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1. Introduction

Let £ = (A, p) be a logical signature/algebraic type, i.e., a set of logical
connectives/operation symbols A with attached finite arities given by the
function p: A - w. Let, also, V be a countably infinite set of propositional
variables. We denote by Fm, (V) the set of £-formulas/L-terms with vari-
ables in V' and by Fm, (V') the corresponding free algebra. A (sentential
or propositional) logic S = (£,C) is a pair, where £ is a logical signa-
ture and C : P(Fmz(V)) - P(Fmg(V)) is a structural closure operator
on Fm,(V), ie., a closure operator satisfying, for every endomorphism
h:Fmg(V) - Fmg(V), the structurality condition

h(C(X)) € C(h(X)), for all X € Fmp (V). (1)

A theory of a logic S = (£,C) is a C-closed set of formulas, i.e., a set
T c Fmg(V), such that C(T) = T. The set of all theories of S is denoted
by Th(S).

Given a propositional logic S = (£, C), the Leibniz congruence Q(7)
of a theory T of S (see [1]) is the largest congruence § on Fm, (V') that is
compatible with T, i.e., such that

(a,B) €6 and «eT imply BeT,

for all o, 8 € Fm, (V). Blok and Pigozzi revisited in [1] a characterization
of the Leibniz congruence, first given by Czelakowski in [2]. It asserts that
for all @, € Fm,(V),

(o, B) € Q(T) iff for all o(p,q) € Fmg(V),
p(la, ) eT Hf ¢(B,q) eT.

The Tarski congruence Q(S) of S (see [4]) is the largest congruence
relation § on Fm, (V') that is compatible with all theories of S. The Tarski
congruence is a special case of the Suszko congruence Q° (T") associated
with a given theory T of &, which is defined as the largest congruence on
Fm/ (V) that is compatible with all theories of S that contain the given
theory T'. (This was defined originally in unpublished notes by Suszko in
1977. See, also, [3].) In fact, by definition, Q(S) = Q5(C(@)), i.e., the
Tarski congruence of § is the Suszko congruence associated with the set
of theorems C(@) of the logic S. Font and Jansana [4], extending the



CAAL: WOJCICKI’S CONJECTURE AND MALINOWSKI'S THEOREM 71

characterization of the Leibniz congruence Q(7') associated with a theory
T of a sentential logic, have shown that, for all «, 5 € Fmg(V),

(o, B) € Q(S) iff for all o(p,q) € Fme(V),
C(p(a,q)) = Cp(B, 7))

Further generalizing this characterization, Czelakowski, using the original
expression of Suszko, showed in Theorem 1.3 of [3] that, for all T € Th(S),
«, /8 € FHlL(V),

(a, B) € QS(T) iff for all p(p,q) € Fmg(V),
C(T, (e, 4)) = C(T',0(B,G))-

Recall that, given a logical signature £, an L-matrix is a pair 2 =
(A, F), where A = (A,L£A) is an L-algebra and F € A is a subset of its
universe. Given a propositional logic S = (£, C'), an L-matrix 2 = (A, F) is
called an S-matrix if F' is an S-filter, i.e., if, for all X u {a} ¢ Fm,(V),
such that « € C(X), and all h: Fm,(V) - A,

h(X)cF implies h(a)eF.

The class of all S-matrices is denoted by Mat(S). Each class of L-matrices
M defines a sentential logic SM = (£,CM) as follows:

aeCM(X) iff W(X)cF = h(a)eF,
for all A=(A,F)eM and all h: Fm,(V) - A.

We write C? instead of C1%}. Note that, according to these definitions, 2
is an S-matrix iff C' < C%.

In [7], Wjcicki showed that every propositional logic S = (£,C) is
complete with respect to the class of all S-matrices, i.e., that, for all X u
{a} cFm(V),

aeC(X) iff aeCMHS)(X).

This implies that a propositional logic S is uniquely determined by the
class of all S-matrices:

S1:=(L,C1)=(L,Co) =Sy iff Mat(S1) = Mat(Sz).

On the other hand, Wéjcicki also observed (see [5]) that the implicative log-
ics of Rasiowa [6] satisfy the same property with respect to the smaller class
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of all S-matrices with a singleton S-filter. We call such S-matrices Rasiowa
S-matrices and denote their class by Mat®(S). Rasiowa S-matrices are
referred to as C-algebras in [5]. All implicative logics of Rasiowa have the
completeness property with respect to the class of all Rasiowa S-matrices
and, therefore, satisfy

S1:=(L,C1) = (L£,C) =S, iff Mat?(S)) = Mat?(Sy).

We call the determinacy of a logic by the class MatR(S ) of all its Rasiowa
matrix models the Rasiowa semantics property. Dziobiak showed, via
an example (Page 21 of [5]), that not all sentential logics satisfy the Rasiowa
semantics property.

According to Malinowski [5], during the Autumn School on Strongly
Finite Sentential Calculi held in Miedzygorze in 1977, Wdjcicki conjectured
that a sentential logic S = (£,C') has the Rasiowa semantics property iff,
for all X u{a} cFm,(V), such that a e C(X),

C(X) = {8 eFume(V): (8,a) € Q°(C(X))}.

We call this the Wéjcicki condition. In the main result of [5] (the The-
orem of [5]), Malinowski gives a proof of Wéjcicki’s conjecture: Using the
terminology adopted here, Malinowski proves that

a sentential logic has the Rasiowa semantics property if and only if it
satisfies the Wéjcicki condition.

In this note, we explore an analog of the Wdjcicki-Malinowski Theorem in
the context of logics formalized as w-institutions.

2. m-Institutions and Closure Systems

Let Sign’ be a category and SEN” : Sign® — Set a Set-valued functor. The
clone of all natural transformations on SEN’ is the category U’ with
collection of objects SEN'", o an ordinal, and collection of morphisms 7 :
SEN!" - SENY’ B-sequences of natural transformations 7; : SEN*" — SEN®.
Composition of (r; : i < 8) : SEN*" - SEN"’ with (oj:4<7): SENY -
SEN'"

SEN <A gpt (9T <0 g
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is defined by
(oj:j<y)e(rizi<f)=(os({ri:i<B)):j <)

A subcategory of this category with all objects of the form SEka, k< w,
and such that:

e it contains all projection morphisms p** : SEN*" SENY i<k, k<w,
with pl’ : SEN*(2)* - SEN* given by

P (8) = ¢, for all e SEN*(D)*,

e for every family {7; : SEN'" - SEN’ : < ¢} of natural transformations
in N*, (r;:i<¢): SEN"" - SEN" is also in N*,

is referred to as a category of natural transformations on SEN’.
Consider an algebraic system A’ = (Sign’, SEN’, N*), i.e., a triple
consisting of

e a category Sign’, called the category of signatures:;
e a functor SEN!: Sign’ — Set, called the sentence functor;
e a category of natural transformations N* on SEN®.

A 7-institution based on A’ is a pair Z = (A", C), where C = {Cs }seisign’|
is a closure system on SEN’, i.e., a |Sign’|-indexed collection of closure
operators Cy, : PSEN’(X) — PSEN’(X), such that, for all 31, X5 € [Sign®|,
all f e Sign®(X1,%) and all ® ¢ SEN*(X;),

SEN’(f)(Cx,(®2)) € Cs, (SEN(f)(®)).

This condition is sometimes referred to as structurality by analogy with
Condition (1). In this context, A" is also referred to as the base algebraic
system. Given a 7-institution Z, a theory family 7" = {T£}2e|5ign"| is a
|Sign’|-indexed collection of subsets T% ¢ SEN?(X), closed under Cy, i.e.,
such that Cx(T%) = T%, for all ¥ € |Sign’|. The collection of all theory
families of Z is denoted by ThFam(Z). It is well-known that, ordered
by signature-wise inclusion <, it forms a complete lattice ThFam(Z) =
(ThFam(Z), <).
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Note, also, that, given a base algebraic system A’ = (Sign’, SEN’, N*),
the collection of all closure systems based on A’ is closed under signature-
wise intersections and, hence, forms a complete lattice under the signature-
wise ordering, also denoted by <:

C'<C? iff for all ¥ ¢|Sign’| and all & c SEN*(X),
C5(®) € C4(2).

3. Rasiowa Matrix Semantics

Let A® = (Sign’, SEN’, N*) be a base algebraic system. Consider an in-
terpreted algebraic system A = (A, (F,«a)), where A = (Sign,SEN, N) is
an N'-algebraic system (see, e.g., Section 2 of [9]) and (F,a): A’ - A is
an N’-morphism. A sentence family of A is a [Sign|-indexed collection
T = {Ts}sqsign|; such that Ty ¢ SEN(X), for all ¥ € [Sign|. The pair
A =(A,T) is called a matrix system.

Given a matrix system 2 = (A, T'), as above, the closure system C* on
A" is defined, for all ¥ € |Sign’| and all ® U {p} ¢ SEN*(X), by ¢ € CZ(®)
if and only if, for all ¥’ € |Sign’| and all f € Sign"(%,Y),

o (SENY(f)(®)) € Tp(sy implies  ax(SEN’(f)(0)) € Tpesy.-

Given a m-institution Z = (A°, C), the matrix system 2l = (A, T) is called
an Z-matrix system or a matrix system model of 7 in case C' < C?,
i.e., if, for all ¥ € |Sign®| and all ® u {¢} c SEN*(%),

©eCx(®) implies ¢eCR(D).

The collection of all Z-matrix systems is denoted by MatSys(Z). For a
collection M of matrix systems, we define
cM= N c*,
AeM
where, on the right, intersection is applied signature-wise.

Let Z = (A%, C) be a 7-institution. Denote by (I,:) : A’ - A’ the
identity morphism and by A" = (A’ (I,.)) the corresponding interpreted
algebraic system. Given a theory family 7% € ThFam(Z), we set Q[gpb =
(A", T).
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Lemma 1 Let T = (A", C) be a m-institution and T° € ThFam(Z).
Then:

(1) Q["Tl, € MatSys(Z);

le
2) For allY € |Sign’| and ®u{p} c SEN*(X), if ® € T% and p € C..”" (D),
b b
thengoeT%.

Proof.

(1) Let X € |Sign’| and ® U {p} ¢ SEN’(X), such that ¢ € Cx(®). By
structurality, for all X’ € |Sign’| and f € Sign’(X, %), SEN*(f)(p) €
Csy(SEN*(f)(®)). Thus, since T* € ThFam(Z), if SEN’(f)(®) ¢ T2,

le
then SEN’(f)(p) € T%,. This proves that ¢ € Cy, ™' (®). Therefore
Ar, € MatSys(Z).

(2) This follows directly by the definition of ¥,
i

The following is a version of the completeness theorem for sentential
logics lifted to the level of m-institutions:

Proposition 2 Let A’ = (Sign’, SEN’, N*) be a base algebraic system
and T = (A", C) a m-institution based on A*. Then, C' = CMatSys(Z),

Proof. By definition, for all 2 € MatSys(Z), we have C' < C*. There-
fore, C' < N{C™* : A € MatSys(Z)} = CMatSys(Z),

Suppose, conversely, that ¥ € |Sign’|, ® U {p} ¢ SEN’(X), such that
© € CglatSys(I)((I))' To see that ¢ € Cx(®), it must be shown that, for
all 7" € ThFam(Z), ® ¢ T, implies ¢ € T%. To see this, suppose that
T" € ThFam(Z), such that ® ¢ T%. Consider the pair ngm = (A", T"). By
Part (1) of Lemma 1, A5, € MatSys(Z). Thus, by the hypothesis, ¢ €

b
C;[Tb(q)). Since ® ¢ T%, by Part (2) of Lemma 1, ¢ € T%. This concludes
the proof. O

We denote by MatSys"(Z) the class of all Z-matrix systems 2 = (A, T'),
with A = (A, (F,a)), A = (Sign, SEN, N), such that, there exists 3 € [Sign|,
with [Tx| = 1. We call members of MatSys"(Z) weak Rasiowa Z-matrix
systems.
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We denote by MatSys™(Z) the class of all Z-matrix systems 2 = (A, T),
with A = (A,(F,«a)), A = (Sign,SEN, N), such that, for all X € [Sign|,
|Ts| = 1. We call members of MatSys®(Z) strong Rasiowa Z-matrix
systems.

In analogy with the sentential logic framework, we say that the weak
(respectively, strong) Rasiowa semantics property holds for a 7w-institu-
tion T = (A’ C) if its closure system C' on A’ is uniquely determined by
the class of all weak (respectively, strong) Rasiowa Z-matrix systems.

4. The Strong Wijcicki Condition

Recall that, given a 7-institution Z = (A®,C) and a theory family 7" ¢
ThFam(Z), the Suszko congruence system QZ(T%) of T° in Z is the
largest congruence system compatible with all theory families 77" > T of
T (see Section 6 of [8]). In terms of the Leibniz congruence systems of the
theories of Z (Section 2 of [8]), we have

QX(T") = {QUT"?) : T* < T'* € ThFam(Z)}.

A well-known characterization of the Suszko congruence system of a theory
family 7% € ThFam(Z) (see, also, Section 6 of [8]) asserts that, for all
Y ¢ [Sign’| and all ¢,¢ € SEN*(X), (¢, ) € Q5(T") if and only if, for all
o : SEN'""' 5 SEN' in N’ %' ¢ [Sign’|, f € Sign®(X,%'), x € SEN*(Z/)*,

Csr (T3 u{os (SEN'(f) (), X)}) = Cr (T3 v {osr (SEN* () (), X)}), (2)

where Equation (2) is a shorthand for the equation in which, in oy :
SEN?(¥/)**1  SEN*(X'), the ¥'-sentences SEN?(f) (), SEN?(f)(3)) may
occupy any position (not just the first) as long as they occupy the same
position on the left and right hand sides.

A m-institution Z = (A", C), with A® = (Sign®, SEN’, N*), satisfies the
strong Wéjcicki condition if, for all 7% € ThFam(Z), and all X € |Sign®|,
¢ € SENY (D),

@ Ty implies T% = {1 € SEN"(X): (p,¢) e QL(T")}.

We now reformulate one half of Wojcicki’s Conjecture and Malinowski’s
Theorem for logics formalized as m-institutions:



CAAL: WOJCICKI’S CONJECTURE AND MALINOWSKI'S THEOREM 77

Proposition 3 Let A’ = (Sign’, SEN®, N*) be a base algebraic system
and T = (A", C) a m-institution based on A®. If T satisfies the strong
Wojcicki condition, then I has the weak Rasiowa semantics property.

Proof. Suppose that Z = (A", C) satisfies the strong Wéjcicki condi-
tion. Let A" = (A, (Isignt>1")), where (Ig;opns,t") A’ > A’ is the identity
morphism. Consider, for all T7* € ThFam(Z) - {@}, where @ = {2} seisign’|:
the Z-matrix system

AT = (AT,

Clearly, the collection {7 : T* ¢ ThFam(Z) - {@}} is a strongly adequate
matrix system semantics for Z. Now consider the collection

(AT JOE(TY) = (A JOX(T), T JOF(T?)) : T* € ThFam(T) - {2} }.

The latter is, by the strong Wojcicki condition, a collection of weak Rasiowa
Z-matrix systems that is strongly adequate for Z. Therefore, Z has the weak
Rasiowa semantics property. ]

Note that to carry out the construction in the proof of Proposition 3 one
has to divide by the Suszko congruence systems. Invariance under signature
morphisms is necessary for this quotient construction to make sense.

5. The Weak Wgjcicki Condition

Given a 7-institution Z = (A", C') and a theory family T € ThFam(Z), the
Suszko congruence family ©7(T") of T* in 7 is the largest congruence
family compatible with all theory families 7" > T* of Z. Contrast this with
the Suszko congruence system QF (T"), which is, of course, required to be
a system, i.e., invariant under signature morphisms. A characterization of
the Suszko congruence family of 7" € ThFam(Z), analogous to that of the
Suszko congruence system, follows along the lines of the characterization
of the Suszko congruence of a theory of a sentential logic, as given by
Czelakowski in [3].
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Proposition 4 Let T = (A*,C), with A® = (Sign®,SEN’, N*), be a 7-
institution and T® € ThFam(Z). For all ¥ € |Sign’| and all ¢, € SEN*(X),
(p, ) € @%(T") if and only if, for all o : SEN'""" — SEN® in Nt and all
X € SEN*(2)*,

Cs (T3 u{os(p,X)}) = Ce(T v {os (¥, X)}).

Proof. Define 0 = {05}y gign|; for all ¥ e |Sign’| and all ¢, €
SEN!(X), by setting

(p,9) €y, iff for all o: SEN"""" - SEN’ in N*, ¥ e SEN*(Z)*
Cs (T u{os(p,X)}) = Cs(T3, v {os (¥, X)}).

It is easy to see that @ is an equivalence family on SEN’. To see that it is
a congruence of A’ consider 7 : SEN' - SEN’ in N* and @, 1) € SENY (D),
such that @ 6% . Then, we have, for all o : SEN*""" - SEN? in N* and all
Y € SEN()*,

Cs (T3 v {os(ts(8),0)}) Cs (T3 u{os(ts (Yo, 015, 00-1),X)})

Cs (T3 u{os(ts (Yo, Y1, -, 00-1),X)})

Cs (T U {os(ts(¥),X)}),

whence 7x(@) 0y, m(¢)) and 6 is a congruence family of A*. To see that
6 is compatible with all theory families 77" > T", assume (p,%) € 6y and
¢ € Ty). Then, we have

v e Co(Tyu{v})
= Ce(Tyu{p}) (since (p,¢) € by)
c Cx(Ty u{y}) (since T" <T"")
= Cx(T¥) (since ¢ € Ty)
= Ty (since T'" € ThFam(Z))

Finally, to see that 6 is the largest congruence family compatible with
T", suppose that 1 is such a family and (p,%) € ng. Then, for all o :
SEN'"" - SEN® in N* and all X € SEN(X)¥, by the congruence property
of n, ox(p,X) Ny ox (¥, X). Therefore, by compatibility of n with all theory
families of Z including 7%, we get that Cx(T% U {ox(p,X)}) = Cx(T% U
{ox(¥,X)}). This shows that (¢,9) € 0s. Thus, n < 4.
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Since @ is the largest congruence family of Z that is compatible with
T" € ThFam(Z), we get, by definition, § = ©%(T"). o

Either directly from the fact that every congruence system is also a
congruence family, or based on the corresponding characterizations, we
obtain the following corollary:

Corollary 5 Let T = (A", C), with A* = (Sign’, SEN*, N%), be a =-
institution. For all T* € ThFam(Z),

QX (1) < 6% (T").

A 7-institution Z = (A", C) based on A® = (Sign’, SEN®, N*) satisfies the
weak Wéjcicki condition if, for all 7% € ThFam(Z) and all ¥ € |Sign’|,
¢ € SEN*(X),

@ Ty implies T% = {1 € SEN"(2):(p,9) e OF(T")}.

We are now ready to formulate the second half of Wéjcicki’s Conjecture
and Malinowski’s Theorem for logics formalized as w-institutions:

Proposition 6 Let A = (Sign’, SEN®, N*) be an algebraic system and
T = (A", C) a m-institution based on A®. If T has the strong Rasiowa
semantics property, then it satisfies the weak Wdjcicki condition.

Proof. Suppose that Z = (A", C) has the strong Rasiowa semantics
property. Let T ¢ ThFam(Z), ¥ € |Sign’|, ¢ € SEN*(X), such that ¢ € T?.
Set

[0] = { € SEN"(S) : (g, ) € B5(T")}-
We must show that Tg = [¢]. We follow the proof of the corresponding
result in [5].
c: Assume that there exists ¢ € T%, such that 1 ¢ [p]. Since (p, 7)) ¢
OZL(T"), by Proposition 4, there exists o : SEN*"" - SEN* in N* and
Y € SEN*(2)*, such that

Cs(T3 u{os(e. X)}) # Co(T v {os(¥, X))

Assume, without loss of generality due to symmetry, that

§eCx (T u{os(p,X)}) and & ¢ Cx (TR u{os(¥,X)}).
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By the strong Rasiowa semantics property, there exists a strong Ra-
siowa Z-matrix system 2 = ((A,(F,a)),T), ¥’ € [Sign’| and f ¢
Sign’(%,Y’), such that

asy (SEN(f)(T3)) u{as (SEN*(f) (o (1, X))} € Tr(sr
whereas
asy (SEN*(£)(8)) ¢ Tr(sy.-

On the other hand, notice that, since 2 is an Z-matrix system and
£ e Cx (T u{ox(p,X)}), we must have

as (SEN'(f)(os(,X))) ¢ Tresry-

Finally, the fact that ¢, € T% and o/ (SEN'(f)(1%)) € Tr(syy en-
sures that ass(SEN*(f)()) € Tr(syy and as/(SEN’(f)()) € Tr(sry.
Taking into account the commutativity of the following diagram,

SENb(f)k+1 ak+1

SENb(E)k+1 SENb(ZI)k+l l» SEN(F(E’))k+1
oy, oy’ OFr(%)
b b ! !
SEN’(X) SEN'(/) SEN"(X') o SEN(F (X))
we have obtained the following four relations:
ax (SEN'(£)(¢)) € Tp(sr)
QE’(SENb(f)(¢)) € TF(E’)
(s (asr (SEN'()(9)), a8y (SEN'(£)* (X)) ¢ Tresry
oy (as (SEN'(F)(¥)), %, (SEN*(/)* (X)) € Tr(s)-

These are clearly contradictory in view of the hypothesis that 2 is a
strong Rasiowa Z-matrix system, i.e., |TF(E’)| =1.

2: Suppose, next, that ¢ € [¢], i.e., that (p, ) € @%(Tb) Then, we have
b e Cu(Thu{v)) )
= Cx(Thu{p}) (since (p,9) € O%(T"))
= Cx(T?) (since ¢ € TY)

We now conclude that, if Z has the strong Rasiowa semantics property,
then it satisfies the weak Wéjcicki condition. m|
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6. Conclusion

We have established the following implications among conditions related to
the Rasiowa semantics property and the Wdjcicki condition applicable for
logics formalized as m-institutions:

Theorem 7 Let A® = (Sign’, SEN? N*®) be an algebraic system and
Z=(A"C) a m-institution based on A".

(1) If T satisfies the strong Wdjcicki condition, then it has the weak Ra-
stowa semantics property.

(2) If T has the strong Rasiowa semantics property, then it satisfies the
weak Wojcicki condition.

Pictorially, we have

Strong Wjcicki Condition Strong Rasiowa Property

(1) e (2)

Weak Rasiowa ﬁroperty Weak W(’)jcicki Condition

where the dashed implications are trivial.
Proof. (1) is Proposition 3 and (2) is Proposition 6. ]

Note that, if A’ is an algebraic system with the trivial signature cat-
egory, all congruence families of A’ are also congruence systems. In par-
ticular, for a m-institution based on such an algebraic system, the Suszko
congruence system % (T") and the Suszko congruence family e’ (T") of
a theory family 7% € ThFam(Z) coincide. Thus, Z satisfies the strong
Wojcicki condition if and only if it satisfies the weak Wojcicki condition.
Moreover, in this case, the strong and the weak Rasiowa semantics prop-
erties coincide. Therefore, we obtain the following corollary, an analog
for logics formalized as m-institutions of the Wéjcicki-Malinowski Theorem
that motivated our work:

Corollary 8 Let A’ = (Sign’, SEN*, N*) be an algebraic system, with
the trivial signature category, and I = (A", C) a m-institution based on A°.
7 has the Rasiowa semantics property if and only if it satisfies the Wojcicki
condition.
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