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Abstract

The uniqueness of classical solutions to inverse parabolic semilinear problems together with nonlocal initial

9 uij(x,t)i +v(x,t)—g , x=(x,,..o%,), inthe
= Ox; Ox; Ot

conditions with integrals, for the operator Z
cylindrical domain D= Dy x (£y,t, +T) =R, where t, € R, 0< T <coarestudied. The result consists
in the introduction of nonlocal conditions with integrals.
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Streszczenie

W artykule studiowana jest jednoznacznos¢ klasycznych rozwiazan odwrotnych parabolicznych
semiliniowych zagadnien z nielokalnymi poczatkowymi warunkami z catkami dla operatora

Zi aiv(x,t)i + v(x,t)—g , =(%,,y,), Wwalcowym obszarze D:=Dy x(to,t, +T) c R™,
ox,| 6x/. ot

gdzie t,eR, 0<T <o0.Wynik polega na tym, ze zostaly wprowadzone warunki nielokalne z calkami.

i,j=1 i

Stowa kluczowe: zagadnienia odwrotne, zagadnienia paraboliczne, réwnanie semiliniowe, nielokalny warunek z catka,
obszar walcowy, jednoznaczno$¢ rozwiazari




1. Introduction

In this paper, we prove two theorems on the uniqueness of classical solutions to inverse
parabolic semilinear problems, for the equation:

ia [U( t)ﬁu(x t)]+ (e, ) — 6u(x,t)

i,j=1

(1)
= f(x,t,u(x,t)),

(x,t)eD:=D, x (t,,t,+T)cR"",

where t €R, 0 < T< oo. The coefficients a, (l,] 1, .., n) and the function f are given. By the
solutlon of the inverse problem, for equatlon (1), we mean a pair of functions (u,v) satisfying
equation (1) and suitable conditions. The nonlocal initial condition considered in the paper
is of the form:

( )t0+T

u(x,t,)+—= j u(x,t)dt=f,(x), x€D,,

where |h(x)| < 1 forxeD,,

The obtained result is a continuation of the results given by Rabczuk in [6], by
Beznohchenko and Prilenko in [1], by Chabrowski in [4], by Brandys in [2] and by the first
authorin [2] and [3].

2. Preliminaries

The notation, definitions and assumptions from this section are valid throughout this
paper.

We will need the set R :=(-o0, 0).

Let t, be a real finite number, 0 < T'< o0 and x=(xl, .y xn) eR".

Define the domain (see [2] or [3])

D:=Dx(t,t +T),
where D, is an open and bounded domain in R" such that the boundary 0D, satisfies the
following conditions:

Ifn > 2 then 0D, is a union of a finite number of surface patches of class C', which have no
common interior points but have common boundary points.
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If n > 3 then all the edges of 0D are sums of a finite numbers of (n-2) — dimensional
surface patches of class C'.
Assumption (A).

Oa. _ _

a;, a—al’ eC(D,R) (i,j,s=1,..,n), where aijzaij(x,t) for (xt)eD (i,j=1,..,n); “,-,-(x!t): aﬁ(x,t)
x
for (x,t) €D (i, j=1, ..., n) and iuij (x,t)A A, >0 forarbitrary (xt)eDand (A, ., A ) €R".
i,j=1
Assumption (A).
(i) f: DeRa(x,t,z) —f(x,t,z)eR, fe C(DxR,N), f(x,£,0)0 for (xt) €D,
_ of (x,t,z _

o € C(DxR,R) and M >0 for (xt)eD, z € R;

0z Oz
(ii) f,:0D, x [0,T]—%N;
(ii") ke C(0D, x [0,T],R) and k(x,t)<0 for (x,t) €0D, x [0,T];
(iii) f,:D,—R.

Assumption (A,). heC(I_)O,‘.R) and |h(x)|<1 forxeD,.

2
Let C>'(D,R) be the space of all we(D,}R) such that 2—W, 88 Y ¢ C(D,R) for
]

i i

0 _
i,j=1,.,nand 6—1: e C(D,R).

The symbol L is reserved for the operator given by the formula:

Ox,

j (2)

i,j=1 ¥

(L)) :Zai[ (w0 GWWJ
forwe CZ‘I(E,SR), () D

Byn , where x€0D,, we denote the interior normal to 0D, at x. Shortly, we denote, also, n_by n.
LetueC*'(D,R), x,€ 0D and te[t, t +T]. The expression:

du(x,t) i Ou(x,,t)

do(x,,t) ‘= Ox

is called the transversal derivative of the function u at the point (x,,t). Shortly, we denote, also

du(x,t) b d

du
—u(x,,t) or by —.
do(x,,t) v duu(x ) or by do

Zi:aij(xo,t)cos(nxo,xj) (3)

i

For the given functions ail_(i, j=1, .., n) satisfying Assumption (A,) and for the given
functions f, f,, f, and h satisfying Assumptions (A,) (i) - (iii) and (A,), the first Fourier’s
inverse semilinear problem in D together with a nonlocal initial condition with integral
consists in finding a pair of functions ue C>'(D,R), ve C(D,R ) satisfying the equation
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Ou(x,t)

(Lu) (x,t) + v o, t Julx,t)— = f(x,t,u(x,t)) for (x,t)eD, (4)
the nonlocal initial condition:
u(x,to)+%x)t0fu(x,r)d1= f.(x) for xeD,, (s)
the boundary condition: tc
u(xt)=f (x,t) for xedD x [t,t+T] (6)

and the condition:

toITl:J-v(x,t)uz(x,t)dx} dt=C, (7)

ty D,

where Cis a negative constant independent of # and v.

A pair (4,v) of functions possessing the above properties is called a solution of the first
Fourier’s inverse semilinear problem (4)—(7) in D.

Remark 2.1. The assumption that f(x,t,0) %0 for (x,t) €D (see Assumption (A, )(i)) implies
that u = 0 cannot satisfy equation (4). Consequently, the above assumption implies that only
u # 0 is considered in the paper.

If condition (6) from the first Fourier’s inverse semilinear nonlocal problem (4)-(7) is
replaced by the condition

diu(x,t) +k(x,t)ulx,t) = f (x,t) for (x,t)edD,x[t,,t,+T], (8)
UX

where k is the given function satisfying Assumption (A,)(ii’) then problem (4), (5), (8)
and (7) is said to be the mixed inverse semilinear problem in D together with a nonlocal initial
condition with integral. A pair of functions ue C>'(D,R), ve (D,}R ) satisfying equation (4)
and conditions (5), (8), (7) is called a solution of the mixed inverse semilinear problem (4),
(5),(8) and (7) in D.

Assumption (A,). For every two solutions (u,v,) and (u,v,) of problem (4) - (7) or of
problem (4), (5), (8) and (7) the following formulas hold:

J. |:jvi(x,t)uf(x,t)dx:| dt=C (i,j=1,2;i#j).

tO D()
Remark 2.2. The reason for which Assumption (A 4) is introduced is that the considered
problems are inverse.



Assumption (A,). For each two solutions (u,v,) and (u,v,) of problem (4)—(7) or of
problem (4), (5), (8) and (7) the following inequality:

2

to+T
% j (u, (x,7)—u, (x,7))d1 S[ul(x,to+T)—u2(9c,to+T)]Z for xeD,

)

is satisfied.

Remark. 2.3. The reason for which Assumption (AS) is introduced is that the considered
problems are nonlocal.
3. Theorems about uniqueness

In this section, we shall prove two theorems about the uniqueness of solutions of inverse
parabolic semilinear problems together with nonlocal initial conditions.

Theorem 3.1. Suppose that coefficients aij(i, j=1, ..., n) of the differential equation satisfy
Assumption (A,) and the functions f, f,, f, and h satisfy Assumptions (A,) (i) - (iii) and (A,).
Then, the first Fourier’s inverse semilinear problem (4) — (7) admits at most one solution in D in the
class of the solutions satisfying Assumptions (A,) and (A,).

Proof. Suppose that (u,v,) and (u,,v,) are two solutions of problem (4) — (7) in D and let

wi=u —u in D. (9)

Then, the following formulas hold:

(10)

(LW) (x’t) T (x’t)ul (x’t) —V, (x)t)uz (x;t) - awé’tc,t)

:f(x)t;ul(x)t))_f(x)t)uz(x1t)) for (xrt)EB;

w(x,to)—i-@ J w(x,7)dt=0 for xeD,, (11)
w(x,t)=0 for (x,t)e0D,x[t,,t,+T], (12)

t D,

j{ [ v, (et (x,t)dx:l dt=C (i=1,2). (13)
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From the assumption that u ,u, € C*! (D,R) from the second and fourth part of Assumption
(A,)(i) and from the mean value theorem, there exists 6 (0,1) such that:

fGxtu, (,8))~fltu, (xt)) (14)

— () Of (x,t,u, (xgz)+ew(x,t))

By (14), (10), by Assumption (A ), by (2) and by [5] (Section 17.11),

thtT|:J‘w2 6f(x,t,u2+9w)dx:l it (15)

5, 0z

for (x,t)eD.

t

ty+T

=— J l:JAwZn:cos(n,xi)Zn:ai},a_wdcx} dt
fo =l o Ox,

to+T ow &
et

to+T to+T
- I {J‘—wdx}dt—i- I {J‘v uzdx}
ty+T
+ _[ |:Jv uidx:ldt
ty+T
- j I:J‘vluluzdx}dt

D,

_%IT{ I vzuluzdx}dt,
t, | D,

where do_is a surface element in R".
From (15), (12), from the last part of Assumption (A, ) and from the inequalities

to+T

- J. l:J-viuluzdledtﬁ—;afl:"-vi(uf+u;)dx}dt (i=1,2) (16)

ty D,

we have

tDJtT{J‘wz —af(x,t,auzz-l-ew) }dt< torl:j—wdx}d (17)

ty ty D,



+thtT|: J. vlufdx}dt + t“JfT{ J vzu;dx}dt

to D, ty Dy

l:IVI (] +u; )dx |dt
D,

1:0+T
-3 ;[

1 to+T
-3 ;[

Using integration by parts, we obtain:

{J‘ v, (u) +ul )dx |dt.

"l ow 1 1
—wdx |dt=—| w’ (x,t, + T)dx—— | w*(x,t, )dx.
L e e R .
Formulas (17), (18) and (11) imply the inequality:
J' {J.wz de} dt (19)
ol a, Oz
S—ljw2 (,t, +T)dx+ljh2(x) ltDJtTw(x,‘c)dT dx
2D0 2D0 T t,
1 ty+T 1 ty+T T
+— I {J‘vlufdx:l dt—— j |:Jv1u§dx dt
2 ty D, 2 ty D, _
1o 10 7
+— I {J‘vzufdx} dt—— I {J-vzufdx dt.
2 ty D, 2 t, D, i
From (19) and (13), and Assumptions (4,) and (A,),we have:
J' |:J.w2 de} dt (20)
ol a, Oz

S—%b[ w” (x,t, +T)[1-h*(x) Jdx.

By (20) and by Assumption (A3) we obtain:




t+T
J {J‘wzwdx} dt<0.

vl a Oz

From the above inequality and from the last part of Assumption (A,)(i):

w*<0 in D
and therefore:

w=0 in D.
The above formula implies that:

u =u, in D.

Consequently, by (10):
(v,-v,)u =0 in D.

Therefore, from Remark 2.1, we have that:

v,=v, in D.
The proof of Theorem 3.1 is thereby complete.

Theorem 3.2. Suppose that the assumptions of Theorem 3.1, concerning to the coefficients “i;(i’
j=1, ..., n) and the functions f, f,, f, and h are satisfied and that the function k satisfies Assumption
(A,)(ii’). Then, the mixed inverse semilinear problem (4), (S), (8) and (7) admits at most one
solution in D in the class of the solutions satisfying Assumptions (A,) and (A,).

Proof. Suppose that (u,v,) and (u,,v, )are two solutions of problem (4), (5) , (8) and (7)

in D and let
w:=v - inD. (21)
Then, the following formulas hold:
(L) (2, ) + v, (o, s, (,8) — v, (e, (e, £) — Ow(ix,t) (22)
= £ t,u, (x,t)) = f(x,t, (x,)) for (x,t)eD,
Wt )+@ [ e Dde=0 for b, (23)
d
dTW(x’t) +k(x,t)w(x,t)=0 for (x,t)edD,x[t,,t,+T], (24)

x
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j{ v, Gt (x,t)dx} dt=C  (i=1,2). (25)

to D,

Applying a similar argument as in the proof of Theorem 3.1 and using the definition of

0
= (see (3)), we have:
ov

x

j{ fw af(x’t+z2+ew)dx} dt (26)

ty

tg+T d
=— ;[ l:@'l[owa_l),CWde:ldt

+tUJtT{J. vlufdx} dt+to_|tT{f vzuidx} dt

D, to D,

—tUJtT{J‘ v,u u,dx |dt.

From (26), (24), and as in the proof of Theorem 3.1, we obtain:

T{ IWZ of (x,t,u, +0w) dx} it (27)

oo, Oz

t, | oD,

StOJtT{ J. szdcx} dt—%]_j w”(x,t, +T)[1—h" (x) Jdx
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1t0+T 1t0+T 7
+— J |:jvlufdx:l dt—— I |:Jv1u§dx dt
2 t, | Dy 2 t, | Dy i
1 ty+T 1t0+T ]
+— I {Jvzuzdx} dt—— .[ {J.vzufdx dt.
2 t, | Dy 2 t, | Dy |

By (27), by Assumption (A,)(ii’) and (A,), and by (25) and Assumption (A,), we obtain
the inequality:

Oz

ty+T
I J‘wl de dt<o.
t, | D,
From the above inequality and from the last part of Assumption (A,)(i),
w*<0 in D

and, therefore, the same argument as in the proof of Theorem 3.1 implies that the proof of
Theorem 3.2 is complete.
4. Physical interpretation of the nonlocal condition (5)

Theorems 3.1 and 3.2 can be applied to description of physical problems in the heat
conduction theory, for which we cannot measure the temperature at the initial instant, but we
can measure the temperature in the form of the nonlocal condition (5).

Also, observe that the nonlocal condition (5) considered in Theorem 3.1 and 3.2 is more
general than the classical initial condition and the integral periodic condition and the integral
antiperiodic condition. Namely, if the function h from condition () satisfies the relation:

h(x)=0 for xeﬁo
then condition (5) is reduced to the initial condition:
u(nt)) =f(x) for xeD,.
Instead, if the function h and fin (S) satisfy the conditions:

h(x)=-1[h(x)=1] for xeD,

f,(x) =0 for xel_)o



then condition (5) is reduced, respectively, to the integral periodic [antiperiodic] initial

condition:

1 1 B
) =— ,T)dT ) =—— ,T)dt | f eD,
u(x,t,) - J u(x,v)dt [ u(x,t,) - ;[u(x )dt ] for x

to
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