60-95% (Table 4).

Table 4. Synthesis of 4-aryl-1H-1,2,3-triazole-5-carbonitriles (15a, 18a-e) in the presence of Amb-F [14]

Entry	ACN	R	T [°C]	Time [h]	Product	Yield [%] ^(a)
1	1	C ₆ H ₅	30	3	15a	95
2	1	C ₆ H ₅	30	9	15a	93 ^(b)
3	1	C ₆ H ₅	30	3	15a	82(°)
4	1	C ₆ H ₅	30	3	15a	83 ^(d)
5	1	C ₆ H ₅	30	3	15a	60 ^(e)
6	1	C ₆ H ₅	30	3	15a	94 ^(f)
7	1	C ₆ H ₅	30	3	15a	95 ^(f)
8	16a	(2-OCH ₃)C ₆ H ₄	60	12	18a	92
9	16b	(2,4-OCH ₃)C ₆ H ₃	60	15	18b	90
10	16c	(2,4,6-CH ₃)C ₆ H ₂	60	14	18c	90
11	16d	(2,4-Cl)C ₆ H ₃	60	12	18d	75
12	16e	(2-Cl-6-F)C ₆ H ₃	60	12	18e	80

(a) 3.0 eq. of azido(trimethyl)silane (13) (b) 0.10 eq. Amb-F. (c) Reaction in 2 ml/mmol of THF. (d) Reaction in 2 ml/mmol of DCE. (e) 0.10 eq. TBAF. (f) Reaction with recovered Amb-F.

Nosachev et al [15] presented the studies of [2+3] cycloaddition of PCN (1) to N-phenacyl- (19a) or N-acetonyl- (19b) isoquinolinium bromides. Those reactions provide an interesting pathway to the hardly accessible isoquinolines (21a,b) in high to excellent yield

and full regioselective manner. The authors also obtained 1-nitro-2,3-diphenyl- (22a) and 3-methyl-1-nitro-2-phenyl- (22b) 2,2a,5,5a,6,10b-hexahydro-1H-benzo[g][1,2,3]triazino-[5,4,3-cd]indolizine-1-carbonitriles resulting from the formation of intermediate hydrazine derivatives of pyrrolidine which undergo a spontaneous heterocyclization into compounds 22a,b with 30-41% yield (Table 5) [15].

Table 5. Synthesis of isoquinolines (**21a**,**b**), 1-nitro-2,3-diphenyl- (**22a**) and 3-methyl-1-nitro-2-phenyl- (**22b**) 2,2a,5,5a,6,10b-hexahydro-1H-benzo[g][1,2,3]triazino-[5,4,3-cd]indolizine-1-carbonitriles [15]

Entry	Substrate	R	Product	Yield [%]	Product	Yield [%]
1	19a	C ₆ H ₅	21a	60	22a	41
2	19b	CH ₃	21b	62	22b	30

Recently published experimental and quantum-chemical studies confirm that reactions between (E)-ACNs (1, 12a,b, 23) and diazofluorene (24) lead to acyclic 2,3-diazabuta-1,3-diene derivatives (27a-d) (Table 6) instead of the expected pyrazoline systems [16]. The quantum-chemical calculations suggest that this could be a consequence of the formation of zwitterionic structures (26a-d) in the first reaction stage. The authors explained this as a specific property of the (E)-2-aryl-1-cyano-1-nitroethenes (1, 12a,b, 23) group.

127

Entry	ACN	R	Product	Yield [%]
1	1	C ₆ H ₅	27a	95
2	12a	$(4-Cl)-C_{6}H_{4}$	27b	93
3	12b	(4-OCH ₃)-C ₆ H ₄	27c	95
4	23	(4-F)-C ₆ H ₄	27d	95

Table 6. Synthesis of 2,3-diazabuta-1,3-diene derivatives (27a-d) [16]

3. [2+4] cycloaddition reactions with 2-aryl-1-cyano-1-nitroethenes

Thanks to their specific structure, ACNs can undergo Diels-Alders reactions as a heterodiene component as well as dienophil one. This feature broadens their use significantly. As a result of these reactions biphenyl analogues, norbornenes and benzoxazines derivatives have been produced [7].

Jasiński et al [17, 18], conducted a series of reactions of ACNs (1, 12a,b, 28a,b) with cyclopentadiene (29) in nitromethane which lead to the formation of *endo-* and *exo-* nitronorbornenes (30a-e, 31a-e). After 24 hours, almost full conversion was achieved and the products (30a-e, 31a-e) (Table 7) were isolated by semipreparative HPLC.

Table 7. Synthesis of nitronorbornenes (**30a-e**, **31a-e**) in nitromethane [17]

Entry	ACN	R	T [°C]	Products	30a-e:31a-e ratio
1	1	Н	25	30-31a	0.14
2	12a	Cl	25	30-31b	0.15
4	12b	CH ₃ O	25	30-31c	0.08
3	28a	Br	25	30-31d	0.15
5	28b	COOCH ₃	0	20.21-	0.17
6	28b	COOCH ₃	25	30-31e	0.19

Recently Łapczuk-Krygier et al [19] performed cycloaddition of ACNs (1, 12a,b, 23, 28b, 32) to cyclopentadiene (29) in ionic liquids. In comparison to the earlier study [17], the authors obtained cycloadducts (30a-c, 30e, 33a,b, 31a-c, 31e, 34a,b) after only 10

minutes, and varying stereoselectivity which depended on the ionic liquid used (Table 8). They proposed this method as effective and eco-friendly.

Table 8. Synthesis of nitronorbornenes (30a-c, 30e, 33a,b, 31a-c, 31e, 34a,b) in ionic liquids [19]

	/				1 5 2
Entry	ACN	R	Ionic liquid	Products	Products ratio
1	1	Н	[BMIM][Cl]		0.16
2		Н	[TEAS]		0.16
3		Н	[HMIM][HSO ₄]		0.19
4		Н	[C ₆ MIM][Cl]	30a, 31a	0.14
5		Н	[TEAP]		0.13
6		Н	[BMIM][BF ₄]		0.11
7	12a	Cl	[BMIM][Cl]	30b, 31b	0.17
8	12b	CH ₃ O	[BMIM][Cl]	30c, 31c	0.24
9	23	F	[BMIM][Cl]	33a, 34a	0.14
10	28b	COOCH ₃	[BMIM][Cl]	30e, 31e	0.12
11	32	CH,	[BMIM][Cl]	33b, 34b	0.13

Baichurin et al. [20] synthesized *gem*-cyanonitrocyclohexenes (**36a-d**) by cycloaddition of ACNs (**1**, **12b**, **12e-f**) to 2,3-dimetyl-1,3-butadiene (**35**). The reaction was performed in boiling toluene, and after 2-9 hrs the products were isolated with 54-94% yield (Table 9).

Entry	ACN	R	Time [h]	Product	Yield [%]
1	1	C ₆ H ₅	3	36a	75
2	12b	(4-CH ₃ O)C ₆ H ₄	9	36b	94
3	12e	2-furyl	2	36c	54
4	12f	2-thienyl	4	36d	83

Table 9. S	vnthesis of	gem-cvano	onitrocvcl	lohexenes (36a-d`) in toluene	20	l
10010 7.0	y memeoro or	genn cyund	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tomeneneo (004 4	/ III colucile	L 20.	Ł

129

A series of 2-aryl-1-cyano-1-nitroethenes (1, 16b-d, 32, 37a-g) have been used in cycloaddition to four different 1,3-butadienes (35, 38a-c) by *Pizzo* et al [21]. They conducted the reactions in solvent free conditions and generated *in situ* obtaining very good yields (75–88%) of cycloadducts (39a-n). Aromatization of (39a-n) was achieved by reaction with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in the presence of O₂. Biphenyls (40a-n) were isolated in 45-80% yield (Table 10).

Table 10. Synthesis of cycloadducts (**39a-n**) and biphenyls (**40a-n**) in solvent-free conditions [21]

Entry	ACN	R	Diene	R_{1}, R_{2}, R_{3}	T [°C]	Time [h]	Yield of 39 [%]	Time [h]	Yield of 40 [%]
1		C ₆ H ₅	35	$\begin{array}{c} R_1 = R_2 = CH_3, \\ R_3 = H \end{array}$	60	5	86	3	75
2	1	C ₆ H ₅	38a	$R_1 = R_2 = H,$ $R_3 = CH_3$	60	10	85	5	65
3		C ₆ H ₅			60	12	80	4	70
4	16b	(2,4-CH ₃ O)C ₆ H ₃			30	12	80	5	45
5	16c	$(2,4,6-CH_3)C_6H_2$]		30	12	78	3	62
6	16d	(2,4-Cl)C ₆ H ₃			60	6	84	5	70
7	37a	$(2-CH_3)C_6H_4$]		60	6	85	6	57
8	37b	$(2-CH_3O)C_6H_4$	38h	R ₁ =CH ₃ ,	60	20	88	3	60
9	37c	$(2-CF_3)C_6H_4$	300	$R_2 = R_3 = H$	30	12	77	2.5	70
10	37d	$(2-NO_{2})C_{6}H_{4}$			30	12	78	6	57
11	37e	(4-CN)C ₆ H ₄			30	10	85	6	77
12	37f	(2-Cl-6-F)C ₆ H ₃			60	12	82	2	70
13	37g	(3,5-Br-4-OH) C ₆ H ₂			30	15	75	7	80
14	32	$(4-CH_3)C_6H_4$	38c	$R_1 = R_2 = R_3 = H$	110	12	75	6	65

Vaccaro et al [22] presented an uncatalysed and solvent-free cycloaddition of ACNs (1, 12a-e, 16b, 32, 37b, 37d, 41a,b) to 1-(trimethylsilyloxy)-cyclohex-1-ene (42). The hexahydro-4*H*-1,2-benzoxazine-2-oxide (43a-1) formed was isolated with 80–90% yield (Table 11). The authors showed this reaction to be fully regio- and stereoselective.

Entry	ACN	R	T [°C]	Time [h]	Product	Yield [%]
1	1	C ₆ H ₅	25	0.75	43a	90
2	12a	$(4-Cl)C_6H_4$	25	0.75	43b	90
3	12b	$(4-CH_3O)C_6H_4$	30	1.25	43c	90
4	12c	2-furyl	50	0.5	43d	86
5	12d	(3,4-OCH ₂ O)C ₆ H ₃	60	0.5	43e	80
6	12e	2-thienyl	60	0.5	43f	84
7	16b	(2,4-CH ₃ O)C ₆ H ₃	90	1.0	43g	80
8	32	$(4-CH_3)C_6H_4$	25	1.25	43h	85
9	37b	(2-CH ₃ O)C ₆ H ₄	40	1.25	43i	87
10	37d	$(2-NO_2)C_6H_4$	30	1.0	43j	82
11	41a	$(4-CF_3)C_6H_4$	30	1.0	43k	80
12	41b	(4-CH ₃ S)C ₆ H ₄	40	1.5	431	85

Table 11. Synthesis of hexahydro-4H-1,2-benzoxazine-2-oxides (43a-1) in solvent-free conditions [22]

In 2001 *Fringuelli* et al. [8] vinyl ethers were used (**44a-d**) in a cycloaddition reaction with ACNs (**1**, **12a**,**b**) in water. The yields of nitronates (**45a-d**) were very high (75-90%) but a mixture of diastereoisomers was obtained (Table 12). The kinetic aspects of these transformations have also been recently discovered [9]

Enter	ACN	D	σ	T[C]	Time	Isomer 45 [%]			Yield	
Entry	ACN	K	K ₁	ILC	[min]	a	b	c	d	[%]
1	1	C ₆ H ₅	C ₂ H ₅	0	3	80	20	-	-	75
2	12a	$(4-Cl)C_6H_4$	C ₂ H ₅	0	20	96	4	-	-	90
3	12b	(4– CH ₃ O) C ₆ H ₄	C ₂ H ₅	25	10	98	2	-	_	85
4	12a	$(4-Cl)C_6H_4$		0	30	35	6	54	5	_
5	12a	(4–Cl)C ₆ H ₄		0	30	30	5	60	5	-
6	1	C ₆ H ₅	SO ₂ N(Cy) ₂	25	60	_	_	85	15	_
7	12a	(4–Cl)C ₆ H ₄	SO ₂ N(Cy) ₂	0	60	_	_	85	15	_
8	12b	$(4-CH_{3}O)$ $C_{6}H_{4}$	SO ₂ N(Cy) ₂	25	60	_	_	83	17	_

Table 12. Synthesis of nitronates (45a-d) in water [8]

In the same year, *Pizzo* et al [3] showed an example of intramolecular cycloaddition in $2-(2^{-}(3^{*},3^{*}-dimethyl))$ allyloxyphenyl)-1-cyano-1-nitroetene (**46**) generated *in situ*. This reaction led to the formation of *cis*-4a,10b,-dihydro-1-cyano-4,4,dimethylbenzo[*b*]pyrene- [4,3-*d*][1,2] oxazine-2-oxide (**47**) and its 4a-epimer (**48**) in a 16:1 ratio and with a 60% yield of (**48**).

4. Other transformations with 2-aryl-1-cyano-1-nitroethenes

In 1999, *Kislyi* et al [23], found that ACNs (**1**, **12a**,**b**, **23**) react with cyclohexane-1,3dione (**49**) or 5,5-dimethylcyclohexane-1,3-dione (**51**) in the presence of catalytic amounts of triethylamine forming 2-amino-3-nitropyrans (**50a-d**, **52a-d**) with good yields (Table 13).

Table 13. Synthesis of 2-amino-3-nitropyrans (**50a-d**, **52a-d**) in the presence of $(C_2H_2)_2N$ [23]

Entry	ACN	R	Product	Yield [%]
1	1	Н	50a	62
2	12a	Cl	50b	25
3	12b	CH ₃ O	50c	63
4	23	F	50d	30
5	1	Н	52a	73
6	12a	Cl	52b	31
7	12b	CH ₃ O	52c	65
8	23	F	52d	42

The authors continued work and presented the syntheses of 2-amino-3-nitropyranol[3,2-c]pyrans (**55a-c**) and 2-amino-3-nitropyranol[3,2,c]chromenes (**57a-c**). These products were obtained with 30-85% yield (Table 14) [24].

Entry	ACN	R ₁	R ₂	R ₃	Product	Yield [%]
1	12b	Н	Н	CH ₃ O	55a	65
2	37b	CH ₃ O	Н	Н	55b	30
3	53	Н	CH ₃ O	Н	55c	70
4	12b	Н	Н	CH ₃ O	57a	85
5	37b	CH ₃ O	Н	Н	57b	80
6	53	Н	CH ₃ O	Н	57c	80

Table 14. Synthesis of 2-amino-3-nitropyranol-[3,2-c] pyrans (55a-c) and 2-amino-3-nitropyranol[3,2,c]chromenes (57a-c) [24]

In turn, *Troschutz* and *Luckel* [25] used the PCN (1) to synthesize 2,6-diamino-1,4-dihydro-3,5-dinitro-4-phenylpyridine (**58**). They obtained product (**59**) with 40% yield.

Baichurin et al [26] conducted reactions to prepare 3-(4-dimethylaminophenyl)-2-nitro-4-aryl-propanenitrile (**61a-c**) from 2-aryl-1-cyano-1-nitroethene (**1**, **12b**, **12f**) and N,Ndimethlaniline (**60**). The reactions were carried out at room temperature in acetic acid and led to compounds (**61a-c**) with 32–76% yields (Table 15).

Table 15. Synthesis of 3-(4-dimethylaminophenyl)-2-nitro-4-aryl-propanenitrile (61a-c) [26]

Entry	ACN	R	Product	Yield [%]
1	1	C ₆ H ₅	61a	75
2	12b	(4-CH ₃ O)C ₆ H ₄	61b	76
3	12f	2-thienyl	61c	32

The reactions of PCN (1) with aliphatic and heterocyclic amines with the lowest molecular weights were presented by *Demireva* et al. [27]. They obtained bis-alkylammonium salts of 2,4-dinitro-3-phenylglutarodinitrile (**63a-d**) with 78–84% yields (Table 16).

Entry	Amine	R ₁	Product	Yield [%]
1	62a	C ₇ H ₁₅	63a	80
2	62b	C ₈ H ₁₇	63b	82
3	62c	C ₁₇ H ₃₅	63c	84
4	62d	$C_5H_{11}N$	63d	78

Table 16. Synthesis of bis-alkylammonium salts of 2,4-dinitro-3-phenylglutarodinitrile(63a-d) [27]

In 1984, *Metchkov* and *Demireva* [28] obtained a series of bis(ammonium) salts of 2,4-dinitro-3-(2-furyl)glutarodinitrile (**65a-j**) (Table 17) from 1-nitro-1-cyano-2-(2-furyl) ethane (**12e**) and aliphatic and alicyclic amines (**62b,c, 64a-h**)

Table 17. Synthesis of bis(ammonium) salts of 2,4-dinitro-3-(2-furyl)glutarodinitrile (65a-j) [28].

Entry	Amine	R ₁	R ₂	Product	Yield [%]
1	64a	Н	n-C ₃ H ₇	65a	98
2	64b	Н	n-C ₄ H ₉	65b	96
3	64c	Н	C(CH ₃) ₃	65c	60
4	64d	Н	$C_{6}H_{12}$	65d	80
5	62b	Н	C8H17	65e	71
6	64e	Н	C ₁₂ H ₂₆	65f	71
7	64f	Н	C ₁₆ H ₃₃	65g	73
8	62c	Н	C ₁₇ H ₃₅	65h	75
9	64g	C ₂ H ₅	C_2H_5	65i	83
10	64h	-(CH ₂) ₅ -		65j	83

The same authors [29] presented a synthesis of a series of bis(ammonium) salts of 2,4-dinitro-3-(2-thiophene)glutarodinitrile (**66a-j**). They obtained products (**66a-j**) with good yields, reaching up to 97% (Table 18).

Entry	Amine	R ₁	R ₂	Product	Yield [%]
1	64a	Н	n-C ₃ H ₇	66a	88
2	64b	Н	n-C ₄ H ₉	66b	97
3	64c	Н	C(CH ₃) ₃	66c	97
4	64d	Н	C ₆ H ₁₂	66d	95
5	62b	Н	C ₈ H ₁₇	66e	80
6	64e	Н	$C_{12}H_{26}$	66f	69
7	64f	Н	C ₁₆ H ₃₃	66g	82
8	62c	Н	C ₁₇ H ₃₅	66h	76
9	64g	C ₂ H ₅	C ₂ H ₅	66 i	96
10	64h	-((CH ₂) ₅ -	<u>66j</u>	52

Table 18. Synthesis of bis(ammonium) salts of 2,4-dinitro-3-(2-thiophene)glutarodinitrile (66a-j) [29]

The authors also showed the synthesis of bis(ammonium) salts of 2,4-dinitro-3-(methoxyphenyl)glutarodinitrile (**68a-j**) with 61–95% yields (Table 19) [30].

Table 19. Synthesis of bis(ammonium) salts of 2,4-dinitro-3-(methoxyphenyl)glutarodinitrile (68a-f) [30]

Entry	ACN	Amine	R ₁	R ₂	Product	Yield [%]
1	2-OCH ₃ (37b)	67	Н	Н	68a	70
2	3- OCH ₃ (53)	67	Н	Н	68b	61
3	4- OCH ₃ (12b)	67	Н	Н	68c	77
4	2-OCH ₃ (37b)	64b	Н	C ₄ H ₉	68d	95
5	3- OCH ₃ (53)	64d	Н	C6H11	68e	92
6	4- OCH ₃ (12b)	64i	C ₂ H ₅	C ₂ H ₅	68f	76

5. Conclusion

A literature review demonstrated that 2-aryl-1-cyano-1-nitroethenes are mainly applied in the synthesis of carbo- and heterocyclic compounds. These compounds are especially used as ethylene in [2+4] cycloaddition reactions. We also noticed a few examples of [2+3] cycloaddition reactions involving 2-phenyl-1-cyano-1-nitroethenes. As we have shown, there are other examples of uses of ACNs transformations that are mainly involved in bis(ammonium) salts.

References

- [1] Grimmett M.R., Comprehensive Organic Chemistry, Eds. D. Barton, W.D. Ollis, Pergamon, Oxford 1979, 4, 357–410.
- [2] Ried W., Köhler E., Königstein F.J., Reaktionen mit Nitro-acetonitril, Liebigs Annalen der Chemie, 1956, 598, 145–148.
- [3] Amantini D., Fringuelli F., Piermatti O., Pizzo F., Vaccaro L., Water, a clean, inexpensive, and re-usable reaction medium. One-pot synthesis of (E)-2-aryl-1-cyano-1-nitroethenes, Green Chemistry, 2001, 3, 229–232.
- [4] Boguszewska-Czubara A., Łapczuk-Krygier A., Rykała K., Biernasiuk A., Wnorowski A., Popiołek Ł., Maziarka A., Hordyjewska A., Jasiński R., Novel synthesis scheme and in vitro antimicrobial evaluation of a panel of (E)-2-aryl-1-cyano-1-nitroethenes, Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 31, 900–907.
- [5] Valizadeh H., Mamaghani M., Badrian A., Effect of Microwave Irradiation on Reaction of Arylaldehyde Derivatives with Some Active Methylene Compounds in Aqueous Media, Synthetic Communications, 2005, 35, 785–790.
- [6] Jasiński R., Mirosław B., Demchuk O.M., Babyuk D., Łapczuk-Krygier A., In the search for experimental and quantumchemical evidence for zwitterionic nature of (2E)-3-[4-(dimethylamino)phenyl]-2-nitroprop-2-enenitrile – An extreme example of donor-π– acceptor push-pull molecule, Journal of Molecular Structure, 2016, 1108, 689–697.
- [7] Nosachev S.B., Shchurova N.A., Tyrkov A.G., Reactions of 2-Benzylidenemalononitrile and 2-Nitro-3-phenyl-acrylonitrile with Aryl Azides, Russian Journal of Organic Chemistry, 2011, 47, 577–580.
- [8] Fringuelli F., Matteucci M., Piermatti O., Pizzo F., Burla M.C., [4 + 2] Cycloadditions of Nitroalkenes in Water. Highly Asymmetric Synthesis of Functionalized Nitronates, Journal Organic Chemistry, 2001, 66, 4661–4666.
- [9] Jasiński R., Kubik M., Łapczuk-Krygier A., Kącka A., Dresler E., Boguszewska-Czubara A., An experimental and theoretical study of the hetero Diels–Alder reactions between (E)-2-aryl-1-cyano-1-nitroethenes and ethyl vinyl ether: one-step or zwitterionic, two-step mechanism?, Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 333–345.
- [10] Varma R.S., Kabalka G.W., Nitroalkenes in the Synthesis of Heterocyclic Compounds, Heterocycles, 1986, 24, 2645–2677.
- [11] Padwa A., Pearson W.M., Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products, Wiley&Sons, 2002.
- [12] Piet J.C., Hetet G.L., Cailleux P., Benhaoua H., Carrier R., Reactions des methylazide et phenylazide avec quelquesalcynes et olefins a-nitrees. Syntheseregiospecifique des 1,2,3 triazoles, Bulletin des Sociètès Chimiques Belges, 1996, 105, 33–44.
- [13] AmantiniD., Fringuelli F., PiermattiO., Pizzo F., Zunino E., Vaccaro L., Synthesis of 4-Aryl-1H-1,2,3-triazoles through TBAF-Catalyzed [3+2] Cycloaddition of 2-Aryl-1-nitroethenes with TMSN₃ under Solvent-Free Conditions, The Journal of the Organic Chemistry, 2005, 70, 6526–6529.

- [14] Friguelli F., Lanari D., Pizzo F., Vaccaro L., Amberlite IRA900F as a Solid Fluoride Source for a Variety of Organic Transformations under Solvent-Free Conditions, European Journal of Organic Chemistry, 2008, 23, 3928–3932.
- [15] Nosachev S.B., Del'netskaya K.A., Solov'ev N.A., Tyrkov A.G., Substituted 1-nitro-2-phenylethenes in reaction with N-phenacyl- and N-acetonylisoquinolinium bromides, Russian Journal of Organic Chemistry, 2010, 46, 1427–1429.
- [16] Jasiński R., Kula K., Kącka A., Mirosław B., Unexpected course of reaction between (E)-2aryl-1-cyano-1-nitroethenes and diazafluorene: why is there no 1,3-dipolar cycloaddition?, Monatschefte für Chemie, 2017, 148, 909–915.
- [17] Jasiński R., Rzyman M., Barański A., Conjugated nitroalkenes in cycloaddition reactions. Part 2. Diels-Alder reactions of E-2-aryl-1-cyano-1-nitroethenes with cyclopentadiene, Collection of Czech Chemical Communications, 2010, 75, 919–929.
- [18] Łapczuk-Krygier A., Ponikiewski Ł., Jasiński R., The crystal structure of (1RS,4RS,5RS,6SR)-5-cyano-5-nitro-6-phenyl-bicyclo[2.2.1]hept-2-ene, Crystallography Reports, 2014, 59, 961–963.
- [19] Łapczuk-Krygier A., Dresler E., Jasiński R., Ionic liquids as an effective and eco-friendly medium for synthesis of nitrosubstitutednorborenes analogs, Przemysł Chemiczny, 2016, 95, 1928–1931.
- [20] Baichurin R. I., Aboskalova N. I., Trukhin E. V., Berestovitskaya V. M., Aryl(hetaryl)-Containing gem-Cyanonitroethenes: Synthesis, Structure, and Reactions with 2,3-Dimethyl-1,3-butadiene, Russian Journal of General Chemistry, 2015, 85, 1845–1854.
- [21] Fringuelli F., Girotti R., Piermatti O., Pizzo F., Vaccaro L., Uncatalyzed and sol vent-free multicomponent process for the synthesis of biphenyl-2-carbonitrile derivatives, Organic Letters, 2006, 8, 5741–5744.
- [22] Bellachioma G., Castrica L., Fringuelli F., Pizzo F., Vaccaro L., Catalyst- and solvent-free conditions as an environmentally benign approach to 2-aryl-3-cyano-hexahydro-4H-1,2benzoxazine-2-oxides, Green Chemistry, 2008, 10, 327–332.
- [23] Kislyi V.P., Nesterov V.N., Shestopalov A.M., Semenov V.V., Heterocycles with a betanitroenamineframent. 1. Synthesis of 2-amino-3-nitro-pyrans from nitroacetonitrile, Russian Chemical Bulletin, 1999, 48, 1131–1134.
- [24] Kislyi V.P., Nesterov V.N., Shestopalov A.M., Semenov V.V., Heterocycles with a β-nitroenamine fragment. 2. Synthesis of 2-amino-3-nitropyrano[3,2-c]pyrans and 2-amino-3-nitropyrano[3,2,c]chromenes from nitroacetonitrile, Russian Chemical Bulletin, 1999, 4896, 1135–1138.
- [25] Troschütz R., Lückel A., Nitroketenaminale, 7. Mitt.: Synthese von substituierten 2-Amino-3-nitropyridinen aus 1,3-Biselektrophilen und 2-Nitroethen-1,1-diamin, Archiv der Pharmazic, 1992, 325, 785–789.
- [26] Meichkov T.D., Demireva Z.I., Synthesis of some bis(ammonium) salts of 2,4-dinitro-3-(2-furyl)glutarodinitrile, Journal of Chemical and Engineering Data, 1984, 29, 483–484.
- [27] Meichkov T.D., Demireva Z.I., Tonicheva E., Synthese einigerbie-ammonium salze des 2,4-dinitro-3-(2-thienyl)glutaranitrllen, Zeitschrift für Chemie, 1985, 25, 62–63.

- [28] Demireva Z.I., Binev I.G., Juchnovski I.N., A new, versatile acyl activating reagent for peptide synthesis: asymmetrically selective peptide synthesis by use of optically active 3-hydroxyhydantoin, Tetrahedron Letters, 1976, 18, 1523–1526.
- [29] Baichurin R.I., Aboskalova N.I., Turkhin E.V., Berestovitskaya V.M., *Arylation of geminally activated nitroethenes*, Russian Journal of Organic Chemistry, 2013, 49, 67–69.
- [30] Meichkov T.D., Demireva Z.I., *Die synthese einigerbie-ammonium salze des 2,4-dinitro-3-(methoxyphenyl)glutaranitrllen,* Zeitschrift für Chemie, 1985, 25, 169–170.

