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Uniqueness of solutions to inverse parabolic semilinear 
problems under nonlocal conditions with integrals

Jednoznaczność rozwiązań odwrotnych parabolicznych 
semiliniowych zagadnień z nielokalnymi warunkami z całkami

Abstract
The uniqueness of classical solutions to inverse parabolic semilinear problems together with  nonlocal  initial  

conditions  with  integrals, for the operator ∂
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1  where t0∈ℜ,  0 < T < ∞ are studied. The result consists 
in the introduction of nonlocal conditions with integrals.
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Streszczenie
W artykule studiowana jest jednoznaczność klasycznych rozwiązań odwrotnych parabolicznych 
semiliniowych zagadnień z nielokalnymi początkowymi warunkami z całkami dla operatora 
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gdzie  t0∈ℜ,  0 < T < ∞.Wynik polega na tym, że zostały wprowadzone warunki nielokalne z całkami.
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1.  Introduction

In this paper, we prove two theorems on the uniqueness of classical solutions to inverse 
parabolic semilinear problems, for the equation:
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where t0∈ℜ, 0 < T< ∞. The coefficients aij(i, j=1, ..., n) and the function f are given. By the 
solution of the inverse problem, for equation (1), we mean a pair of functions (u,v) satisfying 
equation (1) and suitable conditions. The nonlocal initial condition considered in the paper 
is of the form:
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where |h(x)| ≤ 1 for x∈D0. 

The obtained result is a continuation of the results given by Rabczuk in [6], by 
Beznohchenko and Prilenko in [1], by Chabrowski in [4], by Brandys in [2] and by the first 
author in [2] and [3].

2.  Preliminaries 

The notation, definitions and assumptions from this section are valid throughout this 
paper.

We will need the set ℜ– :=(–∞, 0).
Let t0 be a real finite number, 0 < T< ∞ and x=(x1, ..., xn) ∈ℜn.
Define the domain (see [2] or [3])

	 D:=D0×(t0, t0+T),	

where D0 is an open and bounded domain in ℜn such that the boundary ∂D0 satisfies the 
following conditions:

If n ≥ 2 then ∂D0 is a union of a finite number of surface patches of class C1, which have no 
common interior points but have common boundary points.
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If n ≥ 3 then all the edges of ∂D0 are sums of a finite numbers of (n–2) – dimensional 
surface patches of class C1.

Assumption (A1).

a
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∈ ℜ =1  where aij=aij(x,t) for (x,t)∈D (i, j=1, ..., n); aji(x,t)= aij(x,t) 

for (x,t)∈D (i, j=1, ..., n) and a x tij i
i j

n

j( , )
,

λ λ
=
∑ ≥

1

0  for arbitrary (x,t)∈D and (λ1, ..., λn) ∈ℜn.

Assumption (A2).
(i)	 f: D∈ℜ (x,t,z) →f (x,t,z)∈ℜ, f∈C(D×ℜ,ℜ), f(x,t,0)≠0 for (x,t)∈D, 
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(ii)	 f1:∂D0 × [0,T]→ℜ;
(ii’) k∈C(∂D0 × [0,T],ℜ) and k(x,t)≤0  for (x,t)∈∂D0 × [0,T]; 
(iii)	f0:D0→ℜ.

Assumption (A2).  h∈C(D0,ℜ) and |h(x)|≤1 for x∈D0.

Let C2,1(D,ℜ) be the space of all w∈(D,ℜ) such that 
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The symbol L is reserved for the operator given by the formula:
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By nx, where x∈∂D0, we denote the interior normal to ∂D0 at x. Shortly, we denote, also, nx by n.
Let u∈C2,1(D,ℜ), x0∈ ∂D0 and t∈[t0, t0+T]. The expression:
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is called the transversal derivative of the function u at the point (x0,t). Shortly, we denote, also 
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For the given functions aij(i, j=1, ..., n) satisfying Assumption (A1) and for the given 
functions f, f1, f0 and h satisfying Assumptions (A2) (i) – (iii) and (A3), the first Fourier’s 
inverse semilinear  problem in D together with a nonlocal initial condition with integral 
consists in finding a pair of functions u∈C2,1(D,ℜ), v∈C(D,ℜ–) satisfying the equation
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the boundary condition:
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where C is a negative constant independent of u and v.

A pair (u,v) of functions possessing the above properties is called a solution of the first 
Fourier’s inverse semilinear problem (4)–(7) in D.

Remark 2.1. The assumption that f(x,t,0)≠0 for (x,t)∈D (see Assumption (A2)(i)) implies 
that u = 0 cannot satisfy equation (4). Consequently, the above assumption implies that only   
u ≠ 0 is considered in the paper.

If condition (6) from the first Fourier’s inverse semilinear nonlocal problem (4)–(7) is 
replaced by the condition
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where k is the given function satisfying Assumption (A2)(ii') then problem (4), (5), (8)  
and (7) is said to be the mixed inverse semilinear problem in D together with a nonlocal initial 
condition with integral. A pair of functions u∈C2,1(D,ℜ), v∈(D,ℜ–) satisfying equation (4) 
and conditions (5), (8), (7) is called a solution of the mixed inverse semilinear problem (4), 
(5), (8) and (7) in D.

Assumption (A4). For every two solutions (u1,v1) and (u2,v2) of problem (4) – (7) or of 
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Remark 2.2. The reason for which Assumption (A4) is introduced is that the considered 
problems are inverse.
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Assumption (A5). For each two solutions (u1,v1) and (u2,v2) of problem (4)–(7) or of 
problem (4), (5), (8) and (7) the following inequality:
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is satisfied.

Remark. 2.3. The reason for which Assumption (A5) is introduced is that the considered 
problems are nonlocal. 

3.  Theorems about uniqueness

In this section, we shall prove two theorems about the uniqueness of solutions of inverse 
parabolic semilinear problems together with nonlocal initial conditions.

Theorem 3.1.  Suppose that coefficients aij(i, j=1, ..., n) of the differential equation satisfy  
Assumption (A1) and the functions f, f1, f0 and h satisfy Assumptions (A2) (i) – (iii) and (A3). 
Then, the first Fourier’s inverse semilinear problem (4) – (7) admits at most one solution in D in the 
class of the solutions satisfying Assumptions (A4) and (A5).

Proof.  Suppose that (u1,v1) and (u2,v2) are two solutions of problem (4) – (7) in D and let

	 w:= u1 – u1 in D.	 (9)

Then, the following formulas hold:
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From the assumption that u1,u2∈C2,1(D,ℜ) from the second and fourth part of Assumption 
(A2)(i) and from the mean value theorem, there exists θ∈(0,1) such that:
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where dσx is a surface element in ℜn.
From (15), (12), from  the last part of Assumption (A1) and from the inequalities 
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From (19) and (13), and Assumptions (A4) and (A5),we have:

	 w
f x t u w

z
dx dt

Dt

t T
2 2

00

0 ∂ +
∂













∫∫
+ ( , , )θ

 	 (20)

	 ≤− + −∫
1
2

12
0

2

0

w x t T h x dx
D

( , )[ ( )] . 	

By (20) and by Assumption (A3) we obtain: 
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From the above inequality and from the last part of Assumption (A2)(i):
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Theorem 3.2.  Suppose that the assumptions of Theorem 3.1, concerning to the coefficients aij(i, 
j=1, ..., n) and the functions f, f1, f0 and h are satisfied and that the function k satisfies Assumption  
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From (26), (24), and as in the proof of Theorem 3.1, we obtain:
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By (27), by Assumption (A2)(ii’) and (A3), and by (25) and Assumption (A4), we obtain 
the inequality:

	 w
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z
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From the above inequality and from the last part of Assumption (A2)(i),

	 w2 ≤ 0 in  D	

and, therefore, the same argument as in the proof of Theorem 3.1 implies that the proof of 
Theorem 3.2 is complete.

4.  Physical interpretation of the nonlocal condition (5)

Theorems 3.1 and 3.2 can be applied to description of physical problems in the heat 
conduction theory, for which we cannot measure the temperature at the initial instant, but we 
can measure the temperature in the form of the nonlocal condition (5).

Also, observe that the nonlocal condition (5) considered in Theorem 3.1 and 3.2 is more 
general  than  the  classical  initial condition and  the integral periodic condition and the integral 
antiperiodic condition. Namely, if the function h from condition (5) satisfies the relation: 

	 h(x) = 0 for  x∈D0	

then condition (5) is reduced to the initial condition:

	 u(x,t0) = f0(x) for  x∈D0.	

Instead, if the function h and f in (5) satisfy the conditions:

	 h(x) = –1 [h(x) = 1] for  x∈D0,	

	 f0(x) = 0 for  x∈D0	



175

then condition (5) is reduced, respectively, to the integral periodic [antiperiodic] initial 
condition:

	 u x t
T

u x d u x t
T

u x d
t

t T

t

t T

( , ) ( , ) ( , ) ( , ) ]0 0

1 1

0

0

0

0

= =−
+ +

∫ ∫τ τ τ τ  [ forr   x D∈ 0 	
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