
Schedae Informaticae Vol. 25 (2016): 165�176
doi: 10.4467/20838476SI.16.013.6194

Online Supervised Learning Approach for Machine Scheduling

Bartosz S¡del, Bartªomiej �nie»y«ski
AGH University of Science and Technology

Faculty of Computer Science, Electronics and Telecommunication

Department of Computer Science

al. Mickiewicza 30, 30-059 Kraków, Poland

e-mail: sadel@agh.edu.pl, bartlomiej.sniezynski@agh.edu.pl

Abstract. Due to rapid growth of computational power and demand for faster

and more optimal solution in today's manufacturing, machine learning has lately

caught a lot of attention. Thanks to it's ability to adapt to changing conditions

in dynamic environments it is perfect choice for processes where rules cannot be

explicitly given. In this paper proposes on-line supervised learning approach for

optimal scheduling in manufacturing. Although supervised learning is generally

not recommended for dynamic problems we try to defeat this conviction and

prove it's viable option for this class of problems. Implemented in multi-agent

system algorithm is tested against multi-stage, multi-product �ow-shop problem.

More speci�cally we start from de�ning considered problem. Next we move to

presentation of proposed solution. Later on we show results from conducted

experiments and compare our approach to centralized reinforcement learning to

measure algorithm performance.

Keywords: supervised learning, reinforcement learning, scheduling, multi-agent

system

1. Introduction

Machine scheduling problem is almost as old as the �rst Ford's assembly lines, dat-
ing back to twenties of 19th century. Rapid development of manufactures sparked

Received: 11 December 2016 / Accepted: 30 December 2016



166

e�orts to make this process more e�cient. Early on heuristic methods have caught
the attention. Those included Just in Time(JIT), Kanban and few others [1]. Those
methodologies emerged from car manufactures in Japan and soon become popular in
other industries. IT business had initially adapted those concepts to team manage-
ment process, to become scheduling problem solutions later on. Simultaneously pull
and push systems where introduced in [2].

Machine scheduling may be considered as an optimization problem. Unfortunately,
due to being NP-hard, �nding optimal solution is not an easy task. Therefore, many
algorithms were developed to solve it with increasing e�ectivity. Along �nding new
methods, problem also evolved to become its on-line version in which the goal is to
optimize scheduling as continuous process with orders/tasks being generated when
system is already working. In the past few years, agent-based solutions with use of
reinforcement learning have been proposed for such cases [3, 4].

In this paper we consider agent-base approach with another machine learning
strategy, that is supervised learning. Results in other domains show that in com-
plex environment this type of learning gives improvements faster than reinforcement
learning [5, 6].

In this paper, we will begin with de�ning on-line machine scheduling problem.
Next, we will propose our solution and provide necessary theory. This will be followed
by conducted experiments and conclusions. Our aim is to check whether supervised
learning can replace reinforcement in dynamic environments.

2. Problem Representation

In this paper dynamic version of �ow-shop problem is considered. It should re�ect
real manufacturing process where we have company producing products of n di�erent
types. Each product requires processing on m di�erent stations. Single station may
contain any number of machines. It's enough for a product to be processed just by one
machine on every station. To make similarity with traditional job-shop, we can name
process of producing product a job and processing a product by a certain machine
a task. Later on we will use these terms interchangeably. Each product needs to
pass all the stations. Additionally path alongside stations have to be the same for all
product types. Thanks to these restrictions we can number stations by the sequence
in which jobs will be passing through those. Since in real life manufacturing situation
usually there is a delay between �nishing processing of a product on one machine and
starting on the next one, we have to introduce bu�ers between stations, where we can
store the waiting products. As orders usually consist of more than just one unit of
product, we need additional bu�er for �nished jobs where products are stored until
whole order is completed. Sample con�guration is presented in Figure 1. To simplify
demonstration without loss of generosity we assumed di�erent types of products to
be marked as circles, pentagons and octagons. Every product in presented example
must proceed sequentially by Station1, Station2 and Station3. Finished products are
stored in last bu�er, called Completed.



167

Figure 1. Example of model representing considered problem.

Every order oi in our model can be de�ned as:

oi = (pi, ci, di, ri, fi, tyi, qi) (1)

where pi stands for priority, ci for creation time, di for due time, ri for reward received
after order completion, fi for penalty received if order is not completed on time,
tyi for the type of the product order demands and qi for quantity of this product.
λty is Poisson parameter describing the frequency with which orders of type ty are
arriving. Number of product units qi is drawn from uniform distribution U(a, b) where
a and b are minimum and maximum values. After arriving, orders are stored in the
queue sorted by their priority, so the most important ones are delivered �rst. When
new order comes to the system, products of which it is composed are inserted into
Buffer1. Then machines from Station1 takes products from it and work on them.
After processing is �nished products are stored in Buffer2. Next the same happens
for the next stations until products �nally gets to Completed bu�er. When there will
be enough products in bu�er, we are delivering �rst order from our queue. Depending
if we managed to deliver order before due time it is possible to get reward or penalty.
Machine is de�ned as:

Mi,j = (Hi,j , Vi,j , ti,j , tyi,j) (2)

where i is number of station, j is number of machine in station, Hi,j is the health of
machine, Vi,j is the table containing velocity of processing of di�erent product types
on this machine, ti,j is the time is takes to recon�gure machine and tyi,j is type of
product machine is con�gured to process. Machines are allowed to change the type
of product they are processing only when they are idle. Each time, machine have ty
di�erent actions to choose, where each one corresponds to processing di�erent product
type. When action of changing processed type is chosen, machine needs to remain
idle for a �xed period of time which simulates machine recon�guration. In our model
every machine can process just one product at a time. Thanks to this property of our
model, sometimes it is more bene�cial for a machine to wait for the product of the
currently con�gured type, instead of changing. Additionally each machine can process
each product type with di�erent speed. This property makes certain machines better
at processing one type of a product, where another one may work better with other
type. Although we allow for situations where single machine or all machines in station
needs no time for processing certain type of products, we still demand this product
to pass through that station. In our environment every machine has chance to break
down. When it happens currently processed product is pushed back to the previous
bu�er. Machine remains than idle for a ti,j of turns, simulating �xing process, after
which it starts working again.



168

Important thing in every model is optimization criteria which is used to describe
system e�ectiveness. In problem we are considering there are many di�erent param-
eters we may want to optimize. The most common would be pro�t maximization or
minimization of product amounts in bu�ers. First option is re�ecting most business
scenarios. This way we don't only look for most valuable orders to complete, but
we also have to the handle the ones with the highest penalty. The second option
chooses what to do basing on number of products waiting in all bu�ers excluding the
Completed one. This way we are minimizing idle time of machines.

Table 1. Notation of parameters.

T Number of product types
ty Product type

λty
Poisson parameter describing frequency of orders with product
type ty

Mi,j Machine j in station i
Ht

i,j Health of machine j in station i in turn t

Vi,j
Table with velocities of processing di�erent product types
on machine j in station i

ti,j Time it takes to recon�gure machine j in station i in turn t
oi I-th order
pi Order priority
ri Order reward
fi Order penalty
ci Order creation time
di Order due time
qi Quantity of product units in order

Bufferti,ty Quantity of products ty in bu�er of �-th station in turn t
Stationi I-th station
Plimit Threshold used in supervised learning
uty Unit price of product type ty
sty Switch cost of product type ty

In this paper we chose to use the last option as it seems interesting for manufac-
tures which don't want machines to be idle. Example of such machine may be foundry
furnace which is shut down only once every twenty years and we would like to use it
as much as we can since it can't be turned o�. Used notation by us is gathered and
presented in Table 1.



169

3. Proposed Solution

Our solution takes usage of approach proposed by �nie»y«ski in [6]. Namely, we will
try to employ supervised learning algorithms to solve problem previously de�ned in
section 2. It's done by introducing learning agents with special architecture allowing
them for taking usage of machine learning algorithms, designed for static problems.

First we need to model our problem as a multi-agent system. To do so we will
treat every machine like a separate intelligent agent. Each of them will have it's own
knowledge base and own classi�er. Decisions about changing processed product type
by machine Mi,j will depend only on the decision of the agent connected with this
machine itself.

Algorithm implemented by our system is presented on Figure 3. In this diagram
we can see �ow of simulation in implemented solution. The �rst step in every turn
is order generation. Whether order should be generated this turn and if so, how big
should it be depends on λty and parameters of experiment establishing lower and
upper boundary of order sizes. Next, products form generated orders are added to
the bu�er of �rst station. After that for each machine in station we check if it has
�nished processing of any product in previous turn. If so, we collect it so later we can
add it to the bu�er in next station. Next step is to �re learning process on machine's
classi�er. In our experiments we do this every 5 turns. Later, every machine has
a chance to change type of processed product. The change is impossible, if machine
is already processing some product. In case of changing product type we save that
information in a form of entry in our knowledge base. It's value is calculated using
equation 3. In other case we continue to process currently processed product. In this
places we are also checking if machine should break in this turn. Next, we go on
to the next machine in station. After processing of all machines in a single station
we move on to the next station but this time products added to the bu�er are ones
collected in previous station. When all stations are �nished we start the next turn.

Architecture of single agent is presented in Figure 2. This model introduces two
main modules. First of them, named Processing module, is responsible for perceiving
of the environment. It receives informations from environment and other agents.
Later on, performs transformation of those observations into format appropriate for
the classi�er. Afterwards, learning module is asked if it knows what to do in a current
situation basing on previously learned knowledge. Learning module communicates
with classi�er which role is to classify received data into one of the T classes where T
is number of di�erent product types considered in problem instance. If this classi�er
can choose proper action with probability higher than Plimit it simply responds with
this action. If it's unsure what to do it can trigger learning process using gathered
training data. After that learning module uses classi�er again and returns the best
choice without checking against plimit. Finally, processing module puts chosen action
into practice.

Although from outside this may look as reinforcement learning it's quite di�erent.
Where in reinforcement learning agents have the knowledge about previous states
hidden in trained classi�er, here we can collect history of environment states and



170

Figure 2. Used agent architecture.

taken actions (decisions made by agents) in form of training set. This way we can
explicitly see experiment history and learn from it.

Each entry in the training set consists of two parts. The �rst of them is data and
the second is a label, also called a category, which is description of the data part.
There are two common ways to construct entries in problems like one considered
here. In �rst of them data part of each entry consists of bu�ers from each station
and health property of every machine. Product type which should be produced in
this state is used as category in this approach. This method is often used as it's
simple to implement and directly tells us, what should we do in given state. The
second method combines data part and category from previous method to create the
data part. As a label in this option we are using quality of the decision. Although
harder to implement, this method o�ers us bene�ts, in a form of a way to express
how good each decision is. Thanks to this, we can connect the same state with two
di�erent actions, where in the �rst method this would be impossible. In our work
we are using second approach as we hope that ability to express value of moves, will
improve proposed solution.

f(ty, i, j, t) =

{
uty ∗ sgn(Bufferti,ty), if ty = tyi,j

uty ∗ sgn(Bufferti,ty)− sty, otherwise
(3)

Each entry is composed of amounts of products in bu�ers from 1 to m, health of
all machines and a chosen action, which takes one of ty values. Value of our entry
is calculated using equation 3. Entries are added to training set after every machine
decision.



171

Figure 3. Flow diagram of implemented simulation.



172

Learning process can be started every l turns or when quality of the best action
is lower than a certain threshold. Depending on tools used it may mean constructing
new classi�er based on whole training set or just improve it using previously unseen
examples. We have to take in to account that training classi�er may be computation-
ally expensive depending on the number of stations and machines in each of them, as
they make the amount of collected entries signi�cantly larger. This property makes
supervised learning worse than reinforcement learning in problems where products
are processed fast and there is no much time for decision-making. However in cases
when processing takes hours or even days, learning may be run parallel to machine
work thus be imperceptible.

4. Results

In order to test our approach various experiments were conducted. In all of them
our method was tested against multi-agent reinforcement learning proposed in [4].
Parameters used in simulations are presented in Table 2. Every test was conducted
10 times and the presented results are the mean of received ones. Although system
is able to carry out much bigger simulations we chose to present smaller ones. This
choice is motivated by similar con�gurations used in [4], which allows us for a better
comparison between both solutions.

4.1. Comparison in a 2x2 System

First test were run in a simple con�guration containing only 2 stations with 2 machines
each. In this setup algorithms should learn quickly.

(a) (b)

Figure 4. Results for 2x2 con�guration.

In Figure 4a we can see results of both algorithms running in the same problem
composition. We can notice that although supervised learning algorithm had slower



173

Table 2. Experiment parameters.

Parameter Value

T 2
ty 0 1
sty 40 45
uty 25 30
λty 3 3
ri Sampled from uniform distribution U(0, 60)

fi dt − t
Machines health

Sampled from uniform distribution U(0, 1) with
0,05 probability to break

di Sampled from uniform distribution U(15, 25)
Min order size 1 3
Max order size 1 3

Time span between
learning

5 turns

Supervised learning
algorithm

J48 (C4.5)

Reinforcement learning
algorithm

Watkins

start it took the lead before end of experiment. Although rough start it managed to
stabilize and even decrease number of products waiting in bu�ers, where reinforce-
ment learning struggled with that much harder. Slower start of supervised system
version was probably caused by lack of the knowledge at the start of the experiment.
Reinforcement learning performed better in that situation because it does not need as
much previous experience to work with as supervised learning. Situation has changed
when the supervised algorithm gathered enough entries in the training set and greatly
improved it's performance.

While reward optimization was not a goal of learning, we also made statistics
of reward collected by both solutions. Results achieved for 2x2 con�guration are
presented on Figure 4b. Since supervised learning gathers knowledge slower it's also
starting to gain pro�ts later. Despite rough start, our approach manages to leverage
it's experience and start to achieve pro�ts equal to those gathered by reinforcement
learning.

4.2. Comparison in a 3x3x3 System

Second experiment was conducted in model with 3 layers where each of them con-
tained 3 machines. This case allows to test algorithms capabilities in more complex
environment, although we have to remember that even the simplest examples from



174

real manufacturing will probably be much more complicated than this one. Received
results are presented in Figure 5a. Both methods performed better than in previous
example. Reinforcement learning managed to stabilize quickly and keep the number
of products in bu�ers on almost the same level for the whole simulation. Supervised
learning like before had problems on the beginning. However, around turn 200 it
had break through and managed to decrease the number of products waiting for pro-
cessing to just a few. With such performance it is maintaining an advantage over
reinforcement learning to the end of the simulation.

In Figure 5b we can see rewards achieved by learning algorithms during exper-
iment. As we can see even without maximizing received rewards, both algorithms
managed to work out pro�ts. Reinforcement learning again achieved better results
on this chart. It's due to the fact that it has been evenly working for the whole time.
Supervised algorithms despite of having almost empty bu�ers in second half of the
algorithm didn't manage to catch up. Although in later stages of experiment pro�t
gain of both algorithms was equal, penalties for the �rst few orders put supervised
learning too much behind.

(a) (b)

Figure 5. Results for 3x3x3 con�guration.

5. State of the art

Since machine scheduling problem is one of the most crucial ones for today's manu-
facturing it has gathered a lot of attention in the recent years. As a result of this, vast
diversity of algorithms aiming to optimize the whole process has emerged. Solutions
based on various approaches included among others mixed-integer programming pre-
sented in [7] to solve �owshop problem using two criterias, makespan and �ow-time.
Genetic algorithm approach was considered to solve n-jobs, m-machines setup. Re-
sults of this try compared with simulated annealing and neightbourhood search were
presented in [8].

There are several works considering reinforcement learning with Q-learning in par-
ticular as a possible solution to machine scheduling problem. Amongst them usually
multi-agent approach, where each machine serves as agent, is proposed as possible



175

solution. In [9] author employed multi-agent reinforcement learning for job shop
problem in a real life enviroment. It brings good results but operates on small action
space containig just 3 elements. Another work which employs reinforcement learning
is [4] where centralized version of reinforcement learning approach is proposed for
scheduling in online �ow-shop problem. This solution despite taking longer time for
single step evaluation, converges faster than multi-agent variation. There are less
works considering supervised learning as solution. In [10] framework trying to learn
rules corresponding with creation of optimal solution is introduced. In [11] support
version machines (SVM) algorithm was used to solve resource constraint scheduling
problem which is generalization of �ow-shop problem considered by us.

Unfortunately, since labelling cost is high as it needs a lot of time from the experts
and not always is even possible to be done, standard approach of supervised learning
doesn't �t on-line version of scheduling problem too well. In reactive environments
where there is no previously de�ned training set, most of algorithms are unable to
learn. Luckily, proposed architecture allows agents to apply supervised learning au-
tonomously and on-line, so they can tackle such problems too.

6. Conclusion

In this paper we have proposed a multi-agent solution for a dynamic �ow-shop version.
Agents apply autonomously supervised learning on line. Every agent collects experi-
ence which forms training data used to learn a classi�er applied to chose what type of
product should be processed on every machine. Later on experiments were conducted
in which presented approach was tested against multi-agent reinforcement learning
solution. The goal of the agents was to decrease number of products in bu�ers. As
we can conclude after experiments, supervised learning outperformed reinforcement
learning in terms of the assumed goal. Although it needed more time to take a grasp
and converge with time it's getting better and better. It stabilizes earlier and can
even decrease the number of product waiting in bu�ers where reinforcement learning
was unable to do so in tested scenarios. What it means is that supervised learning is
viable solution for dynamic problems if the right architecture is used.

Further research can focus on various directions. One direction is to try to employ
presented approach using single-agent system instead of multi-agent one used in this
thesis. Second way to go is to introduce some form of communication between agents,
to enhance received result even further. The last direction is to use this approach
in di�erent problems with dynamic nature and see if it's gathering as good results as
in this one.



176

Acknowledgements

The research presented in this paper was supported by the Polish Ministry of Sci-
ence and Higher Education under AGH University of Science and Technology Grant
11.11.230.124.

7. References

[1] Sendil Kumar C., Panneerselvam R., Literature review of jit-kanban system. The
International Journal of Advanced Manufacturing Technology, 2007, 32 (3), pp.
393�408.

[2] Olhager J., Östlund B., An integrated push-pull manufacturing strategy. Euro-
pean Journal of Operational Research, 1990, 45 (2), pp. 135�142.

[3] Ouelhadj, D., Petrovic, S., A survey of dynamic scheduling in manufacturing
systems. Journal of Scheduling, 2008, 12 (4), pp. 417.

[4] Qu S., Chu T., Wang J., Leckie J.O., Jian W., A centralized reinforcement learn-
ing approach for proactive scheduling in manufacturing. In: ETFA, IEEE, 2015,
pp. 1�8.

[5] �nie»y«ski B., Agent strategy generation by rule induction. Computing and In-
formatics, 2013, 32 (5).

[6] �nie»y«ski B., A strategy learning model for autonomous agents based on classi-
�cation. International Journal of Applied Mathematics and Computer Science,
2015, 35 (3), pp. 471�482.

[7] Selen W.J., Hott D.D., A mixed-integer goal-programming formulation of the
standard �ow-shop scheduling problem. Journal of the Operational Research So-
ciety, 1986, pp. 1121�1128.

[8] Reeves C.R., A genetic algorithm for �owshop sequencing. Computers & opera-
tions research, 1995, 22 (1), pp. 5�13.

[9] Beke T., Multi-agent reinforcement learning in a �exible job shop environment:
the vcst case. Master's thesis, Gent Universiteit, Gent, Belgium 2013.

[10] Ingimundardottir H., Runarsson T.P., Supervised learning linear priority dispatch
rules for job-shop scheduling. In: Learning and Intelligent Optimization: 5th
International Conference. Springer 2011 pp. 263�277.

[11] Gersmann K., Hammer B., Improving iterative repair strategies for scheduling
with the {SVM}. Neurocomputing, 2005, 63, pp. 271 � 292.


